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Abstract. Let C and D be smooth, proper and geometrically integral curves over a finite
field F. Any morphism D → C induces a morphism of étale fundamental groups π1(D) →
π1(C). The anabelian philosophy proposed by Grothendieck suggests that, when C has
genus at least 2, all open homomorphisms between the étale fundamental groups should
arise in this way from a nonconstant morphism of curves. We relate this expectation to the
arithmetic of the curve CK := C×FK over the global function field K = F(D). Specifically,
we show that there is a bijection between the set of conjugacy classes of well-behaved
morphism of fundamental groups and locally constant adelic points of CK that survive étale
descent. We use this to provide further evidence for the anabelian conjecture by relating it
to another recent conjecture by Sutherland and the second author.

1. Introduction

Let C and D be smooth, proper and geometrically integral curves over a finite field F. We
consider the arithmetic of the curve CK := C×FK over the global function field K := F(D).
The set of adelic points surviving étale descent, denoted C(AK)

ét and defined in Section 2.2, is
a closed subset of C(AK) containing the set C(K) of K-rational points. If C(AK)

ét ̸= C(AK)
then weak approximation must fail. It is known that not all failures of weak approximation
can be explained in this way: it can happen that the topological closure of C(K) is a proper
subset of C(AK)

ét because there are further obstructions arising from torsors under finite
group schemes over K that are not étale [CV22, Prop 4.5]. Despite this, it is still expected
that the information obtained from étale torsors should determine the set of rational points,
as we now describe.

The locally constant adelic points C(AK,F) form a closed subset of C(AK) admitting a
continuous retraction r : C(AK) → C(AK,F). See Section 2 for the precise definition. We
conjecture the following.

Conjecture 1.1. Let C(K) denote the topological closure of C(K) inside C(AK). Then
r(C(K)) = C(AK,F) ∩ C(AK)

ét. In particular, C(AK,F) ∩ C(AK)
ét = C(F) if and only if

there are no nonconstant morphisms D → C.

Conjecture 1.1 is an analogue of a conjecture in the number field case by Poonen [Poo06],
in a setup first studied in [Sch99]. Conjecture 1.1 is known to be true when C has genus
≤ 1 (in which case it follows from the Tate conjecture for abelian varieties over finite fields),
when the genera of C and D satisfy g(D) < g(C) [CV22], and in some other cases where
C(K) = C(F) [CVV18, Theorem 2.14]. The goal of this paper is to provide further evidence
for this conjecture, by relating it to anabelian geometry.

Fix geometric points x ∈ C(F), y ∈ D(F) where F denotes an algebraic closure of F and let
π1(C) := π1(C, x) and π1(D) := π1(D, y) be the étale fundamental groups of C and D with
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these base points. Any morphism of curves D → C induces a morphism of étale fundamental
groups π1(D)→ π1(C) up to conjugation by an element of the geometric fundamental group
π1(C) := π1(C ×F F, x). Grothendieck’s anabelian philosophy suggests that, when C has
genus at least 2, all open homomorphisms between the étale fundamental groups should
arise in this way from a nonconstant morphism of schemes [ST09,ST11]. Our main result is
the following theorem which relates this expectation to Conjecture 1.1. See Definition 3.1
for the notion of well-behaved morphism.

Theorem 1.2 (Theorem 3.8). There is a bijection (explicitly constructed in the proof) be-
tween the set Homwb

π1(C)
(π1(D), π1(C)) of well-behaved morphisms of fundamental groups up

to π1(C)-conjugation and the set C(AK,F)
ét of locally constant adelic points surviving étale

descent.

This theorem is a strengthening of an analogous result for curves over number fields, which
shows that an adelic point surviving étale descent gives rise to a section of the fundamental
exact sequence [HS12, Sto07]. Combining Theorem 1.2 with the results in [CV22] we prove
the following.

Theorem 1.3. If the Jacobian JC of C is not an isogeny factor of JD, then Conjecture 1.1
holds for C and D.

