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Abstract. For varieties over global fields, weak approximation in the space of adelic points
can fail. For a subvariety of an abelian variety one expects this failure is always explained
by a finite descent obstruction, in the sense that the rational points should lie dense in the
set of unobstructed (modified) adelic points. We show that this follows from a priori weaker
assumptions concerning descent obstructions to the Hasse principle, i.e., to the existence
of rational points. We also prove a similar statement for the obstruction coming from the
Mordell-Weil sieve.

1. Introduction

For a smooth, projective and geometrically irreducible variety X over a number field k
we consider the set X(Ak)

f-desc
• of (modified) adelic points surviving descent by all X-torsors

under finite group schemes over k. This is a closed subset of X(Ak)• containing the set of
rational points X(k). Here X(Ak)• is the set of connected components of the adelic points
X(Ak) =

∏
vX(kv), endowed with the quotient topology and we identify X(k) with its

injective image in X(Ak)•.

Consider the following statements, in which X(k) is used to denote the topological closure
of X(k) in X(Ak)•.

HPf-desc : If X(k) = ∅, then X(Ak)
f-desc
• = ∅.

WAf-desc : X(Ak)
f-desc
• = X(k) .

One says that the finite descent obstruction is the only obstruction to the Hasse principle
(resp. to weak approximation) when HPf-desc holds (resp. when WAf-desc holds).

For X ⊂ A a subvariety of an abelian variety over a global field k we also consider
analogous statements for the Mordell-Weil sieve, X(Ak)• ∩ A(k) ⊂ A(Ak)•.

HPMW : If X(k) = ∅, then X(Ak)• ∩ A(k) = ∅ .

WAMW : X(Ak)• ∩ A(k) = X(k) .

For a given variety, or class of varieties, it is clear that WAf-desc implies HPf-desc and
similarly for WAMW and HPMW. The following theorems give converse results for subvarieties
of abelian varieties. More precise results are proved in Corollary 2.2 and Theorem 4.1 below.

Theorem 1.1. If HPf-desc holds for all subvarieties of abelian varieties over number fields,
then WAf-desc holds for all subvarieties of abelian varieties over number fields.

Theorem 1.2. Let A/k be an abelian variety over a global field k. If HPMW holds for all
closed subvarieties of A, then WAMW holds for all closed subvarieties of A.
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For a subvariety X ⊂ A of an abelian variety, the sets appearing in these statements
and the set of adelic points cut out by the Brauer-Manin obstruction are related by the
containments below (where X(Ak)

f-desc
• is only considered in the number field case)

(1.1) X(k) ⊆ X(Ak)
f-desc
• ⊆ X(Ak)

Br
• ⊆ X(Ak)• ∩ A(Ak)

Br
•

?

⊇ X(Ak)• ∩ A(k) ⊇ X(k)

It is conjectured that all of the sets appearing in (1.1) are equal (See [Sko01, p. 133]
and [Sto07, Section 8] in the case of a curve inside its Jacobian, and [Poo06, 7.4] and in
[PV10, Conjecture C] in general). The containment ? is known to be an equality if the
Tate-Shafarevich group of A has no nontrivial divisible elements [Sch99]. The equality of all
other sets is known to hold if in addition A(k) is finite [Sch99, Sto07]. In the function field
case, equality of all sets in (1.1) is known for coset free subvarieties of abelian varieties which
have no isotrivial isogeny factors and finite separable p-torsion [PV10] and for nonisotrivial
curves of genus ≥ 2 [CV].

The weaker conjectures that HPMW and HPf-desc hold for subvarieties of abelian varieties
are supported by a wealth of empirical evidence as well as by a heuristic of Poonen [Poo06].
(The results there are stated for a curve in its Jacobian, but the argument only relies on
the fact that X has positive codimension in A.) Theorem 1.2 shows that this same heuristic
supports the stronger conjecture WAMW as well.

A statement similar to Theorem 1.1 has been observed for curves over number fields by
Stoll [Sto07, Section 8] in which case it is also closely related to a well known result concerning
the section conjecture in anabelian geometry which has its origins in work of Nakamura and
Tamagawa. Those arguments rely on Faltings’ Theorem that X(k) is finite for curves of
genus at least 2 over number fields and so do not immediately generalize. Our proof relies
instead on Theorem 2.1 below which provides a description of the topology on X(Ak)

f-desc
•

in terms of torsors over X. This also provides further insight into the connection between
WAf-desc and the section conjecture, specifically Proposition 3.1.

