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1. Introduction

For a geometrically integral variety V over a field K, the relative Brauer group Br(V/K) is
the subgroup of the Brauer group Br(K) consisting of classes which are split by the function
field k(V ) of V . The index of V is the greatest common divisor of the degrees of field
extensions K ′/K for which V possesses a K ′-rational point. These two invariants are closely
related. For example, the relative Brauer group can only be nontrivial when the index is
greater than one. The simplest case in which this occurs is a conic without a rational point,
for which the relative Brauer group is generated by the class of the conic in Br(K).

For curves with nontrivial Jacobian, the relative Brauer group need not be cyclic. Here
the simplest examples occur among genus one curves of index 2, which (assuming the char-
acteristic of K is not 2) are curves admitting a model of the form y2 = g(x) with g(x) ∈ K[x]
is a square free quartic polynomial. For such a curve V results of Shick [Shi94], Han [Han03]
and Haile and Han [HH07] reduce the problem of determining the relative Brauer group to
determining the group of K-rational points on the Jacobian J of V . Their approach can
be explained by an old result of Lichtenbaum [Lic69]: corresponding to any torsor V there
is a canonically defined class in AV ∈ Br(J) such that the evaluation map induces a ho-
momorphism J(K) → Br(V/K) which, as noted by Çiperiani and Krashen [ÇK12], will be
surjective when the index of V and the order of AV (called the period of V ) coincide.

In [HH07] Lichtenbaum’s result is made explicit by constructing a representative for AV as
an Azumaya algebra over the coordinate ring of J . Their work was motivated by earlier work
of Haile [Hai84], who showed that the Clifford algebra of a binary cubic form F (x, y) plays
an analogous role for the genus one curve z3 = F (x, y). This has been further developed
by Kuo [Kuo11] to construct the algebra AV corresponding to an arbitrary cubic curve,
i.e., a torsor of period and index dividing 3. A method applicable to torsors of cyclic type
(necessarily having equal period and index) is given in [ÇK12] and applied in[HHW12].

For a hyperelliptic curve X, Creutz and Viray [CV14] have recently given an explicit means
of constructing unramified central simple k(X)-algebras representing 2-torsion elements in
the Brauer group of X. Our primary purpose here is to explore applications of these al-
gebras to the computation of relative Brauer groups. We show that each of these algebras
corresponds to a torsor V under the Jacobian of X in such a way that the specializations
of the algebra give elements of Br(V/K). When X is a genus one curve, the corresponding
torsors are intersections of quadric hypersurfaces in P3, and every torsor of index dividing
4 is given this way, including those with unequal period and index. The results also apply
to higher genus hyperelliptic curves allowing for computation of relative Brauer groups of
higher dimensional torsors under abelian varieties. In Section 6 we give several numerical
examples illustrating the practicality of the method.
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1.1. Statement of the results. Throughout the paper we consider a smooth and projec-
tive hyperelliptic curve X defined over a field K of characteristic different from 2. We fix
an equation y2 = cf(x) defining X, where c ∈ K× and f(x) ∈ K[x] is a monic square
free polynomial. We set L = K[θ]/f(θ) and let J = Jac(X) denote the Jacobian of X.
For any ` ∈ L×, let A′′` be the L(x)-algebra obtained by adjoining anticommuting square
roots of x − θ and ` to L(x). The corestriction A′` := CorL(x)/K(x)(A′′` ) is a tensor product
of quaternion algebras over K(x) which can be explicitly computed using Rosset-Tate reci-
procity (see [CV14, Proposition 3.1]). In [CV14] it is shown that, under suitable conditions
on the norm of `, the algebra A′` pulls back to an unramified central simple k(X)-algebra
A` := A′` ⊗K(x) k(X).

1.2. Elliptic curves. When deg(f) = 3, X = J is an elliptic curve and every torsor of
period 2 under X is given by a classical construction associating to an element ` ∈ L× of
square norm the genus one curve V` ⊂ P3

K defined by

(1.1) V` : Q
(1)
` (u, v, w) + t2 = Q

(2)
` (u, v, w) = 0 ,

where, for 0 ≤ i ≤ 2, Q
(i)
` (u, v, w) ∈ K[u, v, w] is the ternary quadratic form uniquely

determined by requiring that
∑
θiQ

(i)
` = `(u+ θv + θ2w)2 (see [Cas91, Section 15]).

The following theorem, proven in Section 5.1, reduces computation of the relative Brauer
group of V` to a computation of a basis for X(K)/2X(K).

Theorem 1.1. Let V be a genus one curve of period 2 and suppose X : y2 = f(x) is a
Weierstrass model for X = Jac(V ) (i.e., deg(f) = 3). Then

(1) There exist ` ∈ L× such that V ' V`.
(2) Evaluation of A` induces an exact sequence

X(K)

2X(K)

A`−→ Br(V/K) −→ per(V )

ind(V )
−→ 0 ,

where per(V ) and ind(V ) are the period and index subgroups in Definition 2.4.
(3) Br(V/K) is generated by {A`(P ) : P ∈ X(K)} and the class [C`] ∈ Br(K) corre-

sponding to the conic C` ⊂ P2
K defined by Q

(2)
` (u, v, w) = 0.

(4) per(V ) = ind(V ) if and only if [C`] ∈ A`(X(K)).

The connection between these torsors and those considered in [HH07] is as follows. Pro-
jecting away from the point u = v = w = 0 in P3

K induces a degree 2 morphism V` → C`,

where C` ⊂ P2
K is the conic defined by Q

(2)
` (u, v, w) = 0. If C` has a K-rational point, then

C` ' P1
K and so V` is a double cover of P1

K with a model of the form y2 = quartic. However,
as first shown by Cassels [Cas63], it is possible that V` has no rational points over any qua-
dratic extension of K, in which case per(V`) 6= ind(V`) and no degree 2 map to P1

K exists.
In fact, the torsors V` with equal period and index are not generic; they correspond to those
` ∈ L× whose classes in L×/L×2 can be represented by a linear polynomial in K[θ] = L (This
follows easily from (1.1); see also [CF09, Theorem 13]). Theorem 1.1 therefore recovers the
results of [HH07], and extends them to all torsors of period 2 under an elliptic curve.
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1.3. Genus one curves. When X : y2 = cf(x) is defined by a quartic polynomial cf(x),
a construction analogous to (1.1) yields an intersection of quadric surfaces V` ⊂ P3. Given
` ∈ L× such that NL/K(`) is a square times the leading coefficient of cf(x), one defines

V` : Q
(2)
` (t, u, v, w) = Q

(3)
` (t, u, v, w) = 0,

where, for 0 ≤ i ≤ 3, Q
(i)
` (t, u, v, w) is the quadratic form defined by∑

0≤i≤3

θiQ
(i)
` (t, u, v, w) = `(t+ θu+ θ2v + θ3w)2.