In addition to providing further evidence for the conjecture, this allows us to relate it in
the case g(D) = g(C) to a recent conjecture of Sutherland and the second author [SV19],
which we now recall. We embed C into its Jacobian JC by a choice of divisor of degree
one (which always exists by the Lang-Weil estimates since C is defined over a finite field).
The Hilbert class field is defined as follows. Let Φ : JC → JC denote the F-Frobenius map.
Define H(C) := (I − Φ)∗(C) ⊂ JC , where I denotes the identity map on J . Then H(C) is
an unramified abelian cover of C with Galois group JC(F), well defined up to a twist that
corresponds to a choice of divisor of degree one embedding C into JC . Define H0(C) := C,
H1(C) := H(C) and successively define Hn+1(C) := Hn(H(C)) for integers n ≥ 1.

Conjecture 1.4 ([SV19, Conjecture 2.2]). Let C,D be smooth projective curves of equal
genus at least 2 over a finite field F. If, for each n, there are choices of twists such that the
L-function of Hn(C) is equal to the L-function of Hn(D) for all n ≥ 0, then C is isomorphic
to a conjugate of D.

Theorem 1.5. Suppose g(C) = g(D) ≥ 2 and assume Conjecture 1.4. Then C(AK,F)
ét ∩

C(AK)
ét ̸= C(F) if and only if there is a nonconstant morphism D → C.

Acknowledgemnets. The authors were supported by the Marsden Fund administered by
the Royal Society of New Zealand. They thank Jakob Stix for suggestions leading to the
proof of Proposition 3.9 and for a correction to Remark 3.2

2. Notation and preliminaries

2.1. Notation. The set of places of the global field K = F(D) is in bijection with the set
D1 of closed points of D. Given v ∈ D1 we use Kv, Ov and Fv to denote the corresponding
completion, ring of integers and residue field, respectively. Fix a separable closure Ks of
K and let F denote the algebraic closure of F inside Ks. For each v ∈ D1, fix a separable
closure Ks

v of Kv and an embedding Ks ↪→ Ks
v. This determines an embedding Fv ⊂ F
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and an inclusion θv : Gal(Kv) → Gal(K). The embedding Fv ⊂ F fixes a geometric point
v ∈ D(F) in the support of the closed point v ∈ D. The inclusions F ⊂ Fv ⊂ Ov ⊂ Kv

endow Ov, Kv and the adele ring AK with the structure of F-algebra. We define the locally
constant adele ring AK,F :=

∏
v∈D1 Fv. This is an F-subalgebra of the adele ring AK .

The constant curve CK = C ×Spec(F) Spec(K) spreads out to a smooth proper model
C ×Spec(F)D over D. For any v ∈ D1, this gives a reduction map rv : C(Kv)→ C(Fv). Since
C is proper, C(AK) =

∏
C(Kv) and the reduction maps give rise to a continuous projection

r : C(AK)→ C(AK,F) sending (xv) to (rv(xv)).
Any locally constant adelic point (xv) ∈ C(AK,F) determines a unique Galois equivariant

map of sets ψ : D(F) → C(F) with the property that ϕ(v) = xv. This induces a bijection
C(AK,F)↔ MapGF

(D(F), C(F)). Moreover, a locally constant adelic point on C determines,
and is uniquely determined by, a map f : D1 → C1 together with an embedding Ff(v) ⊂ Fv

for each v ∈ D1 (See [CV22, Lemma 2.1]).

Lemma 2.1. The composition C(K) → C(AK)
r→ C(AK,F) is injective. Composing this

with the map C(AK,F) → Map(D1, C1) induces an injective map C(K)/F → Map(D1, C1),
where C(K)/F denotes the set of K-rational points up to Frobenius twist, i.e., P ∼ Q iff
there are m,n ≥ 0 such that FmP = F nQ.

Proof. The first statement follow from the fact (e.g., [GW10, Exercise 5.17]) that a morphism
defined on a geometrically reduced variety is determined by what it does to geometric points.
For the second statement see [Sti02, Proposition 2.3]. □

C(K)/F is finite by the theorem of de Franchis [Lan83, pg 223-224]. Over a finite field
F, there is a simpler proof. The degree of a separable map D → C is bounded by Riemann-
Hurwitz. Looking now at coordinates of an embedding of C, it now suffices to show that
there are only finitely many functions on D/F of degree bounded by some m. The zeros and
poles of such a function have degree at most m over F so there are only finitely choices for
the divisor of such a function. Finally, the function itself is determined up to a scalar in F∗

by its divisor, but F∗ is finite by hypothesis.