We expect that with a suitable theory of finite (nonabelian) descent obstructions in the
function field case, the analogue of Theorem 1.1 could be proved using methods similar to
those here, but we will not attempt to do so.

2. The topology on X(Ak)
f-desc
•

In this section we will prove the following theorem.

Theorem 2.1. Suppose X ⊂ T is a subvariety of a torsor under an abelian variety over
a number field k. Let B be the collection of subsets of X(Ak)

f-desc
• of the form Uf =

f(X ′(Ak)
f-desc
• ), where f : X ′ → X is the pullback of a geometrically connected torsor

T ′ → T under a finite group scheme over k. Then B is a basis for the subspace topology on
X(Ak)

f-desc
• ⊂ T (Ak)•.

Proof. This follows immediately from Lemma 2.6 and Lemma 2.7 below. �

Corollary 2.2. The following are equivalent for X ⊂ T a subvariety of a torsor under an
abelian variety over a number field k.

(1) WAf-desc holds for X;
(2) HPf-desc holds for every X ′/k which arises as the pullback of a geometrically connected

torsor T ′ → T under a finite group scheme over k;
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(3) WAf-desc holds for every X ′/k which arises as the pullback of a geometrically connected
torsor T ′ → T under a finite group scheme over k.

One can easily deduce Theorem 1.1 from Corollary 2.2 using the following observation.

Remark 2.3. Any torsor under an abelian variety can be embedded in an abelian variety by
the following construction which was originally suggested to us by Poonen. If T is a torsor
under an abelian variety A over k and L/k is a finite extension such that T (L) 6= ∅, the
torsor structure determines an isomorphism TL ' AL of varieties over L (up to transla-
tion). Restriction of scalars then gives a closed immersion T → ResL/k(TL) ' ResL/k(AL)
identifying T as a closed subvariety of the abelian variety ResL/k(AL).

Remark 2.4. The proof of Theorem 2.1 shows that it and Corollary 2.2 also hold if one
restricts to those T ′ → T which are twists of the multiplication n map on the abelian variety,
in which case T and T ′ are torsors under the same abelian variety.

Proof of Corollary 2.2. We first show that (2) implies (1). Let x ∈ X(Ak)
f-desc
• . It suffices

to show that every open subset U ⊂ X(Ak)
f-desc
• which contains x also contains a k-point.

By Theorem 2.1, there is an open subset of U of the from Uf = f(X ′(Ak)
f-desc
• ) containing x

with f : X ′ → X the pullback of a geometrically connected torsor T ′ → T . If we assume X ′

satisfies HPf-desc, then we have X ′(k) 6= ∅ and so U contains a rational point.
To see that (1) implies (2) suppose that f : X ′ → X is as in (2) with X ′(Ak)

f-desc
• 6= ∅.

Then Uf := f(X ′(Ak)
f-desc
• ) is a nonempty open subset of X(Ak)

f-desc
• . If X satisfies WAf-desc,

then there must exist some k-rational point in Uf . The fiber above this point on X ′ is a finite
subscheme Z ⊂ X ′ with Z(Ak)• ∩X ′(Ak)

f-desc
• 6= ∅. By Remark 2.3 we can embed X ′ in an

abelian variety B. Then, by functoriality of descent, we have that Z(Ak)• ∩B(Ak)
f-desc
• 6= ∅.

By [Sto07, Theorem 3.11] we then have that Z(k) 6= ∅. So X ′(k) 6= ∅ showing that X ′

satisfies HPf-desc.
Clearly (3) implies (1), so to complete the proof it now suffices to show that (2) implies (3).

Let X ′ → X be the pullback of T ′ → T . Every torsor X ′′ → X ′ obtained by pulling back a
geometrically connected torsor T ′′ → T ′ can be composed to give a torsor over X arising as
pullback from a geometrically connected torsor over T . Thus, if (2) holds for X ⊂ T , then
it must also hold for X ′ ⊂ T ′ and we can conclude using the implication (2) implies (1) for
X ′ ⊂ T ′. �

Lemma 2.5. Let A be an abelian variety over a global field k. For every open subset U ⊂
A(Ak)• containing the identity there exists an integer n such that nA(Ak)• ⊂ U .