We associate to V` the central simple k(X)-algebra A` constructed above. In Section 5.2 we
prove the following.

Theorem 1.2. Let V be a genus one curve of index 4. Then there exists a quartic polynomial
cf(x) ∈ K[x] and ` ∈ L×, where L = K[θ]/f(θ) such that:

(1) Jac(V ) ' Jac(X) where X : y2 = cf(x).
(2) 2V = X in the Weil-Châtelet group of the Jacobian.
(3) V ' V`.
(4) Evaluation of A` on degree zero K-rational divisors of X gives rise to an exact se-

quence

0→ Pic0(V )
ι→ Pic0(X)

A`−→ Br(V/K)
2−→ Br(X/K) −→ 0 ,

where ι is induced by the inclusion Pic0(V ) ⊂ Pic0(V ) = Pic0(X) and the last map
is induced by multiplication by 2 in Br(K).

The first three statements of this theorem are well known. If V has index dividing 4, then
the complete linear system associated to any K-rational divisor of degree 4 gives a model for
V as an intersection of quadrics in P3

K . The quartic polynomial is det (M1x−M2), where
M1 and M2 are the symmetric matrices corresponding to these quadrics, and a forumula for
` is given in [Fis08, Section 5].

It is worth noting that while Theorem 1.2 may not yield enough to completely determine
Br(V/K), Theorems 1.1 and 1.2 together allow one to determine whether a given K-rational
point on the Jacobian is represented by a K-rational divisor of degree 0 on V . See Section 6.4
for an example.

1.4. Hyperelliptic curves. When the degree of cf(x) is arbitrary, work of Cassels [Cas83],
Schaefer [Sch95] and Poonen-Schaefer [PS97] recalled in Section 4 similarly allows one to
associate a torsor V` of period 2 under J to any ` ∈ L× of square norm. Consequently, to
any such torsor we may associate an algebra A`. The following more general version of 1.1
is proven in Section 4.

Theorem 1.3. Suppose V` is a torsor of period 2 under the Jacobian of a hyperelliptic curve
X such that Br(X/K) = 0. Let ` ∈ L× be an element of square norm representing V` and
let A` be the corresponding k(X)-algebra. Then evaluation of A` on degree zero K-rational
divisors of X induces an exact sequence

J(K)/2J(K)
A`−→ Br(V`/K) −→ per(V`)

ind(V`)
−→ 0 ,
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where per(V`) and ind(V`) are the period and index subgroups of the Néron-Severi group of
V` defined in Definition 2.4.

As mentioned above, Lichtenbaum’s result shows that the relative Brauer group of a torsor
with equal period and index under an elliptic curve J can be obtained by speicialization of a
Brauer class on J . More generally, Çiperiani and Krashen [ÇK12, Theorem 3.5] have shown
this to be true for torsors under any abelian variety. In Section 3.1 we use their result to
deduce the following more general version.

Theorem 1.4. Let Y/K be a smooth projective and geometrically integral variety over K
with Picard variety A = Pic0

Y . There is a class BY ∈ Br(A) canonically associated to Y (see
Definition 3.1) such that evaluation induces an exact sequence

0 −→ A(K)

Pic0(Y )

BY−→ Br(Y/K) −→ per(Y )

ind(Y )
−→ 0,

where per(Y ) and ind(Y ) are the period and index subgroups of Definition 2.4.

In the context of Theorem 1.3, we have a hyperelliptic curve X and a torsor V`. One may
identify J = Jac(X) = Pic0

X = Pic0
V`

. When X has a K-rational point, there is a embedding
X ↪→ J sending the point to the identity element of A(K). As we shall see, the class BV`
featuring in Theorem 1.4 pulls back via this embedding to give a class in Br(X) represented
by the algebra A`.

1.5. Notation. The following notation will be used throughout.
Let K be a field of characteristic not equal to 2, with a separable closure K and absolute

Galois group GK := Gal(K/K). For a GK-module M (with the discrete topology) and an
integer i ≥ 0, Hi(GK ,M) denotes the ith Galois cohomology group. For an étale K-algebra
L and elements a, b ∈ L× define

(a, b)2 :=
L[i, j]

〈i2 = a, j2 = b, ij = −ij〉
.

Kummer theory gives an isomorhpism κ : L×/L×2 ' H1(GK , µ2(L)). The L-algebra (a, b)2

represents the class the cup product κ(a) ∪ κ(b) in H2(GK , µ2(L)) = Br(L)[2] (see Defini-
tion 2.1). We denote this class by [a, b]2.

Suppose Y is a smooth, projective and geometrically integral variety over K,. We use
Y to denote the base change of Y to K. The function field of Y is denoted k(Y ). Let
Pic(Y ) be the Picard group of Y . Then Pic(Y ) = Div(Y )/Princ(Y ), where Div(Y ) (resp.
Princ(Y )) is the group of Weil divisors (resp. principal Weil divisors) of Y defined over K.
If D ∈ Div(Y ), then [D] denotes its class in Pic(Y ). Let PicY denote the (reduced) Picard
scheme of Y , and let Pic0

Y ⊆ PicY denote the connected component of the identity. There
is a bijective map Pic(Y )GK → PicY (K), but in general the map Pic(Y ) → Pic(Y )GK will
not be surjective. Let Pic0(Y ) be the subgroup of Pic(Y ) mapping into Pic0

Y (K). Then
NS(Y ) := Pic(Y )/Pic0(Y ) is the Néron-Severi group of Y . If λ ∈ NS(Y )GK , let PicλY denote
the corresponding component of the Picard scheme and use Picλ(Y ) and Divλ(Y ) to denote
the subsets of Pic(Y ) and Div(Y ) mapping into PicλY (K). We write AlbY for the Albanese
scheme of Y parameterizing equivalence classes of zero-cycles on Y and, for i ∈ Z, write
AlbiY for the degree i component of AlbY . Then Alb0

Y is an abelian variety, and its dual
4



abelian variety is Pic0
Y . When Y is a curve, NS(Y ) = Z, PiciY = AlbiY for all i ∈ Z and

Jac(Y ) := Pic0
Y = Alb0

Y is called the Jacobian of Y .
A torsor under an abelian variety A over K is a variety V , together with an algebraic group

action of A on V such that A(K) acts simply transitively on V (K). For any torsor V under A,
there is an K-isomorphism of torsors V ' A, determined up to translation by an element in
A(K). Since the action of a translation on Pic0(A) is trivial, this determines an isomorphism
of GK-modules Pic0(V ) ' Pic0(A) which is independent of the choice of translation. For any
i ∈ Z, AlbiY is a torsor under Alb0

Y . There is a canonical map Y → Alb1
Y induced by sending

y ∈ Y (K) to the class of the 0-cycle y. This gives a canonical isomorphism of GK-modules,
Pic0

Y (K) ' Pic0
Alb1

Y
(K).