2.2. Etale descent obstruction. Let f : C ′ → CK be a torsor under a finite étale group
scheme G/K. We use H1(K,G) to denote the étale cohomology set parameterizing isomor-
phism classes of G-torsors over K (and similarly with K replaced by Kv,Ov,Fv, etc.). The
distinguished element of this pointed set is represented by the trivial torsor.

Following the terminology in [Sto07], we say an adelic point (xv) ∈ C(AK) survives f if
the element of

∏
v H

1(Kv, G) given by evaluating f at (xv) lies in the image of the diagonal
map

H1(K,G)
∏

θ∗v−→
∏
v∈D1

H1(Kv, G) .

Equivalently (xv) survives f if and only if (xv) lifts to an adelic point on some twist of
f by a cocycle representing a class in H1(K,G). We use C(AK)

ét to denote the set of
adelic points surviving all C-torsors under étale group schemes over K. Then C(AK)

ét is
a closed subset of C(AK) containing C(K). We define C(AK,F)

ét = C(AK)
ét ∩ C(AK,F).

By [CV22, Proposition 4.6] an adelic point lies in C(AK)
ét if and only if its image under the

reduction map r : C(AK)→ C(AK,F) lies in C(AK,F)
ét.
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The following lemma is a special case of a well known statement in étale cohomology over
a henselian ring (cf. [Mil80, Remark 3.11(a) on p. 116]).

Lemma 2.2. For an étale group scheme G over F we have H1(Ov, G) = H1(Fv, G).

Proof. The canonical surjection q : Ov → Fv induces a map q∗ : H1(Ov, G) → H1(Fv, G).
This map is injective by Hensel’s lemma. On the other hand, the inclusion i : Fv → Ov

satisfies q ◦ i = id. It follows that q∗ must also be surjective. □

An element of H1(Kv, G) is called unramified if it lies in the image of the map H1(Ov, G)→
H1(Kv, G) induced by the inclusion Ov ⊂ Kv. Thus, the lemma identifies H1(Fv, G) with
the set of unramified elements in H1(Kv, G).

3. Connection to anabelian geometry

Fix a base point x : SpecF → D := D ×Spec(F) Spec(F). Composing with the canonical
maps D → D and D → Spec(F), this serves as well to fix base points of D and Spec(F).
The basepoint of Spec(F) agrees with that determined by the algebraic closure F ⊂ F fixed
above. This leads to the fundamental exact sequence
(3.1) 1→ π1(D)→ π1(D)→ Gal(F)→ 1 ,

where π1(−) denotes the étale fundamental group with base point as chosen above. A choice
of base point SpecF→ C determines a similar sequence for C.

The choice of separable closure of K identifies π1(D) with the Galois group of the maximal
extension Kunr of K which is everywhere unramified. For each closed point v ∈ D1, The
embedding θv : Gal(Kv) → Gal(Ks) induces a section map tv : Gal(Fv) ≃ Gal(Kunr

v |Kv) →
π1(D) whose image is a decomposition group Tv ⊂ π1(D) above v.
Definition 3.1. A continuous morphism π1(D) → π1(C) is well-behaved if every decompo-
sition group of π1(D) is mapped to an open subgroup of a decomposition group of π1(C). Let
Homwb(π1(D), π1(C)) denote the set of well-behaved homomorphisms of profinite groups and
for a subgroup H < π1(C) let Homwb

H (π1(D), π1(C)) denote the quotient of Homwb(π1(D), π1(C))
by the action given by composition with an inner automorphism of π1(C) coming from an
element of H.

Remark 3.2. Here is an example of a poorly behaved homomorphism. Suppose the genus of
C is at least 2. By [Sti13, Theorem 226] there are uncountably many sections Gal(F)→ π1(C)
that are not conjugate to any section coming from a point in C(F). Composing such a section
with the canonical surjection π1(D)→ Gal(F) gives a continuous morphism π1(D)→ π1(C)
that is not well-behaved.

