
R documentation
of all in ‘man’

June 6, 2018

R topics documented:
evmix-package . 2
bckden . 4
bckdengpd . 9
bckdengpdcon . 13
betagpd . 17
betagpdcon . 20
checking . 23
dwm . 25
evmix.diag . 28
fbckden . 30
fbckdengpd . 35
fbckdengpdcon . 39
fbetagpd . 44
fbetagpdcon . 47
fdwm . 50
fgammagpd . 53
fgammagpdcon . 56
fgkg . 60
fgkgcon . 64
fgng . 69
fgngcon . 73
fgpd . 77
fhpd . 81
fhpdcon . 84
fitmgng . 87
fitmnormgpd . 91
fitmweibullgpd . 94
fkden . 97
fkdengpd . 102
fkdengpdcon . 106
flognormgpd . 110
flognormgpdcon . 113
fmgamma . 116
fmgammagpd . 120
fmgammagpdcon . 125

1

2 evmix-package

fnormgpd . 129
fnormgpdcon . 135
fpsden . 138
fpsdengpd . 142
fweibullgpd . 146
fweibullgpdcon . 149
gammagpd . 152
gammagpdcon . 155
gkg . 158
gkgcon . 162
gng . 166
gngcon . 169
gpd . 172
hillplot . 175
hpd . 178
hpdcon . 181
internal . 184
itmgng . 186
itmnormgpd . 189
itmweibullgpd . 192
kden . 195
kdengpd . 198
kdengpdcon . 201
kernels . 204
kfun . 207
lognormgpd . 209
lognormgpdcon . 212
mgamma . 215
mgammagpd . 217
mgammagpdcon . 220
mrlplot . 224
normgpd . 226
normgpdcon . 229
pickandsplot . 232
psden . 234
psdengpd . 237
tcplot . 240
weibullgpd . 243
weibullgpdcon . 246

Index 249

evmix-package Extreme Value Mixture Modelling, Threshold Estimation and Bound-
ary Corrected Kernel Density Estimation

Description

Functions for Extreme Value Mixture Modelling, Threshold Estimation and Boundary Corrected
Kernel Density Estimation

evmix-package 3

Details

4 bckden

Package: evmix
Type: Package
Version: 2.11
Date: 2018-06-06
License: GPL-3
LazyLoad: yes

The usual distribution functions, maximum likelihood inference and model diagnostics for univari-
ate stationary extreme value mixture models are provided.

Kernel density estimation including various boundary corrected kernel density estimation meth-
ods and a wide choice of kernels, with cross-validation likelihood based bandwidth estimators are
included.

Reasonable consistency with the base functions in the evd package is provided, so that users can
safely interchange most code.

Author(s)

Carl Scarrott, Yang Hu and Alfadino Akbar, University of Canterbury, New Zealand <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

MacDonald, A. (2012). Extreme value mixture modelling with medical and industrial applications.
PhD thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/
10092/6679/1/thesis_fulltext.pdf

See Also

evd, ismev and condmixt

bckden Boundary Corrected Kernel Density Estimation Using a Variety of Ap-
proaches

Description

Density, cumulative distribution function, quantile function and random number generation for
boundary corrected kernel density estimators using a variety of approaches (and different kernels)
with a constant bandwidth lambda.

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf

bckden 5

Usage

dbckden(x, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, log = FALSE)

pbckden(q, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, lower.tail = TRUE)

qbckden(p, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, lower.tail = TRUE)

rbckden(n = 1, kerncentres, lambda = NULL, bw = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL)

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Boundary corrected kernel density estimation (BCKDE) with improved bias properties near the
boundary compared to standard KDE available in kden functions. The user chooses from a wide
range of boundary correction methods designed to cope with a lower bound at zero and potentially
also both upper and lower bounds.

Some boundary correction methods require a secondary correction for negative density estimates
of which two methods are implemented. Further, some methods don’t necessarily give a density
which integrates to one, so an option is provided to renormalise to be proper.

It assumes there is a lower bound at zero, so prior transformation of data is required for a alternative
lower bound (possibly including negation to allow for an upper bound).

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

6 bckden

Certain boundary correction methods use the standard kernels which are defined in the kernels
help documentation with the "gaussian" as the default choice.

The quantile function is rather complicated as there is no closed form solution, so is obtained by
numerical approximation of the inverse cumulative distribution function P (X ≤ q) = p to find
q. The quantile function qbckden evaluates the KDE cumulative distribution function over the
range from c(0, max(kerncentre) + lambda), or c(0, max(kerncentre) + 5*lambda) for
normal kernel. Outside of this range the quantiles are set to 0 for lower tail and Inf (or xmax where
appropriate) for upper tail. A sequence of values of length fifty times the number of kernels (upto
a maximum of 1000) is first calculated. Spline based interpolation using splinefun, with default
monoH.FC method, is then used to approximate the quantile function. This is a similar approach to
that taken by Matt Wand in the qkde in the ks package.