The isomorphism classes of torsors under A are parameterized by the Weil-Châtelet group,
H1(K,A(K)). We define the period of a torsor to be its order in the Weil-Châtelet group,
and define the period of Y to be the period of Alb1

Y .

2. The relative Brauer group of a variety

2.1. The Brauer group of a variety.

Definition 2.1. Let Y be a smooth, projective and geometrically integral variety over a field
K. The algebraic Brauer group of Y is

Br(Y ) := ker
(
div∗ : H2(GK ,k(Y )×)→ H2(GK ,Div(Y )×)

)
where div∗ is induced by the map sending a rational function on Y to its divisor.

When Y = Spec(K) we abbreviate Br(Spec(K)) to Br(K). In this case div∗ is triv-

ial and so Br(K) = H2(GK , K
×

) is the usual Brauer group of the field K. In general,
the inflation-restriction sequence identifies H2(GK ,k(Y )×) with the relative Brauer group,
Br(k(Y )/k(Y )). Thus, Br(Y ) can (and tacitly will) be viewed as the subgroup of Br(k(Y ))
consisting of classes that are unramified at all divisors and split by extension of scalars to
K. Although we will not need it, let us also mention the étale-cohomological definition of
the algebraic Brauer group as

Br(Y ) := ker
(
H2

ét(Y,Gm)→ H2
ét(Y ,Gm)

)
.

It is shown in [Lic69, Appendix] when Y is a curve, and in [CTS77, Lemme 14] in general,
that these definitions are equivalent.

2.2. The basic exact sequence. The Hochschild-Serre spectral sequence gives rise to a
well known exact sequence,

(2.1) 0→ Pic(Y )→ Pic(Y )GK
aY→ Br(K)→ Br(Y )

hY→ H1(GK ,Pic(Y ))→ H3(GK , K
×

) .

Following [Lic69, Section 2] (in the case that Y is a curve), we will give a more direct
derivation of (2.1) using Galois cohomology. The exact sequences,

(2.2) 1→ k(Y )×/K
× div→ Div(Y )→ Pic(Y )→ 0 ,

and

1→ K
× → k(Y )× → k(Y )×/K

× → 1 ,
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induce a commutative diagram with exact rows and columns,
(2.3)

Br(Y )
� _

��

H1(GK ,Pic(Y ))

ρ
��

H1
(
GK ,

k(Y )×

K
×

)
δ

// Br(K) // H2(GK ,k(Y )×)
ε
//

div∗
��

H1
(
GK ,

k(Y )×

K
×

)
��

// H3(GK , K
×

)

H2(GK ,Div(Y )) H2(GK ,Div(Y )).

The image of Br(K) is contained in the kernel of div∗ (a consequence of the fact that the
divisor of a constant function is 0). Also, ρ is injective, since H1(GK ,Div(Y )) = 0 (a
consequence of Shapiro’s Lemma). From the diagram we see that ε induces a unique map hY
making (2.1) exact at all terms to the right of Br(K). We define aY to be the composition
of δ and the connecting homomorphism arising from (2.2). The connecting homomorphism
is surjective (for the same reason that ρ is injective) and δ is injective (by Hilbert’s Theorem
90). This shows that (2.1) is exact at Br(K). The map Pic(Y ) → Pic(Y )GK is injective
by Hilbert’s Theorem 90 and its image is equal to image(Div(Y )GK → Pic(Y )GK ), which is
equal to ker(aX) by definition. Therefore (2.1) is exact.

Lemma 2.2. Suppose [D] ∈ Pic(Y )GK is represented by an ample, base point free divisor
D ∈ Div(Y ). Then the complete linear system of effective divisors linearly equivalent to D
forms a Brauer-Severi variety S over K, and aY ([D]) is the class of S in Br(K).

Proof. Since [D] is fixed by Galois, for each σ ∈ GK there exists fσ ∈ k(Y )× such that
div(fσ) = σ(D) − (D). For any σ, τ ∈ GK , the divisor of aσ,τ := σ(fτ )fσ/fστ is 0, which

implies aσ,τ ∈ K
×

. The definition of aY shows that aY ([D]) is represented by the 2-cocycle,
(σ, τ) 7→ aσ,τ .

The set L(D) =
{
f ∈ k(Y )× : div(f) +D ≥ 0

}
∪ {0} is a K-vector space. For each

σ ∈ GK , the map φσ : f 7→ σ(f)fσ is an automorphism of L(D). For σ, τ ∈ GK , these maps

satisfy aσ,τφστ = φσ ◦ φτ , and using this one easily verifies that the maps φ̃σ : P(L(D)) →
P(L(D)) induced by the φσ satisfy Weil’s criteria for Galois descent (see [Wei56, Theorem
1]). We conclude that there is a K-variety S and a K-isomorphism ψ : SK ' P(L(D)) such

that φ̃σ = ψσ ◦ ψ−1, for every σ ∈ GK . In particular, S is a Brauer-Severi variety, and
its class in H1(GK ,Aut(P(L(D))) ' H1(GK ,PGL(L(D))) is represented by the 1-cocycle

σ 7→ φ̃σ. The image of S in Br(K) = H2(GK , K
×

) is then given by the 2-cocycle (σ, τ) 7→
σ(φτ ) ◦ φσ ◦ φ−1

στ = aσ,τ . As shown above, this also represents aY ([D]). �

2.3. Specialization of Brauer classes. There is a natural evaluation pairing,

ev : Y (K)× Br(Y ) −→ Br(K) .

For P ∈ Y (K), define Br(Y, P ) := ker (ev(P, ) : Br(Y )→ Br(K)).

Lemma 2.3. For any K-rational point P ∈ Y (K) the map hY of (2.1) restricts to an
isomorphism Br(Y, P ) ' H1(GK ,Pic(Y )).
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Proof. The evaluation map gives a retraction of the exact sequence

Br(K)→ Br(Y )
hY→ H1(GK ,Pic(Y )) .

�

2.4. Period and index subgroups. Following [ÇK12] we make the following definitions

Definition 2.4. Let Y and aY be as in (2.1).

(i) Br0(Y/K) is the image of aY restricted to Pic0(Y )GK .
(ii) per(Y ) is the image of Pic(Y )GK in NS(Y ).

(iii) ind(Y ) is the image of Pic(Y ) in NS(Y ).

Remark 2.5. If Y is a curve of period p and index i, then NS(Y ) ' Z and under this
isomorphism per(Y ) = pZ and ind(Y ) = iZ. The integer p (resp. i) is the least positive
degree of a K-rational divisor class (resp. K-rational divisor) on Y .

