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Talk Outline

I Intro to Extreme Value Mixture Models

I General Framework for Common Models

I evmix package on CRAN

I P-Splines+GPD Model

I Application Results

I Some Advice
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Why Use Extreme Value Mixture Models?2.2. KERNEL DENSITY ESTIMATION
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Figure 2.7: Schematic representation of four of the described mixture models

for f(x), an unknown true density function, is defined by

f̂(x;h) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
,

where f(x) is defined on R, h > 0 is a smoothing parameter and K(x) is a kernel function

that usually satisfies the conditions,

K(x) ≥ 0 and

∫
K(x) dx = 1.

The kernel is often defined (Wand and Jones, 1995) using the scale notation Kh(y) =

h−1K(y/h) giving:

f̂(x;h) = n−1
n∑

i=1

Kh(x−Xi).

27

I Provide automated and objective “threshold” estimation
I Or avoid threshold choice altogether
I Allow for threshold uncertainty to be taken into account
I Key issue: sensitivity of tail fit to that of bulk
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Some Terminology
2.2. KERNEL DENSITY ESTIMATION
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I Tail model typically generalised Pareto distribution (GPD)
I Bulk model has many forms, “loosely” categorised:

I parametric: normal, Weibull, gamma, log-normal, beta
I semi-parametric: mixtures of gamma, normal, log-normal
I nonparametric: mixture of uniforms, kernel density

estimation, smoothing polynomials
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GPD and Tail Fraction Scaling

I Suppose X |X > u ∼ GPD(σu, ξ) for threshold exceedances:

P(X > x |X > u) =





[
1 + ξ

(
x − u

σu

)]−1/ξ

+

ξ 6= 0,

exp

[
−
(
x − u

σu

)]

+

ξ = 0.

I GPD is a conditional model, to make it unconditional:

P(X > x) = φuP(X > x |X > u)

I “Tail fraction” above the threshold or “threshold exceedance
probability” φu = P(X > u) is an implicit parameter

I Usually estimated using sample proportion, the maximum
likelihood estimate

I Classic GPD tail modelling approach

5



Common Mixture Model Structure

I Common mixture model specification for cumulative
distribution function:

F (x) =

{
H(x) x ≤ u,
H(u) + (1− H(u))G (x) x > u.

I H(x) is bulk model cdf and G (x) is the GPD or other
conditional tail model for exceedances

I Tail fraction is specified by the bulk model (parameters):
I φu = 1− H(u)

I Terminology: bulk model approach

I Essentially, borrowing information from bulk where you have
more data

I Induces sensitivity of tail fit to bulk model performance
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General Mixture Model Structure

I Some mixture models use a more general specification:

F (x) =





H(x)
1− φu
H(u)

x ≤ u,

(1− φu) + φuG (x) x > u.

I Extra explicit parameter φu for tail fraction

I Rescaling of bulk 1−φu
H(u) ensures density integrates to unity

I Closer to classical GPD tail modelling approach

I Includes bulk model approach as special case

I Terminology: parameterised tail fraction approach

I Extra degree of freedom

I Tail fit robust to bulk model misspecification
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Further Niceties

I Mixture models have no requirement of density to be
continuous at threshold

I Note: cdf is continuous, just density is not
I Usually physically sensible to have continuous density
I Various parameter constraints to achieve continuity (incl. upto

second derivatives)
I Induces some further dependence between bulk and tail

estimates

I Smooth transition functions (Frigessi et al 2003, Holden and
Haug 2009) are being developed

I Weak performance in wide applications, as missing the tail
fraction scaling of GPD

I Promising but more development needed

I Don’t forget that in classical approach that the GPD is a
conditional model, so needs appropriate tail fraction
scaling!
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evmix Package in R

I General goal:
I Suite of tools for extreme value threshold estimation and

uncertainty quantification

I Named after evd package as similar syntax for basic GPD and
threshold diagnostic plots

I Current release has:
I most extreme value mixture models in the current literature
I model fit diagnostic plots for all of them
I Maximum likelihood estimation with either:

I fixed threshold;
I profile likelihood for threshold; or
I combine threshold with other model parameters

I Variants of all models with constraint of continuity of density
at threshold

I threshold diagnostic plots (MRL, threshold stability,
Hill/AltHill/smooHill plots)

I Available on CRAN for download

I Any feedback and bug reports welcome!
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Example Usage 1

I Example of fitting variants of the normal bulk with GPD tail

I Different inference approaches for threshold� �
set.seed(1234)

x = rnorm(1000)

# Assume bulk model tail fraction by default and

# threshold as parameter so maximised wrt as with other parameters

fit = fnormgpd(x)

# Can apply fixed threshold approach (if threshold pre-chosen)

fit.u = fnormgpd(x, useq = 1, fixedu = TRUE)

# Profile likelihood search over sequence of thresholds, then fixed

fit.profu = fnormgpd(x, useq = seq(0, 2, 0.01), fixedu = TRUE)