Proposition 3.3. Suppose (xv) ∈ C(AK,F)
ét. For each v ∈ D1, let Sv ⊂ π1(CFv) ⊂ π1(C)

be a decomposition group above the closed point xv ∈ CFv . Then there exists a well-behaved
homomorphism ϕ : π1(D)→ π1(C) inducing a morphism of exact sequences

1 // π1(D)

ϕ
��

// π1(D)

ϕ

��

// Gal(F) // 1

1 // π1(C) // π1(C) // Gal(F) // 1

such that, for each v ∈ D1, there exists γv ∈ π1(C) such that ϕ(Tv) = γv(Sv)γ
−1
v .
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Proof. For each v ∈ D1 the choice of decomposition group Sv ⊂ π1(CFv) above xv determines
a section map sv : Gal(Fv) → π1(CFv) ⊂ π1(C) with image Sv. For any finite continuous
quotient ρG : π1(C) → G, the composition ρG ◦ sv : Gal(Fv) → G determines a class in
H1(Fv, G) = HomG(Gal(Fv), G), the group of homomorphisms up to G-conjugation. Here
we view G as a constant group scheme over F. By Lemma 2.2 we may view H1(Fv, G) as
a subgroup of H1(Kv, G). In terms of descent, ρG corresponds to a torsor in H1(C,G) =
H1(π1(C), G) = HomG(π1(C), G) and ρG ◦ sv is the evaluation of this torsor at xv ∈ C(Fv).
So the fact that (xv) survives étale descent implies that there is a global class s ∈ H1(K,G)
such that for all v ∈ D1, θ∗v(s) = ρG ◦ sv in H1(Fv, G) ⊂ H1(Kv, G). Note that such an s
must lie in (the image under inflation of) the group H1(π1(D), G) = HomG(π1(D), G), since
the sv are all unramified.

For each v ∈ D1, the condition θ∗v(s) = ρG ◦ sv ∈ H1(Kv, G) is equivalent to s◦ tv = ρG ◦ sv
in H1(Fv, G) = HomG(Gal(Fv), G). Let Gv = ρG(π1(CFv)) ⊂ G be the image of ρG restricted
to the normal subgroup π1(CFv). Then Gv is normal in G and contains the image of ρG◦sv, so
it must also contain the image of s◦tv. Since G is constant, the map H1(Fv, Gv)→ H1(Fv, G)
induced by the inclusion Gv ⊂ G is injective. It follows that ρG ◦ sv and s ◦ tv are equal as
elements of H1(Fv, Gv).

By the Borel-Serre Theorem (see [Poo17, 5.12.29]) the fibers of the map H1(K,G) →∏
v∈D1 H

1(Kv, G) are finite. It follows that the set

SG := {s′ : π1(D)→ G | ∀ v ∈ D1, s′ ◦ tv = ρG ◦ sv in H1(Fv, Gv)}
is finite, and it is nonempty by the discussion above. As in the proof of [HS12, Proposition
1.2] it follows that the inverse limit over G of these sets is nonempty. An element of lim←−SG is
a homomorphism ϕ : π1(D)→ lim←−G = π1(C) with the property that for all v ∈ D1, the maps
ϕ ◦ tv and sv are conjugate by an element of π1(CFv) = lim←−Gv. We claim that ϕ ◦ tv and sv
are in fact π1(C)-conjugate. To see this, let p : π1(C)→ Gal(F) be the canonical surjection.
Suppose γv ∈ π1(CFv) conjugates sv to ϕ ◦ tv. We claim γ′v := γv · sv(p(γ−1

v )) ∈ π1(C) and
conjugates sv to ϕ ◦ tv. (Note that sv(p(γ−1

v )) makes sense as p(γv) ∈ Gal(Fv).) To see that
γ′v ∈ π1(C) we use that p ◦ sv is the identity map on Gal(Fv) to compute

p(γ′v) = p
(
γv · sv(p(γ−1

v ))
)
= p(γv) · (p ◦ sv)(p(γ−1)) = p(γ)p(γ−1) = 1 .

To see that γ′v conjugates sv to ϕ ◦ tv we compute, for arbitrary σ ∈ Gal(Fv),

γ′v · sv(σ) · γ′−1
v = [γv · sv(p(γ−1

v ))] · sv(σ) · [γv · sv(p(γ−1
v ))]−1

= γv · sv(p(γ−1)σp(γ)) · γ−1
v

= γv · sv(σ) · γ−1
v ,

where the final equality uses that Gal(Fv) is abelian.
Finally, let us show that ϕ induces a morphism of exact sequences as in the statement.