By definition of Br0(Y/K) we have a commutative diagram with exact rows

(2.4) 0 // Pic0(Y ) //

��

Pic0(Y )GK
aY
//

��

Br0(Y/K) //

��

0

0 // Pic(Y ) // Pic(Y )GK
aY

// Br(Y/K) // 0

Applying the snake lemma immediately yields an exact sequence

(2.5) 0→ Br0(Y/K) −→ Br(Y/K) −→ per(Y )

ind(Y )
→ 0 .

If φ : Y → Z is a morphism of smooth projective and geometrically integral varieties
over K. Then the identity map on Br(K) induces an injection Br(Z/K) ↪→ Br(Y/K) and φ
induces a morphism of short exact sequences,

(2.6) 0 // Pic0(Z) //

φ∗

��

Pic0(Z)GK
aZ
//

φ∗

��

Br0(Z/K) //
� _

��

0

0 // Pic0(Y ) // Pic0(Y )GK
aY
// Br0(Y/K) // 0.

This has the following consequences.

Lemma 2.6. Let φ : Y → Z be as above.

(1) If φ is the canonical map Y → Alb1
Y , then (2.6) is an isomorphism of exact sequences.

(2) If D ∈ Div(Z) represents a class in Pic0(Z)GK and φ∗D is principal, then D is
linearly equivalent to a K-rational divisor.

Proof. Both statements follow by applying the snake lemma to (2.6). For the first statement,
one also uses the fact that φ∗ : Pic0(Alb1

Y
)GK → Pic0(Y )GK is an isomorphism. �
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3. Relative Brauer groups via specialization

3.1. Brauer classes on the Picard variety. Suppose A is an abelian variety with dual
B = Pic0

A. There is a canonical choice of rational point on A, namely the identity 0A. So
by Lemma 2.3, hA restricts to an isomorphism Br(A, 0A) ' H1(GK ,Pic(A)). Therefore, the
inclusion Pic0(A) ⊂ Pic(A) induces a map

(3.1) H1(GK , B(K)) = H1(GK ,Pic0(A))→ H1(GK ,Pic(A)) ' Br(A, 0A)

Definition 3.1. For a torsor V under an abelian variety B with dual abelian variety A,
let BV ∈ Br(A, 0A) be the image of the class of V under the map in (3.1). For a smooth
projective and geometrically integral variety Y with Picard variety A = Pic0

Y , define BY =
BAlb1

Y
∈ Br(A, 0A) where Alb1

Y is the torsor under B = Alb0
Y parameterizing classes of

0-cycles of degree 1 on Y .

Remark 3.2. When Y is a torsor under B these two definitions of BY coincide, since in
this case B = Alb0

Y and Y = Alb1
Y .

Proof of Theorem 1.4. Let Y be a smooth projective and geometrically integral variety, let
BY ∈ Br(A, 0A) as in Definition 3.1 and let V = Alb1

Y . Evaluation of BY gives a homo-
morphism A(K)→ Br(K), which by [ÇK12, Theorem 3.5] coincides with aV : Pic0(V )GK =
A(K)→ Br(K). Hence evaluation of BY induces a short exact sequence,

(3.2) 0→ Pic0(V ) −→ A(K)
BY−→ Br0(V/K)→ 0.

Using Lemma 2.6 we may replace V by Y in (3.2) without affecting the exactness. The
theorem then follows from the exactness of (2.5). �

3.2. Brauer classes on a curve.

Definition 3.3. Let X be a smooth projective and geometrically integral curve. A torsor V
under the Jacobian of X is Brauer-like if its image in H1(GK ,Pic(X)) lies in the image of
the map hX in (2.1). For a Brauer-like torsor V , let AV ∈ Br(X) be any class such that
hX(AV ) is the image of V in H1(GK ,Pic(X)).

We note that AV is only defined up to the image of Br(K) in Br(X). The relationship
between AV and the class BV of Definition 3.1 is given by the following.

Lemma 3.4. Suppose X has a rational point P ∈ X(K) and let V be a torsor under the
Jacobian J of X. Then

(1) V is Brauer-like,
(2) there is a unique choice for AV which lies in Br(X,P ) and
(3) AV = i∗(BV ), where i∗ : X → J is the map induced by sending Q ∈ X(K) to [Q−P ].

Proof. By Lemma 2.3 hX gives an isomorphism Br(X,P ) ' H1(GK ,Pic(X)). So it is clear
that V is Brauer-like and that the choice for AV in Br(X,P ) is unique. The cokernel of
the map H1(GK ,Pic0(X))→ H1(GK ,Pic(X)) induced by the inclusion is H1(GK ,NS(X)) =
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H1(GK ,Z) = 0. So the map i∗ induces a commutative diagram

Br(X,∞)
hX

// H1
(
GK ,Pic(X)

)
H1
(
GK ,Pic0(X)

)
Br(J, 0J)

hJ
//

ι∗

OO

H1
(
GK ,Pic(J)

)
H1
(
GK ,Pic0(J)

)
oo

ι∗

OO

Both hX and hJ are isomorphisms (again by Lemma 2.3). The vertical map on the right of
the diagram is also an isomorphism, since i∗ : Pic0(J) → Pic0(X) is an isomorphism. The
lemma then follows from a diagram chase. �

3.3. Lichtenbaum’s pairings. For a proper, smooth, geometrically integral curve X over
K, Lichtenbaum defined in [Lic69] three pairings and showed that they are compatible in
the sense that there is a commutative diagram:

(3.3)

〈 , 〉1 : Pic0(X)GK × H1(GK ,Pic0(X)) → Br(K)

↪→ ← =

〈 , 〉2 : Pic0(X) × H1(GK ,Pic(X)) → Br(K)

←
↩

→ =

〈 , 〉3 : Pic(X) × Br(X) → Br(K)

The pairing 〈 , 〉1 was first defined by Tate; its definition may be found in [ÇK12, Section
3]. The pairing 〈 , 〉2 is induced by 〈 , 〉1; that it is well defined is verified in [Lic69, Section
4]. The third pairing is induced by the evaluation map. Specifically, for D ∈ Pic(X) and
A ∈ Br(X) one has 〈D,A〉3 =

⊗
P A(P )⊗nP , where

∑
P nPP is an integral linear sum of

closed points of X representing the divisor class D (see [Lic69, Section 4]). The vertical
maps of the left column of (3.3) are the obvious ones. The upper-middle map is induced by
the inclusion Pic0(X)→ Pic(X), and the lower-middle map is hX of (2.1).

The following result relates the map aV with Tate’s pairing. It was first proven by Licht-
enbaum in the case of elliptic curves; for general abelian varieties see [ÇK12, Theorem 3.5].

Lemma 3.5. For V ∈ H1(GK ,Pic0(X)) and P ∈ Pic0(V )GK = Pic0(X)GK one has 〈P, V 〉1 =
aV (P ).