Proof. Any open set in A(Ak)• is of the form U =
∏

v∈S Uv ×
∏

v 6∈S A(kv)• with Uv ⊂ A(kv)•
open and S finite. So it suffices to show that every open subset Uv ⊂ A(kv)• contains a set
of the form nA(kv) for some n. For archimedean v this is clear since A(kv)• is a finite group.
For nonarchimedean v, this follows from the fact that A(kv) contains a finite index torsion
free pro-p-subgroup (where p is the residue characteristic of kv). In the number field case
this is Mattuck’s theorem [Mat55] and in general follows from properties of the formal group
of A(kv) (e.g., [Ser92, pp. 116-118]). �

Lemma 2.6. Let X ⊂ T be a subvariety of a torsor under an abelian variety over a number
field k. The topology on X(Ak)

f-desc
• generated by the subsets Uf := f(X ′(Ak)

f-desc
• ) with

f : X ′ → X the pullback of a geometrically connected torsor T ′ → T under a finite abelian
group scheme is at least as strong as the subspace topology X(Ak)

f-desc
• ⊂ X(Ak)•.
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Proof. Suppose x ∈ X(Ak)
f-desc
• and let U ⊂ X(Ak)

f-desc
• be an open subset containing x. It

is enough to find f such that x ∈ Uf ⊂ U . Then U = V ∩X(Ak)
f-desc
• for some open subset

V ⊂ T (Ak)•.
Let A denote the abelian variety for which T is a torsor. The torsor structure on T gives

a homeomorphism
T (Ak)• 3 y 7→ y − x ∈ A(Ak)• ,

sending x to the identity and V to a neighborhood W ⊂ A(Ak)• of the identity. By
Lemma 2.5 there is an integer n such that nA(Ak)• ⊂ W .

Let g : T ′ → T be an n-covering (i.e., a twist of the multiplication by n map on A) and
let f : X ′ → X be the pullback to X. By [Sto07, Prop 5.17] we have

(2.1) X(Ak)
f-desc
• =

⋃
τ∈Sel(f)

f τ (X ′τ (Ak)
f-desc
• ) ,

the union ranging over the subset Sel(f) ⊂ H1(k,G) parameterizing twists of X ′ that have
adelic points. In light of (2.1) we can replace X ′ with a twist if needed and assume x ∈
f(X ′(Ak)

f-desc
• ).

Note that f(X ′(Ak)•) ⊂ g(T ′(Ak)•) ⊂ V since the image of g(T ′(Ak)•) in A(Ak)• is equal
to nA(Ak)• which is contained in W by our assumption on n. So x ∈ Uf := f(X ′(Ak)

f-desc
• ) ⊂

U = X(Ak)
f-desc
• ∩ V as required. �

Lemma 2.7. Let X ⊂ T be a subvariety of a torsor under an abelian variety over a number
field k and let Y → X be the pullback of a geometrically connected torsor T ′ → T under
a finite abelian group scheme G/k. Then the set Uf := f(Y (Ak)

f-desc
• ) is an open subset of

X(Ak)
f-desc
• .

Proof. We must show that Uf = U ∩ X(Ak)
f-desc
• for some open subset U ⊂ X(Ak). By

[Sto07, Prop. 5.17] we have

X(Ak)
f-desc
• =

⋃
τ∈Sel(f)

f τ (Y τ (Ak)
f-desc
• ) ,

where f τ : Y τ → X denote the twists of f ranging over the subset Sel(f) ⊂ H1(k,G)
parameterizing twists of Y that have adelic points.