# Change to parameterised tail fraction

fit.profu.phiu = fnormgpd(x, useq = seq(0, 2, 0.01), fixedu = TRUE, phiu = FALSE)� �
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Example Usage 2

Histogram of x

x

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Parameter for u
Fixed u
Profile Likelihood for u
Parameterised Tail Fraction

11



Example Usage 3
I Nonparametric KDE’s use cross-validation likelihood so much

slower:� �
# Nonparametric KDE for bulk model

fit.kde = fkdengpd(x, useq = seq(0, 2, 0.01), fixedu = TRUE)� �
I Hybrid Pareto (no tail fraction scaling at all)� �

# Hybrid Pareto

fit.hpd = fhpd(x)� �
Histogram of x

x

D
en

si
ty

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Normal+GPD
KDE+GPD
HPD

12



Motivation for P-splines+GPD

I MacDonald et al. (2011) developed extreme value mixture
models with nonparametric kernel density estimator (KDE) for
the bulk model

I KDE does not perform well for bounded support, e.g. for pole
at boundary

I Leads to leakage past boundary and bias near boundary when
the density is non-zero

I MacDonald et al (2013) used boundary corrected KDE, for a
wide range of boundary correction approaches

I Identified some challenges:
I quick and dirty approaches for boundary correction don’t

improve bias much;
I more sophisticated approaches for correcting the boundary bias

usually have high computational overhead (e.g.
renormalisation of KDE to make it proper); and

I extensions of boundary corrected KDE’s to non-stationary
(multidimensional) problems not well developed
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P-Splines Based Density Estimation

I Proposed by Eilers and Marx (1996) combines B-splines with
flexible penalty constraints

I Their approach:
I Histogram binning on fine mesh to get counts
I Poisson regression on counts to estimate spline coefficients -

mixed model representation with penalty
I Penalty magnitude estimated using statistics which aim to

prevent overfitting (e.g. AIC/BIC, cross-validation RMSE)

I Very heuristic justification to their approach, but it is flexible
and is seeing wide application

I B-splines naturally have bounded supported due to knots and
multi-dimensional smoothing easy using tensor products

I Note for extremists - ignore rules of thumb for specifying bins,
knots, etc. they often don’t work well for heavy tails
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B-Splines
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I local basis functions, piecewise polynomials of fixed degree
I need to define knots and degree
I Not natural B-splines (adapted behaviour at boundary)
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P-Splines
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I histogram binning not critical,
provided the histogram DE is
coarse so is not smoothing

I knots aren’t critical, provided you
have plenty!

I penalty aims to prevent overfitting
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Flexible Penalties

I Penalties are usually specified using difference in coefficients
α0, α1, ..., αk

I Use delta notation ∆αi = αi − αi−1

I Simple form of penalty:

λ
∑

i

(∆αi )
2

I λ controls strength of penalty

I Conceptual idea: equal αi = α then get uniform density,
larger differences in neighbouring αi ’s means more roughness

I Higher order penalties recommended, e.g. second order
∆2αi = (αi − αi−1)− (αi−1 − αi−2)

I Efficient computation compared to traditional spline penalties

I Local basis and penalty difference matrix both sparse
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P-Splines + GPD Extreme Value Mixture Model

I The bulk model cdf H(x) is the P-splines DE:

F (x) =





H(x)
1− φu
H(u)

x ≤ u,

(1− φu) + φuG (x) x > u.

I Two stage MLE inference following Cabras and Castellanos
(2009):

I MLE for P-spline density, with penalty chosen by
AIC/BIC/CVRMSE;

I Assume P-splines are fixed when fitting mixture model
(threshold and GPD parameters);

I Profile likelihood estimation for threshold (advised approach)

I Investigating combined penalized likelihood approaches (and
avoid binning step)
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Application: Dow Jones returns
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I Daily closing price 1996-2000

I Log returns
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Application: Dow Jones returns
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Application: Dow Jones returns
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I P-splines DE (green) has bounded support, so short tailed
behaviour

I P-splines+GPD and Normal+GPD differing thresholds and
upper tail behaviour, but appear to be within sample variation
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The Good and the Bad!

I The good:
I conceptually simple and reasonably computational efficient

compared to many of the more usual smoothing splines
I naturally accounts for bounded support (still boundary bias?)
I easy to build in continuity constraints on PDF (lose degrees of

freedom from P-spline fit, rather than GPD parameters)
I straightforward extensions to nonstationary problems using

tensor products of B-splines

I The bad:
I log-link in Poisson regression leads to no closed form for CDF,

so computationally inefficient!
I needs many knots for heavy tails, non-regular knots are

possible but specification of sensibly behaved penalties messier
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References and Website

Review paper:

Scarrott and MacDonald (2012). A review of extreme value
threshold estimation and uncertainty quantification. REVSTAT
Statistical Journal 10(1), 33-60.
(all references in here)

Package: evmix available on CRAN (all feedback appreciated)

Website:
http://www.math.canterbury.ac.nz/∼c.scarrott/evmix

Thanks for your attention...
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