Proposition 3.6. Let X be a curve and let V be a Brauer-like torsor under the Jacobian of
X. Evaluation of AV induces an exact sequence

0→
(
Pic0(V ) ∩ Pic0(X)

)
→ Pic0(X)

AV−→ Br0(V/K) −→ Br0(X/K)

aX(Pic0(V ))
→ 0,

where Pic0(V ) is identified with a subgroup of Pic0(X)GK via the canonical identification of
Pic0(X) and Pic0(V ).

The proposition is proved below. First we state a corollary.

Corollary 3.7. If X is a curve such that Br0(X/K) = 0 and V is a Brauer-like torsor under
its Jacobian, then evaluation of AV induces an exact sequence,

J(K)
AV−→ Br(V/K)→ per(V )

ind(V )
→ 0 ,

where J = Jac(X) is the Jacobian of X.
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Proof of Corollary 3.7. If Br0(X/K) = 0, then Pic0(X) = Pic0(X)GK = J(K). By the
theorem, evaluation of AV gives a surjective map J(K)→ Br0(V/K). The exactness of (2.5)
then implies that the sequence in the corollary is exact. �

Proof of Proposition 3.6. Let P ∈ Pic0(X) ⊂ Pic0(X)GK . First note that 〈P,AV 〉3 does not
depend on the choice for AV , since P is a divisor class of degree 0. By the commutativity
in (3.3) and Lemma 3.5 we have 〈P,AV 〉3 = 〈P, V 〉1 = aV (P ). Hence evaluation of AV
induces a commuative and exact diagram

0 // Pic0(X) //

〈 ,AV 〉3
��

Pic0(X)GK
aX
//

aV
����

Br0(X/K) //

��

0

0 // Br0(V/K) Br0(V/K) // 0 .

The statement in the proposition now follows by applying the snake lemma. �

4. Hyperelliptic curves

Consider a hyperelliptic curve X : y2 = cf(x), where f(x) ∈ K[x] is a square free monic
polynomial over a field of characteristic not equal to 2. The x-coordinate defines a degree 2
map π : X → P1

K , embedding K(x) into k(X) as an index 2 subfield. We set L = K[θ]/f(θ),
and for ` ∈ L× set

A` :=
(
CorL(x)/K(x)(`, x− θ)2

)
⊗K(x) k(X) .

This is a central simple algebra over k(X) which can be written explicitly as a tensor product
of quaternion algebras (see [CV14, Proposition 2.4]). In this section we show that for suitable
torsors V the class AV ∈ Br(X) can be represented by an algebra of the form A`.

We say that X is odd if deg(f) is odd. Otherwise we say that π is even. If X is odd,
we can perform a change of coordinates to arrange that c = 1. Let Ω ⊆ X be the set of
ramification points of π, and let L = MapK(Ω, K) denote the étale K-algebra corresponding
to Ω. When X is even we may identify K[θ]/f(θ) with L. When X is odd, K[θ]/f(θ) can
be identified with the subalgebra L◦ ⊆ L consisting of elements ` ∈ L = MapK(Ω, K) that
take the value 1 at the ramification point above ∞ ∈ P1(K). In the odd case this gives an
isomorphism L ∼= L◦ ×K.

Set

L =
L×

K×L×2

For a ∈ K× and ` ∈ L×, we use a and ` to denote the corresponding classes in K×/K×2 and
L, and set

La =
{
` ∈ L : NormL/K

(
`
)
∈ 〈a〉

}
,

where NormL/K denotes the map L→ K×/K×2 induced by the norm on L. Note that when
X is odd we have an isomorphism L ∼= L×◦ /L

×2
◦ under which NormL/K coincides with the

map induced by the norm on L◦.
10



4.1. Odd hyperelliptic curves. Suppose that X is odd (i.e., that f(x) has odd degree).
Schaefer [Sch95], building on work of Cassels [Cas83] defined an isomorphism of GK-modules
between J [2] and ker

(
NormL/K : µ2(L◦)→ µ2(K)

)
. From this one obtains an isomorphism

e : L1 ' H1(GK , J [2]). The Kummer sequence associated to J gives a surjective map
H1(GK , J [2])→ H1(GK , J(K))[2] = H1(GK ,Pic0(X))[2]. Furthermore, the K-rational point
0X ∈ X(K) lying above ∞ ∈ P1

K(K) gives rise to isomorphisms,

Br(X, 0X)
hX' H1(GK ,Pic(X)) ' H1(GK ,Pic0(X)).

Hence there exists a homomorphism γ, uniquely determined by the requirement that the
following diagram commute.

(4.1) H1(GK ,Pic0(X)[2]) // // H1(GK ,Pic0(X))[2]

L1
γ

//

e ∼
OO

Br(X, 0X)[2]

hX ∼

OO

Given ` ∈ L× of square norm, let V` be a torsor under J representing the image of ` in
the top right corner of the diagram. In [CV14] it is shown that γ is induced by the map
` 7→ A`. The commutativity of the diagram therefore implies that A` represents the class
AV of Definition 3.3. Applying Corollary 3.7 we obtain the following.

Theorem 4.1. Suppose X is an odd hyperelliptic curve and V is a torsor of period 2 under
J . Then V ' V` for some ` ∈ L× of square norm. The algebra A` represents the class
AV ∈ Br(X, 0X) and is split if and only if V (K) 6= ∅. Moreover, evaluation of A` on
K-rational divisors of degree 0 induces an exact sequence.

J(K)

2J(K)

A`−→ Br(V/K) −→ per(V )

ind(V )
−→ 0.

4.2. Even hyperelliptic curves. The case of even hyperelliptic curves is somewhat more
involved. Suppose ` ∈ L× represents a class in Lc and let n ∈ {0, 1} be such that cnNL/K(`) ∈
K×. Then `, together with a choice of square root for cnNL/K(`), can be used to construct a
torsor V` under J . For n = 0 this follows from work of Poonen and Schaefer [PS97]. When
X has genus 2 Flynn, Testa and Van Luijk [FTvL12] give an explicit construction of V`
as an intersection of 72 quadrics in P15. For n = 1 this is developed in [Cre13]. See also
[BGW, Theorems 23 and 24] for an alternative description of this torsor. When X has genus
1, the V` are the torsors produced by a 4-descent as described in [MSS96]. The class of V`
in H1(GK , J(K)) may depend on the choice of square root for cnNL/K(`), but the image of

this class in in H1(GK , J(K))/〈Pic1
X〉 does not. These torsors also have the property that

2V` = nPic1
X in H1(GK , J(K)). This gives rise to a homomorphism

(4.2) Lc −→
(

H1(GK , J(K))

〈Pic1
X〉

)
[2] ' H1(GK ,Pic(X))[2] .