Since Sel(f) is finite (See [HS02, Proposition 4.4] or [Poo17, 8.4.6]), there is a finite subset
S ⊂ Ωk of places of k such that for any τ, τ ′ ∈ Sel(f) we have that resv(τ) and resv(τ

′)
differ at some prime v ∈ S or they agree for all places v ∈ Ωk. For each v ∈ S, the subsets
f τ (Y τ (kv)) ⊂ X(kv) are closed, being the continuous image of a compact set in a Hausdorff
space. Moreover, for varying τ these sets are either pairwise equal or disjoint, so

Wv :=

 ⋃
τ∈Sel(f)

f τ (Y τ (kv))

 \ f(Y (kv))

is a closed subset of X(kv) whose complement W c
v contains f(Y (kv)) and is disjoint from

f τ (Y τ (kv)) for any τ ∈ Sel(f) such that resv(τ) 6= 0. Let U :=
∏

v∈SW
c
v ×
∏

v 6∈S X(kv). This

is an open subset of X(Ak) with the property that U∩X(Ak)
f-desc
• = f(Y (Ak)

f-desc
• ) = Uf . �

The following strengthening of Lemma 2.7 is not needed to prove Theorem 2.1, but will
be used in the following section.
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Lemma 2.8. Let f : X ′ → X be a finite étale morphism of varieties over a number field k.
Then f(X ′(Ak)

f-desc
• ) ⊂ X(Ak)

f-desc
• is open.

Proof. The proof of the preceding lemma shows that f(X ′(Ak)
f-desc
• ) ⊂ X(Ak)

f-desc
• is open for

any torsor f : X ′ → X under a finite group scheme over k. If f : X ′ → X is merely a finite
étale morphism (but not necessarily a torsor), then we use that there is a torsor g : X ′′ → X
under a finite group scheme which factors as the composition of f with a torsor h : X ′′ → X ′

[Sza09, Proposition 5.3.9]. By the previous lemma the sets gτ (X ′′τ (Ak)
f-desc
• ) ⊂ X(Ak)

f-desc
•

are open for any twist of g. Thus by [Sto07, Prop. 5.17] applied to h : X ′′ → X ′, we see that
f(X ′(Ak)

f-desc
• ) =

⋃
τ∈Sel(h)(f ◦hτ )(X ′′τ (Ak)

f-desc
• ) is a union of open sets and hence open. �

3. The Section Conjecture

Suppose X is a smooth, proper, geometrically irreducible variety over a number field k. By
functoriality, any k-rational point determines a section of the fundamental exact sequence,

(3.1) 1→ π1(X)→ π1(X)→ π1(Spec(k))→ 1 ,

well defined up to conjugation by an element of π1(X). Grothendieck’s section conjecture
asserts that when X is a hyperbolic curve the map X(k) → Sec(X/K) is a bijection. It
is known that the full section conjecture for X follows if one assumes a weaker form of
the section conjecture for all geometrically connected étale coverings X ′ → X, namely that
the existence of a section in Sec(X ′/k) implies the existence of a k-rational point on X ′

[Sti13, Theorem 54 and Section 9.4]. Corollary 2.2 is an analogue of this result for adelic
points surviving descent.

A section is called Selmer if for every place v of k its restriction to the decomposition
group at v arises from a kv-point. When X ⊂ A is a subvariety of an abelian variety
such a kv-point (if it exists) is unique (up to the usual caveat at archimedean places) by
[Sti13, Proposition 73]. This defines a map loc : SecSel(X/k) → X(Ak)

f-desc
• from the set of

Selmer sections (considered up to π1(X)-conjugacy) to adelic points surviving descent. This
map is surjective by [HS12, Theorem 2.1] (See also [Sti13, Theorem 144] and [Sto07, Remark
8.9]). Surjectivity of loc shows that the section conjecture for X implies WAf-desc for X. It is
shown in [BKL, Proposition 2.13] that WAf-desc is equivalent to the Selmer section conjecture,
which asserts that X(k)→ SecSel(X/k) is a bijection.

The space Sec(X/k) of sections up to conjugacy is naturally equipped with a prodiscrete
topology, inducing a subspace topology on SecSel(X/k). Theorem 2.1 implies the following.

Proposition 3.1. Suppose X ⊂ A is a closed subvariety of an abelian variety over a number
field k. The surjective map loc : SecSel(X/k)→ X(Ak)

f-desc
• is continuous and open.