Write pD : π1(D)→ Gal(F) for the canonical map and use pC similarly. Since pC ◦ sv is the
identity on the abelian group Gal(Fv), for any σ ∈ Gal(Fv) we have

pC(ϕ(tv(σ))) = pC(γv · sv(σ) · γ−1
v ) = pC(sv(σ)) = σ .

So for any x ∈ π1(D) whose image under pD lies in Gal(Fv) we have pD(x) = pC(ϕ(x)). As
this holds for all v ∈ D1, we must have pD = pC ◦ ϕ. So ϕ induces a morphism of exact
sequences as stated. □

5



Remark 3.4. The construction of the morphism ϕ in the preceding proof is similar to the
proof of [HS12, Proposition 1.1]. However, the verification that it interpolates the sv up to
conjugation in π1(C) rather than just in π1(C) is necessarily different from the approach in
[HS12, Proposition 1.2].

Construction 3.5. Let ϕ : π1(D)→ π1(C) be a well-behaved homomorphism. From this we
construct a locally constant adelic point (xv) ∈ C(AK,F) as follows. Let D̃ and C̃ denote the
universal covers of D and C. The decomposition groups of π1(D) and π1(C) correspond to
closed points on D̃ and C̃. As we have assumed C to be hyperbolic, the intersection of any two
distinct decomposition groups of π1(C) is open in neither (see for example [ST11, Proposition
1.5]). So the well-behaved map ϕ determines a map ϕ̃ : D̃1 → C̃1 by declaring ϕ̃(ṽ) to be the
point of C̃ whose corresponding decomposition group contains ϕ(Dṽ). Given a closed point
v ∈ D1, the embedding θv : Gal(Kv)→ Gal(K) determines a decomposition group Tv above
v and consequently a pro-point ṽ ∈ D̃. Define xv ∈ C(Fv) = CFv(Fv) to be the image of ϕ̃(ṽ)
on CFv . Ranging over the closed points of D, this determines a locally constant adelic point
(xv) ∈

∏
v∈D1 C(Fv) = C(AK,F).

Remark 3.6. Note that π1(C) acts on the set of pro-points w̃ above a given w ∈ C1 and that
any two pro-points above w ∈ C1 in the same π1(C)-orbit have the same image on CFw . It
follows that the adelic point (xv) constructed in 3.5 depends on ϕ only up to π1(C) conjugacy.
Similarly, the image of (xv) in Map(D1, C1) under the map in Lemma 2.1 depends on ϕ only
up to π1(C)-conjugacy.

Lemma 3.7. Suppose ϕ ∈ Homwb
π1(C)

(π1(D), π1(C)) and let (xv) ∈ C(AK,F) be the locally
constant adelic point given by Construction 3.5. Then (xv) ∈ C(AK,F)

ét.

Proof. For v ∈ D1, let tv : Gal(Fv)→ π1(D) be the section map as defined at the beginning
of this section. Define sv = ϕ ◦ tv : GFv → π1(C). By construction, the image of sv is a
decomposition group of π1(C) above xv ∈ C(Fv). Let α : C ′ → C be a torsor under a finite
group scheme G/F. Then α represents a class in H1(C,G) = H1(π1(C), G(F)), where the
action of π1(C) on G(F) is induced by the projection π1(C)→ Gal(F). The evaluation of α
at xv is the class of α ◦ sv in H1(Fv, G). Since α ◦ sv = α ◦ ϕ ◦ tv = t∗v(α ◦ ϕ) we see that
α ◦ ϕ lies in the images of the horizontal maps in the following commutative diagram whose
vertical maps come from inflation:

H1(K,G)
θ∗v

// H1(Kv, G)

H1(π1(D), G)
t∗v
//

?�

OO

H1(Fv, G) ,
?�

OO

As this holds for all v ∈ D1, we see that the evaluation of α at the adelic point (xv) lies in
the diagonal image of H1(K,G). □
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Theorem 3.8. Construction 3.5 induces bijections

C(AK,F)
ét

����

Homwb
π1(C)

(π1(D), π1(C))//oo

����

Map(D1, C1)ét oo // Homwb
π1(C)(π1(D), π1(C)) .

where Map(D1, C1)ét denotes the image of C(AK,F)
ét in Map(D1, C1) under the map in

Lemma 2.1.