It follows from [CV14] that this homomorphism coincides with the composition

Lc
γ−→ Br(X)/Br0(X)

hX−→ H1(GK ,Pic(X)) ,
11



where γ is induced by the map ` 7→ A` and Br0(X) denotes the image of Br(K) in Br(X).
This implies that V` is Brauer-like and that the algebra A` is a representative for AV` .
Combining this with Corollary 3.7 we obtain the following.

Theorem 4.2. Suppose Br0(X/K) = 0 and that the norm of ` ∈ L× lies in cnK×2. Let V`
be a torsor under J corresponding to a choice of square root for cnNL/K(`), and let A` be the
k(X)-algebra defined above. Then evaluation of A` on K-rational degree 0 divisors induces
an exact sequence

J(K)

2J(K)

A`−→ Br(V`/K) −→ per(V`)

ind(V`)
−→ 0.

It is worth mentioning that the homomorphism in (4.2) is not generally surjective, and in
general there can be Brauer-like torsors of period 2 under J which are not of the form V`.
We also note that the hypothesis Br0(X/K) = 0 is satisfied quite frequently, as suggested
by the following lemma.

Lemma 4.3. Suppose X is a hyperelliptic curve of even genus defined over a local or global
field. Then Br0(X/K) = 0.

Proof. The hypothesis implies that Pic0(X) → Pic0(X)GK is an isomorphism; see [PS97,
Propositions 3.3 and 3.4]. �

5. Genus one curves

We now specialize to the case that X is a genus 1 hyperelliptic curve.

5.1. Elliptic curves. If X is odd, then it is an elliptic curve in Weierstrass form. In this
section we prove Theorem 1.1 which allows us to compute the relative Brauer group of any
torsor under X = Jac(X) of period 2 (assuming we are able to compute the group X(K)
of rational points on X). Recall that for ` ∈ L× of square norm, the corresponding torsor
under X = Jac(X) is the curve V` ⊂ P3

K defined by

(5.1) V` : Q
(1)
` (u, v, w) + t2 = Q

(2)
` (u, v, w) = 0 ,

where, for 0 ≤ i ≤ 2, Q
(i)
` (u, v, w) ∈ K[u, v, w] are the ternary quadratic forms uniquely

determined by requiring that
∑
θiQ

(i)
` = `(u+ θv+ θ2w)2. Let C` ⊂ P2

K be the conic defined

by Q
(2)
` (u, v, w) = 0.

Remark 5.1. It may be helpful to note that the defining equations for V` are obtained from
the equation x − θ = `z2 , where z = u + vθ + wθ2 is a generic element of the K vector
space L. To obtain defining equations for V`, one equates powers of θ, eliminates x and then
homogenizes.

Lemma 5.2. Let P0 = (u0 : v0 : w0) ∈ C`(K) be any point, and let

D =

(
u0 : v0 : w0 :

√
−Q(1)

` (u0, v0, w0)

)
+

(
u0 : v0 : w0 : −

√
−Q(1)

` (u0, v0, w0)

)
∈ Div(V `) .

Then

(1) The class [D] of D in Pic(V `) is GK-invariant, and
(2) aV`([D]) is represented by the class of the conic C` in Br(K)

12



Proof. Let π : V` → C` be the degree 2 mapped obtained by projecting away from the point
(0 : 0 : 0 : 1) ∈ P3

K . Then D = π∗P0 and for σ ∈ GK we have σ(D) = π∗(σ(P0)) which
shows that D and σ(D) are linearly equivalent. This proves the first statement. The second
follows from Lemma 2.2. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. If V`(K) 6= ∅ the statement holds trivially. Hence we may assume
that V` has no K-rational point. This implies (using Riemann-Roch) that V` has no K-
rational divisor class of degree 1. It follows that per(X) is generated by the image of any
K-rational divisor class of degree 2. By Lemma 5.2, the class of C` is equal to aV`([D]),
where [D] is a K-rational divisor class of degree 2 on V`. So the class of C` in Br(K)
must generate Br(V`/K)/Br0(V`/K). Since, by Theorem 1.3, evaluation of A` induces a
surjective map X(K) → Br0(V`/K), we have shown that Br(V`/K) is generated by the set
{A`(P ) : P ∈ X(K)} ∪ {[C`]} .

To prove the second statement of the theorem, note that when V`(K) = ∅ we have
per(V`) = ind(V`) if and only if Pic2(V`) 6= ∅, which is the case if and only if there is
some M ∈ Pic2(V `)

GK such that aV`(M) = 0. Since Pic2(V `)
GK = [D] + Pic0(V `)

GK

and aV` is a homomorphism, we conclude that per(V`) = ind(V`) if and only if [C`] lies
in {A`(P ) : P ∈ X(K)}. �

5.2. Curves of index 4. Now suppose X is even, that is X : y2 = cf(x) where f(x) is a
square free monic quartic polynomial. As described in Section 4.2 an element ` ∈ L× such
that cNL/K(`) ∈ K×2 gives rise to a torsor V` under J such that 2V` = X in the Weil-Châtelet
group of the Jacobian. This may be given explicitly as an intersection of quadric surfaces in

P3. Namely, V` : Q
(2)
` (t, u, v, w) = Q

(3)
` (t, u, v, w) = 0, where for 0 ≤ i ≤ 3, Q

(i)
` (t, u, v, w) are

the quadratic forms defined by∑
0≤i≤3

θiQ
(i)
` (t, u, v, w) = `(t+ θu+ θ2v + θ3w)2.

This defines a genus one curve of index dividing 4.
Conversely, given a genus one curve V of index 4, the complete linear system corresponding

to any K-rational divisor of degree 4 defines an embedding of V in P3 as an intersection of
quadric surfaces. If M1 and M2 denote the symmetric matrices corresponding to these
quadrics, then f(x) := det(M1x + M2) is a quartic polynomial, V is a torsor under the
Jacobian of the hyperelliptic curve X : y2 = g(x), and 2V = X in the Weil-Châtelet
group of the Jacobian (see [MSS96]). Moreover, there exists some ` ∈ L× of norm a square
times the leading coefficient of g(x) such that V ' V` (an explicit formula for ` is given
in [Fis08, Section 5]).

The following lemma will be used in the proof of Theorem 1.2.

Lemma 5.3. Let V,X be torsors under an elliptic curve J such that nV = X in the Weil-
Châtelet group of J . Then when restricted to J(K) = Pic0(V )GK = Pic0(X)GK the maps aX
and aV satisfy aV ◦ [n] = aX .
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Proof. The assumption nV = X implies the existence of a map π : V → X and K-
isomorphisms φ : V ' J and ψ : X ' J which fit into a commutative diagram

V

π
��

φ
// J

[n]
��

X
ψ
// J

where [n] denotes multiplication by n on J . Then π induces a commutative diagram,

0 // Pic0(X)

π∗

��

// J(K)

[n]

��

aX
// Br0(X/K) //

� _

��

0

0 // Pic0(V ) // J(K)
aV
// Br0(V/K) // 0

�

Proof of Theorem 1.2. Statements (1), (2) and (3) in the theorem follow from the discussion
above. It remains to prove (4).