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all these estimators,
with only certain methods having a guideline in the literature, so none have been implemented.
Hence, a bandwidth must always be specified and you should consider using fbckden function for
cross-validation MLE for bandwidth.

Random number generation is slow as inversion sampling using the (numerically evaluated) quantile
function is implemented. Users may want to consider alternative approaches instead, like rejection
sampling.

Value

dbckden gives the density, pbckden gives the cumulative distribution function, qbckden gives the
quantile function and rbckden gives a random sample.

Boundary Correction Methods

Renormalisation to a proper density is assumed by default proper=TRUE. This correction is needed
for bcmethod="renorm", "simple", "beta1", "beta2", "gamma1" and "gamma2" which all re-
quire numerical integration. Renormalisation will not be carried out for other methods, even when
proper=TRUE.

Non-negativity correction is only relevant for the bcmethod="simple" approach. The Jones and
Foster (1996) method is applied nn="jf96" by default. This method can occassionally give an
extra boundary bias for certain populations (e.g. Gamma(2, 1)), see paper for details. Non-negative
values can simply be zeroed (nn="zero"). Renormalisation should always be applied after non-
negativity correction. Non-negativity correction will not be carried out for other methods, even
when requested by user.

The non-negative correction is applied before renormalisation, when both requested.

The boundary correction methods implemented are listed below. The first set can use any type of
kernel (see kernels help documentation):

bcmethod="simple" is the default and applies the simple boundary correction method in equation
(3.4) of Jones (1993) and is equivalent to the kernel weighted local linear fitting at the boundary.
Renormalisation and non-negativity correction may be required.

bcmethod="cutnorm" applies cut and normalisation method of Gasser and Muller (1979), where
the kernels themselves are individually truncated at the boundary and renormalised to unity.

bcmethod="renorm" applies first order correction method discussed in Diggle (1985), where the
kernel density estimate is locally renormalised near boundary. Renormalisation may be required.

bcmethod="reflect" applies reflection method of Boneva, Kendall and Stefanov (1971) which is
equivalent to the dataset being supplemented by the same dataset negated. This method implicitly
assumes f’(0)=0, so can cause extra artefacts at the boundary.

bckden 7

bcmethod="logtrans" applies KDE on the log-scale and then back-transforms (with explicit nor-
malisation) following Marron and Ruppert (1992). This is the approach implemented in the ks
package. As the KDE is applied on the log scale, the effective bandwidth on the original scale is
non-constant. The offset option is only used for this method and is commonly used to offset zero
kernel centres in log transform to prevent log(0).

All the following boundary correction methods do not use kernels in their usual sense, so ignore the
kernel input:

bcmethod="beta1" and "beta2" uses the beta and modified beta kernels of Chen (1999) respec-
tively. The xmax rescales the beta kernels to be defined on the support [0, xmax] rather than unscaled
[0, 1]. Renormalisation will be required.

bcmethod="gamma1" and "gamma2" uses the gamma and modified gamma kernels of Chen (2000)
respectively. Renormalisation will be required.

bcmethod="copula" uses the bivariate normal copula based kernesl of Jones and Henderson (2007).
As with the bcmethod="beta1" and "beta2" methods the xmax rescales the copula kernels to
be defined on the support [0, xmax] rather than [0, 1]. In this case the bandwidth is defined as
lambda = 1− ρ2, so the bandwidth is limited to (0, 1).

Warning

The "simple", "renorm", "beta1", "beta2", "gamma1" and "gamma2" boundary correction meth-
ods may require renormalisation using numerical integration which can be very slow. In particular,
the numerical integration is extremely slow for the kernel="uniform", due to the adaptive quadra-
ture in the integrate function being particularly slow for functions with step-like behaviour.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the bckden functions have not been
vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vector,
which also define the output length.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals lambda, kerncentres, x, q
and p. The default sample size for rbckden is 1.

The xmax option is only relevant for the beta and copula methods, so a warning is produced if this
is not NULL for in other methods. The offset option is only relevant for the "logtrans" method,
so a warning is produced if this is not NULL for in other methods.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

8 bckden

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Chen, S.X. (1999). Beta kernel estimators for density functions. Computational Statistics and Data
Analysis 31, 1310-45.

Gasser, T. and Muller, H. (1979). Kernel estimation of regression functions. In "Lecture Notes in
Mathematics 757, edited by Gasser and Rosenblatt, Springer.