Proof. Proposition 3.3 gives a map of sets

C(AK,F)
ét → Homwb

π1(C)
(π1(D), π1(C)) ,

while Construction 3.5 and Lemma 3.7 give an injective map

Homwb
π1(C)

(π1(D), π1(C)) ↪→ C(AK,F)
ét .

One easily checks that these maps are inverse to one another, so they are inverse bijections.
Surjectivity of the first vertical map is given in Lemma 2.1 and surjectivity of the other

is immediate from the definition. One deduces the bijection in the bottom row from that in
the top row using Remark 3.6. □

Proposition 3.9. Let ϕ : π1(D) → π1(C) be a well-behaved morphism corresponding to a
locally constant adelic point surviving étale descent (xv) ∈ C(AK,F)

ét as given by Proposi-
tion 3.3. If (xv) /∈ C(F), then ϕ has open image and the map ψ : D(F) → C(F) induced by
(xv) is surjective.

Corollary 3.10. If ϕ : π1(D) → π1(C) is a well-behaved homomorphism. The image of ϕ
is either open or is a decomposition group above a point v ∈ C(F).

Proof. Suppose the image of ϕ is not open. Then we find a sequence of open subgroups
Ui ⊂ π1(C) of index approaching infinity all of which contain the image of ϕ. By Propo-
sition 3.3 the image of ϕ maps surjectively onto Gal(F) under the canonical map π1(C) →
Gal(F). Hence, the induced maps Ui → Gal(F) are surjective, so that the Ui correspond to
geometrically connected étale coverings Ci → C of genus approaching infinity. For each we
have a well-behaved homomorphism π1(D) → Ui = π1(Ci). By Theorem 3.8, these corre-
spond to unobstructed adelic points (x(i)v ) ∈ Ci(AK,F)

ét which lift (xv) ∈ C(AK,F). Eventually
g(Ci) > g(D), in which case [CV22, Theorems 1.2,1.3 and 1.5] imply that Ci(AK,F)

ét = Ci(F).
But then (xv) ∈ C(F). Therefore, if (xv) is nonconstant, then ϕ must have open image. In
this case, the image of ϕ contains a finite index subgroup of each decomposition group. This
implies that ψ : D(F)→ C(F) is surjective. □

4. Proofs of the theorems in the introduction

4.1. Proof of Theorem 1.3. Suppose (xv) ∈ C(AK,F)
ét \ C(F). By Proposition 3.9 the

Galois equivariant map ψ : D(F)→ C(F) induced by (xv) is surjective. By [CV22, Corollary
5.3] this induces a surjective GF-equivariant homomorphism ϕ∗ : JD(F) → JC(F). For any
ℓ ̸= p, this yields a surjective homomorphism of the ℓ-adic Tate modules of Tℓ(JD)→ Tℓ(JC),
so JC is an isogeny factor of JD by the Tate conjecture for abelian varieties over finite fields
[Tat66].
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4.2. Proof of Theorem 1.5. Let x = (xv) ∈ C(AK)
ét \C(F). Since H(C)→ C is an étale

cover, x lifts to a twist of H(C) by an element ξ ∈ H1(K, JC(F)) = Hom(GK , JC(F)). Let
L/K be the fixed field of ker(ξ). Then L/K is unramified since, locally, it is given as the
extension generated by the roots of (I − Φ)(y) = xv, and L/K is abelian since Gal(L/K) is
a subgroup of JC(F). Thus L is a subfield of the function field K ′ of H(D) (for a suitable
embedding D → JD). Viewing x as an adelic point on C over K ′, we have have x ∈ C(AK′)ét

by [Sto07, Proposition 5.15]. By the above this adelic point lifts to H(C)(AK′)ét.
From Theorem 1.3, we get that that H(C) and H(D) have the same L-function. Now

we are in the same situation as before with H(C), H(D) in place of C,D. Iterating this
process we obtain towers such that Hn(D) and Hn(C) have the same L-functions. Assuming
Conjecture 1.4 this implies C(K) ̸= C(F).

Remark 4.1. The paper [BV20] proves a theorem very close in spirit to Conjecture 1.4 using
L-functions with characters. It would be very desirable to have a proof of Conjecture 1.1 in
the equigenus case from the main theorem of [BV20] along the lines of the above proof but
we haven’t succeeded in producing it.
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