By assumption V has period 4, so X has period 2. By construction, the index of X
divides 2, so it must in fact be 2. Then both V and X have equal period and index, so
Br(V/K) = Br0(V/K) and Br(X/K) = Br0(X/K).

Proposition 3.6 gives an exact sequence

(5.2) 0→ Pic0(V ) ∩ Pic0(X)→ Pic0(X)
A`−→ Br0(V`/K)

γ−→ Br0(X/K)

aX(Pic0(V ))
→ 0,

where the map γ is induced by sending aV ([D]) ∈ Br0(V/K) to the class of aX([D]) ∈
Br0(X/K). It follows from Lemma 5.3 that Pic0(V ) ⊂ Pic0(X) and that γ is induced by
multiplication by 2. Moreover, the same lemma shows that aX(Pic0(V )) = 2aV (Pic0(V )) = 0.
Thus (5.2) can be rewritten as

(5.3) 0→ Pic0(V )→ Pic0(X)
A`−→ Br(V/K)

2−→ Br(X/K) −→ 0 .

�

6. Examples

All computations in the examples below were performed using Magma (described in
[BCP97]). The code used to perform these computations may be found in the source of
the arXiv distribution of this article.

6.1. A torsor of index 2 under an elliptic curve. We begin by illustrating how the
results of this paper can be used to reproduce calculations of [HH07]. Namely, we show how
to compute the relative Brauer group of a torsor of index 2 under an elliptic curve (provided
generators for the Mordell-Weil group are known). We will compute the relative Brauer
group of

V/Q : y2 = −2x4 + 6x2 + 4x− 14 ,

considered in [HH07, Example 4].
The Jacobian of V is the elliptic curve X/Q : y2 = f(x), where f(x) = x3 − 27Ix− 27J

with I = 372 and J = 12528 the classical rational invariants associated to the quartic
14



g(x) = −2x4 + 6x + 4x − 14. Let L = Q[θ]/f(θ). We can find ` ∈ L× such that V ' V`
using [Cre01, Proposition 3.1] (see also [CF09, Section 2]). The cubic invariant of g(x) is
−8

3
ϕ+ 32, where ϕ is a root of the resolvent cubic h(x) = x3− 3Ix+J of g(x). Noting that

θ = −3ϕ, it then follows from [CF09, Theorem 11] that V ' V` for

` =
8

9
θ + 32 ≡ 2θ + 72 (mod L×2)

The corresponding algebra A` is obtained by extension of scalars of the Q(x)-algebra,

A′` = CorL(x)/Q(x)((2θ + 72, x− θ)2) .

Let r(x) = 2x+ 72 and a = −2536 = f(x) mod r(x). By [CV14, Proposition 2.4],

[A′`] = [f(x), r(x)]2 + [r(x), a]2 + [1, 2]2 + [2, a]2 .

Since (1, 2)2, (2,−2)2 and (2, a)2 are split and f(x) is a square in k(X), it follows that

[A`] = [2x+ 72,−2]2 = [x+ 36,−2]2 .

(This should be compared with the algebra Ag defined in [HH07, Section 2].)
The group E(Q) is generated by the points P1 = (−72, 108) and P2 = (450, 9288) . Eval-

uating A` at these points gives

[A`(P1)] = [−36,−2]2 = [−1,−1]2, and

[A`(P2)] = [486,−2]2 = [6,−2]2 = 0 .

So, by Theorem 1.1, Br(V/Q) ' Z/2Z is generated by [−1,−1]2.

Remark 6.1. In [HH07, Example 4] the Jacobian is given as E : y2 = x3− 12x2− 76x− 32.
The map (x, y) 7→ (9x− 36, 27y) defines an isomorphism between E and X under which P1

and P2 are the images of the points (−4, 4) and (54, 344), respectively.

6.2. Torsors of period 2 under elliptic curves with full rational 2-torsion. Let us
consider an elliptic curve over K with full rational 2-torsion, say

J : y2 = x(x− a)(x− b) , with a, b ∈ K×

Then every torsor of period 2 under J can be written in the form

V` :

{
au2 −mv2 + nt2 = 0
bu2 −mv2 +mnw2 = 0

}
⊂ P3

(u:v:w:t) ,

where ` = (m,n,mn) ∈ K× ×K× ×K× = L×. The algebra A` corresponding to ` is

A` = (x,m)2 ⊗ (x− a, n)2 ⊗ (x− b,mn)2

The class of A` in Br(k(X)) can be written in any of the following equivalent ways:

[A`] = [x, n]2 + [x− a,m]2 ,

= [x,mn]2 + [x− b,m]2 ,

= [x− a,mn]2 + [x− b, n]2 .
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Evaluating this class at the nontrivial points in J [2] ⊂ J(K) we obtain the following
elements of Br0(V`/K):

[A`(0, 0)] = [−a,mn]2 + [−b, n]2 ,

[A`(a, 0)] = [a,mn]2 + [a− b,m]2 ,

[A`(b, 0)] = [b, n]2 + [b− a,m]2 .

If J(K) = J [2], then these generate Br0(V`/K) and Br(V`/K)/Br0(V`/K) is generated by
the class of the conic C` : bu2 −mv2 +mnw2, which is [C`] = [bmn,−n]2.

For a concrete example we may take K = Q, a = 16 and b = −16. Then J(Q) = J [2],
and for ` = (−11, 3,−33) we find

Br0(V`/Q) = {[−1,−33]2 , [2, 3]2 , [−2,−11]2 , [1, 1]2}

and [C`] = [33,−1]2 /∈ Br0(V`/Q). In particular, we recover the result of Cassels [Cas63] that
per(V`) 6= ind(V`).

Over an algebraically closed field, 2-torsion points on the Jacobian of a curve give rise to
unramified double covers of the curve. In the presence of a nontrivial relative Brauer group
this can fail, as shown in the following lemma.

Proposition 6.2. Let V`/Q be the curve corresponding to ` = (−11, 3,−33) and let E be its
Jacobian. There does not exist an unramified double cover of V` defined over Q (despite the
fact that E(Q)[2] ' Z/2Z× Z/2Z).