Chen, S.X. (2000). Probability density function estimation using gamma kernels. Annals of the
Institute of Statisical Mathematics 52(3), 471-480.

Boneva, L.I., Kendall, D.G. and Stefanov, I. (1971). Spline transformations: Three new diagnostic
aids for the statistical data analyst (with discussion). Journal of the Royal Statistical Society B, 33,
1-70.

Diggle, P.J. (1985). A kernel method for smoothing point process data. Applied Statistics 34,
138-147.

Marron, J.S. and Ruppert, D. (1994) Transformations to reduce boundary bias in kernel density
estimation, Journal of the Royal Statistical Society. Series B 56(4), 653-671.

Jones, M.C. and Henderson, D.A. (2007). Kernel-type density estimation on the unit interval.
Biometrika 94(4), 977-984.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpdcon
fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, fbckden, fkden, kdengpdcon,
kdengpd, kden

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

n=100
x = rgamma(n, shape = 1, scale = 2)
xx = seq(-0.5, 12, 0.01)
plot(xx, dgamma(xx, shape = 1, scale = 2), type = "l")
rug(x)
lines(xx, dbckden(xx, x, lambda = 1), lwd = 2, col = "red")
lines(density(x), lty = 2, lwd = 2, col = "green")
legend("topright", c("True Density", "Simple boundary correction",

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

bckdengpd 9

"KDE using density function", "Boundary Corrected Kernels"),
lty = c(1, 1, 2, 1), lwd = c(1, 2, 2, 1), col = c("black", "red", "green", "blue"))

n=100
x = rbeta(n, shape1 = 3, shape2 = 2)*5
xx = seq(-0.5, 5.5, 0.01)
plot(xx, dbeta(xx/5, shape1 = 3, shape2 = 2)/5, type = "l", ylim = c(0, 0.8))
rug(x)
lines(xx, dbckden(xx, x, lambda = 0.1, bcmethod = "beta2", proper = TRUE, xmax = 5),

lwd = 2, col = "red")
lines(density(x), lty = 2, lwd = 2, col = "green")
legend("topright", c("True Density", "Modified Beta KDE Using evmix",

"KDE using density function"),
lty = c(1, 1, 2), lwd = c(1, 2, 2), col = c("black", "red", "green"))

Demonstrate renormalisation (usually small difference)
n=1000
x = rgamma(n, shape = 1, scale = 2)
xx = seq(-0.5, 15, 0.01)
plot(xx, dgamma(xx, shape = 1, scale = 2), type = "l")
rug(x)
lines(xx, dbckden(xx, x, lambda = 0.5, bcmethod = "simple", proper = TRUE),

lwd = 2, col = "purple")
lines(xx, dbckden(xx, x, lambda = 0.5, bcmethod = "simple", proper = FALSE),

lwd = 2, col = "red", lty = 2)
legend("topright", c("True Density", "Simple BC with renomalisation",
"Simple BC without renomalisation"),
lty = 1, lwd = c(1, 2, 2), col = c("black", "purple", "red"))

End(Not run)

bckdengpd Boundary Corrected Kernel Density Estimate and GPD Tail Extreme
Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with boundary corrected kernel density estimate for bulk distribution
upto the threshold and conditional GPD above threshold. The parameters are the bandwidth lambda,
threshold u GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dbckdengpd(x, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), sigmau = sqrt(6 *
var(kerncentres))/pi, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, log = FALSE)

pbckdengpd(q, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), sigmau = sqrt(6 *
var(kerncentres))/pi, xi = 0, phiu = TRUE, bw = NULL,

10 bckdengpd

kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, lower.tail = TRUE)

qbckdengpd(p, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), sigmau = sqrt(6 *
var(kerncentres))/pi, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, lower.tail = TRUE)

rbckdengpd(n = 1, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), sigmau = sqrt(6 *
var(kerncentres))/pi, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL)

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining boundary corrected kernel density (BCKDE) estimate
for the bulk below the threshold and GPD for upper tail. The user chooses from a wide range of
boundary correction methods designed to cope with a lower bound at zero and potentially also both
upper and lower bounds.

Some boundary correction methods require a secondary correction for negative density estimates
of which two methods are implemented. Further, some methods don’t necessarily give a density
which integrates to one, so an option is provided to renormalise to be proper.

bckdengpd 11

It assumes there is a lower bound at zero, so prior transformation of data is required for a alternative
lower bound (possibly including negation to allow for an upper bound).