Proof. The sets

UX′ := image (Sec(X ′/k)→ Sec(X/k))

as X ′ → X ranges over geometrically connected étale coverings of X form a basis for the
topology on Sec(X/k) [Sti13, Section 4.2]. The sets VX′ := UX′∩SecSel(X/k) thus form a ba-
sis for the subspace topology on SecSel(X/k) ⊂ Sec(X/k). By [BKL, Lemma 2.15] (which is
stated for an étale covering of hyperbolic curves, but whose proof works for any étale covering
of geometrically connected varieties) we have that VX′ = image

(
SecSel(X ′/k)→ SecSel(X/k)

)
.

Thus for any étale f : X ′ → X we have
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(1) loc(VX′) = f(X ′(Ak)
f-desc
• ), and

(2) loc−1(f(X ′(Ak)
f-desc
• )) = VX′ .

Lemma 2.8 together with (1) shows that loc is open. Lemma 2.6 together with (2) shows
that Sec is continuous. �

4. The Mordell-Weil Sieve

Theorem 4.1. Let X ⊂ A be a closed subvariety of an abelian variety over a global field k.
If HPMW holds for every Y ⊂ A which is the pullback to X of a morphism ρ : A→ A of the
form ρ(a) = na+ P with n ≥ 1 and P ∈ A(k), then WAMW holds for X.

Proof. Let X ⊂ A be a closed subvariety and suppose x ∈ X(Ak)•∩A(k). Let U ⊂ X(Ak)• be
an open subset containing x. It suffices to show that U ∩X(k) is nonempty. Let V ⊂ A(Ak)•
be an open subset such that U = V ∩ X(Ak)•. By Lemma 2.5 there is an integer n0 such
that (x+ n0A(Ak)•) ⊂ V

Since x ∈ A(k) there exists a sequence of points Pn ∈ A(k) such that

(1) x ∈ Pn + nA(Ak)• for all n ≥ 1, and
(2) Pmn ≡ Pn mod nA(k), for all m,n ≥ 1.

The existence of Pn satisfying (1) follows from Lemma 2.5. That these Pn can be chosen
to also satisfy (2) follows from König’s Lemma. This same argument shows as in [PV10,

Theorem E] that the inclusion A(k)→ A(Ak)• induces an isomorphism Â(k) ' A(k) between
the profinite completion of A(k) and its topological closure in A(Ak)•.

For m ≥ 1, let Rm ∈ A(k) be such that Pmn0 − Pn0 = n0Rm. The possible choices
for Rm differ by an element in A(k)[n]. Since A(k)tors is finite we can choose the Rm so
that for any `,m ≥ 1 we have R`m ≡ Rm mod mA(k). With such a choice, the limit

y := limm→∞Rm! ∈ A(k) exists. Let ρ : A→ A be the morphism given by ρ(a) = n0a+Pn0 .
Since ρ : A(Ak)• → A(Ak)• is continuous, we have ρ(y) = ρ(limmRm!) = limm n0Rm! +Pn0 =
limm Pn0m! = x.

Let Y → X be the pullback of ρ to X. Then Y ⊂ A and from above we have that
y ∈ Y (Ak)• ∩ A(k). Assuming HPMW holds for Y we find Y (k) 6= ∅. Since ρ(Y (Ak)•) ⊂ U ,
this shows that U ∩X(k) 6= ∅. �

Under the additional assumption that X(k) is finite we have the converse to Theorem 4.1.

Proposition 4.2. Suppose X ⊂ A is a subvariety of an abelian variety over a global field
with X(k) finite. If WAMW holds for X, then WAMW holds for every Y ⊂ A obtained as the
pullback of a morphism ρ : A→ A of the form ρ(a) = na+ b with n ≥ 1 and b ∈ A(k).

Proof. Let y ∈ Y (Ak)• ∩ A(k). Then x = ρ(y) ∈ X(Ak)• ∩ A(k) = X(k) = X(k) since X
satisfies WAMW and X(k) is finite. The zero-dimensional subscheme Z := ρ−1(x) ⊂ Y ⊂ A
satisfies WAMW by [Sto07, Theorem 3.11] in the number field case and by [PV10, Theorem

E] and [CV, Proposition 3.1] in the function field case. Since y ∈ Z(Ak)•∩A(k) we conclude
that y ∈ Y (k). �
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