Proof. Suppose π : Y → V` is an unramified double cover. The kernel of π∗ : J → Jac(Y )
is generated by some P ∈ J [2](Q) with P 6= 0. Lemma 2.6(2) implies that P is represented
by a Q-rational divisor on V`. However, as shown above, none of the nontrivial elements of
J [2] is represented by a Q-rational divisor. �

6.3. A generic torsor of period 2 and index 4. The presence of rational 2-torsion in
the preceding example simplifies the computations, but it is by no means necessary. We
now compute the relative Brauer group of a torsor of period 2 and index 4 in an example
where there is no rational 2-torsion, but the Mordell-Weil group of the Jacobian is nontrivial
(which has the potential to make the relative Brauer group larger).

Consider the elliptic curve X : y2 = f(x) = x3 − 1296x+ 11664 labeled 37a in Cremona’s

Database. Set L = Q[θ]/f(θ) and ` = −11θ2+322θ−1584
2

∈ L×. One can check that ` has norm
24 × 36 × 5692 and, hence, that ` gives rise (as described in Section 1.2) to a torsor V` of
period 2 under X.

The Mordell-Weil group of X is generated by the point (0, 108) of infinite order. Carry-
ing out the computations as described in the example of Section 6.1 we obtain [A`(P )] =
[−1,−1]2, which shows that Br0(V`/Q) ' Z/2Z. On the other hand, the conic C` is defined
by the vanishing of

Q
(2)
` = 11u2 − 644uv + 31680uw + 15840v2 − 1091232vw + 24284448w2 ,

whose class in Br(Q) is [−3, 569]2, which ramifies at 2 and 569. In particular it is not equal
to [−1,−1]2. Thus Br(V`/Q) ' Z/2Z×Z/2Z is strictly larger than Br0(V`/Q), which shows
that V` has index 4.
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6.4. A torsor with period and index 4. Consider the genus one hyperelliptic curve X/Q
defined by y2 = f(x), where f(x) = 5x4 + 3x2 + x + 3. Set L = Q[θ]/f(x). The element
` = 10θ3−θ2+8θ−1 ∈ L× has norm NL/Q(`) = 3920 ∈ 5Q×2. So, as described in Section 1.3,
` corresponds to a torsor V` of index dividing 4 under the Jacobian J of X, which is the
elliptic curve J : y2 = x3 − 63x − 113 with J(Q) free of rank 2 generated by P1 = (−3, 7)
and P2 = (−6, 7).

The curve X has no points over Q5, and so X has period 2. Since 2V` = X in the Weil-
Châtelet group, V` has period and index 4. We will use Theorem 1.2 to compute the relative
Brauer group of V` and determine which Q-rational points on the Jacobian are represented
by Q-rational divisors on V`. Specifically we will show:

Example 6.3. Br(V`/Q) is generated by [5, 7]2 ∈ Br(Q) and a point P ∈ J(Q) is represented
by a Q-rational divisor on V` if and only if its image in J(Q)/2J(Q) lies in the subgroup
generated by P1.

While X has no Q5-points, it is locally solvable at all primes not equal to 5 and over the
reals. It follows that Br(X/Q) = 0. Hence the points P1 and P2 must be represented by
Q-rational divisors on X. The group of such divisors are generated by differences of traces
of K-rational points on X as K ranges over quadratic extensions of Q. A naive search over
small quadratic fields finds the Q(

√
3)-points

Q0 =
(

0,
√

3
)
, Q1 =

(
1 +
√

3

2
,−7 + 2

√
3

2

)
, and

Q2 =

(
34 + 19

√
3

2
,
5011 + 2888

√
3

4

)
.

Let σ denote the generator of Gal(Q(
√

3)/Q). Then

D1 = (Q1 + σ(Q1))− (Q0 + σ(Q0)), and

D2 = (Q2 + σ(Q2))− (Q0 + σ(Q0))

are Q-rational divisors of degree 0 that represent P1, P2 ∈ J(Q) = Pic0(X)Gal(Q).
By Theorem 1.2 we have an exact sequence

0→ Pic0(V`)→ Pic0(X)
A`→ Br(V`/Q)→ 0 ,

where A` = Cork(XL)/k(X)(x − α, `)2. Thus Br(V`/Q) is generated by A`([Di]) for i = 1, 2.
Since the x-coordinates of Q0 and σ(Q0) are the same, (x−α)([Di]) is obtained by evaluating
the minimal polynomial over Q of the x-coordinate of Qi at θ. Thus we obtain

(x− α)([D1]) = θ2 − θ − 1/2 ,

(x− α)([D2]) = θ2 − 34θ + 73/4 .
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Using Rosset-Tate reciprocity (as described in [GS06, Corollary 7.4.10 and Remark 7.4.12])
we find that A`([D1]) ≡

∑4
i=1 Bi and A`([D2]) ≡

∑4
i=1 Ci, where

B1 = [−483,−129]2

B2 = [−3,−31]2

B3 = [−401730,−645]2

B4 = [−72345,−155]2

C1 = [14717515766140493089374, 54870144093800907126]2

C2 = [−89459567484222,−94665799875986]2

C3 = [1051000391530337870055, 274350720469004535630]2

C4 = [−6948230469054914235,−473328999379930]2 .

Computing Hilbert symbols we find that A`([D1]) is split, while A`([D2]) is Brauer equivalent
to [5, 7]2, which ramifies only at 5 and 7.

Remark 6.4. The torsor V` has points over Qp for all primes p other than 5 and 7. So
in fact, we knew a priori that the relative Brauer group would be contained in the subgroup
generated by [5, 7]2. We take this as strong evidence of the correctness of our computations.

6.5. Relative Brauer groups of higher dimensional torsors. As a final example we
compute Br0(V`/Q) for a torsor of period 2 under the Jacobian of a hyperelliptic curve of
genus 2. Let X/Q be the hyperelliptic curve defined by

X : y2 = f(x) = x6 + x5 + x4 + x3 + x2 + x+ 1 ,

and let J be its Jacobian. Using Magma [BCP97] we compute that J(Q) ' Z2 generated
by divisors P1 = D1 − π∗∞ and P2 = D2 − π∗∞, where D1 and D2 are divisors on X whose
x-coordinates are the roots of t2 + t+ 1 and t2 − t+ 1, and π∗∞ is the pull-back of ∞ ∈ P1

under the map π : X → P1 sending a point on X to its x-coordinate.
For any ` ∈ L = Q[θ]/f(θ) of square norm we can compute A`, and as described in

the previous example, A`(P1) = CorL/Q(θ2 + θ + 1, `) and A`(P2) = CorL/Q(θ2 − θ + 1, `).

Moreover, the classes of these algebras in Br(Q) generate Br0(V`/Q), by Theorem 4.2.
For a concrete example, take ` = 3θ4 + 2θ2 + 2θ + 3 which has norm 432. Then A`(P1)

ramifies at 2 and 43, while A`(P2) is split. In particular, Br0(V`/Q) ' Z/2Z and a rational
point on J is represented by a Q-rational divisor on V` if and only if its image in J(Q)/2J(Q)
lies in the subgroup generated by P2.
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