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the BCKDE bulk
model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
BCKDE (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the BCKDE and conditional GPD cumulative distribution functions
respectively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all the BCKDE, with
only certain methods having a guideline in the literature, so none have been implemented. Hence,
a bandwidth must always be specified and you should consider using fbckdengpd of fbckden
function for cross-validation MLE for bandwidth.

See gpd for details of GPD upper tail component and dbckden for details of BCKDE bulk compo-
nent.

Value

dbckdengpd gives the density, pbckdengpd gives the cumulative distribution function, qbckdengpd
gives the quantile function and rbckdengpd gives a random sample.

Boundary Correction Methods

See dbckden for details of BCKDE methods.

Warning

The "simple", "renorm", "beta1", "beta2", "gamma1" and "gamma2" boundary correction meth-
ods may require renormalisation using numerical integration which can be very slow. In particular,
the numerical integration is extremely slow for the kernel="uniform", due to the adaptive quadra-
ture in the integrate function being particularly slow for functions with step-like behaviour.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

12 bckdengpd

Note

Unlike most of the other extreme value mixture model functions the bckdengpd functions have not
been vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a
vector, which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rbckdengpd is 1.

The xmax option is only relevant for the beta and copula methods, so a warning is produced if this
is not NULL for in other methods. The offset option is only relevant for the "logtrans" method,
so a warning is produced if this is not NULL for in other methods.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

gpd, kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpd-
con fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckden, fbckden, fkden, kdengpdcon,
kdengpd, kden

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

bckdengpdcon 13

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rgamma(500, shape = 1, scale = 2)
xx = seq(-0.1, 10, 0.01)
hist(kerncentres, breaks = 100, freq = FALSE)
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.5, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)")
abline(v = quantile(kerncentres, 0.9))

plot(xx, pbckdengpd(xx, kerncentres, lambda = 0.5, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", type = "l")
lines(xx, pbckdengpd(xx, kerncentres, lambda = 0.5, xi = 0.3, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", col = "red")
lines(xx, pbckdengpd(xx, kerncentres, lambda = 0.5, xi = -0.3, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1, cex = 0.5)

kerncentres = rweibull(1000, 2, 1)
x = rbckdengpd(1000, kerncentres, lambda = 0.1, phiu = TRUE, bcmethod = "reflect")
xx = seq(0.01, 3.5, 0.01)
hist(x, breaks = 100, freq = FALSE)
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, phiu = TRUE, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)")

lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, xi=-0.2, phiu = 0.1, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)", col = "red")
lines(xx, dbckdengpd(xx, kerncentres, lambda = 0.1, xi=0.2, phiu = 0.1, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)", col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

bckdengpdcon Boundary Corrected Kernel Density Estimate and GPD Tail Extreme
Value Mixture Model With Single Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with boundary corrected kernel density estimate for bulk distribution
upto the threshold and conditional GPD above threshold with continuity at threshold. The parame-
ters are the bandwidth lambda, threshold u GPD shape xi and tail fraction phiu.

Usage

dbckdengpdcon(x, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,

14 bckdengpdcon

bw = NULL, kernel = "gaussian", bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = NULL, xmax = NULL, log = FALSE)

pbckdengpdcon(q, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = NULL, xmax = NULL, lower.tail = TRUE)

qbckdengpdcon(p, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = NULL, xmax = NULL, lower.tail = TRUE)

rbckdengpdcon(n = 1, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = NULL, xmax = NULL)

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining boundary corrected kernel density (BCKDE) estimate for
the bulk below the threshold and GPD for upper tail with continuity at threshold. The user chooses
from a wide range of boundary correction methods designed to cope with a lower bound at zero and
potentially also both upper and lower bounds.

Some boundary correction methods require a secondary correction for negative density estimates
of which two methods are implemented. Further, some methods don’t necessarily give a density
which integrates to one, so an option is provided to renormalise to be proper.

bckdengpdcon 15

It assumes there is a lower bound at zero, so prior transformation of data is required for a alternative
lower bound (possibly including negation to allow for an upper bound).

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the BCKDE bulk
model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
BCKDE (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the BCKDE and conditional GPD cumulative distribution functions
respectively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are the
BCKDE and conditional GPD density functions respectively. The resulting GPD scale parameter is
then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all the BCKDE, with
only certain methods having a guideline in the literature, so none have been implemented. Hence,
a bandwidth must always be specified and you should consider using fbckdengpdcon of fbckden
function for cross-validation MLE for bandwidth.

See gpd for details of GPD upper tail component and dbckden for details of BCKDE bulk compo-
nent.

Value

dbckdengpdcon gives the density, pbckdengpdcon gives the cumulative distribution function, qbckdengpdcon
gives the quantile function and rbckdengpdcon gives a random sample.

Boundary Correction Methods

See dbckden for details of BCKDE methods.

16 bckdengpdcon

Warning

The "simple", "renorm", "beta1", "beta2", "gamma1" and "gamma2" boundary correction meth-
ods may require renormalisation using numerical integration which can be very slow. In particular,
the numerical integration is extremely slow for the kernel="uniform", due to the adaptive quadra-
ture in the integrate function being particularly slow for functions with step-like behaviour.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the bckdengpdcon functions have
not been vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or
a vector, which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rbckdengpdcon is 1.

The xmax option is only relevant for the beta and copula methods, so a warning is produced if this
is not NULL for in other methods. The offset option is only relevant for the "logtrans" method,
so a warning is produced if this is not NULL for in other methods.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

betagpd 17

See Also

gpd, kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpd-
con fbckden fbckdengpd fbckdengpdcon: bckdengpd, bckden, fbckden, fkden, kdengpdcon,
kdengpd, kden

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rgamma(500, shape = 1, scale = 2)
xx = seq(-0.1, 10, 0.01)
hist(kerncentres, breaks = 100, freq = FALSE)
lines(xx, dbckdengpdcon(xx, kerncentres, lambda = 0.5, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)")
abline(v = quantile(kerncentres, 0.9))

plot(xx, pbckdengpdcon(xx, kerncentres, lambda = 0.5, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", type = "l")
lines(xx, pbckdengpdcon(xx, kerncentres, lambda = 0.5, xi = 0.3, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", col = "red")
lines(xx, pbckdengpdcon(xx, kerncentres, lambda = 0.5, xi = -0.3, bcmethod = "reflect"),
xlab = "x", ylab = "F(x)", col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1, cex = 0.5)

kerncentres = rweibull(1000, 2, 1)
x = rbckdengpdcon(1000, kerncentres, lambda = 0.1, phiu = TRUE, bcmethod = "reflect")
xx = seq(0.01, 3.5, 0.01)
hist(x, breaks = 100, freq = FALSE)
lines(xx, dbckdengpdcon(xx, kerncentres, lambda = 0.1, phiu = TRUE, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)")

lines(xx, dbckdengpdcon(xx, kerncentres, lambda = 0.1, xi=-0.2, phiu = 0.1, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)", col = "red")
lines(xx, dbckdengpdcon(xx, kerncentres, lambda = 0.1, xi=0.2, phiu = 0.1, bcmethod = "reflect"),
xlab = "x", ylab = "f(x)", col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

betagpd Beta Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with beta for bulk distribution upto the threshold and conditional GPD
above threshold. The parameters are the beta shape 1 bshape1 and shape 2 bshape2, threshold u
GPD scale sigmau and shape xi and tail fraction phiu.

18 betagpd

Usage

dbetagpd(x, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
sigmau = sqrt(bshape1 * bshape2/(bshape1 + bshape2)^2/(bshape1 + bshape2 +
1)), xi = 0, phiu = TRUE, log = FALSE)

pbetagpd(q, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
sigmau = sqrt(bshape1 * bshape2/(bshape1 + bshape2)^2/(bshape1 + bshape2 +
1)), xi = 0, phiu = TRUE, lower.tail = TRUE)

qbetagpd(p, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
sigmau = sqrt(bshape1 * bshape2/(bshape1 + bshape2)^2/(bshape1 + bshape2 +
1)), xi = 0, phiu = TRUE, lower.tail = TRUE)

rbetagpd(n = 1, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1,
bshape2), sigmau = sqrt(bshape1 * bshape2/(bshape1 + bshape2)^2/(bshape1 +
bshape2 + 1)), xi = 0, phiu = TRUE)

Arguments

x quantiles

bshape1 beta shape 1 (positive)

bshape2 beta shape 2 (positive)

u threshold over (0, 1)

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining beta distribution for the bulk below the threshold and GPD
for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the beta bulk model.

The usual beta distribution is defined over [0, 1], but this mixture is generally not limited in the
upper tail [0,∞], except for the usual upper tail limits for the GPD when xi<0 discussed in gpd.
Therefore, the threshold is limited to (0, 1).

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
beta bulk model (phiu=TRUE), upto the threshold 0 ≤ x ≤ u < 1, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

betagpd 19

where H(x) and G(X) are the beta and conditional GPD cumulative distribution functions (i.e.
pbeta(x, bshape1, bshape2) and pgpd(x, u, sigmau, xi)).

The cumulative distribution function for pre-specified φu, upto the threshold 0 ≤ x ≤ u < 1, is
given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

See gpd for details of GPD upper tail component and dbeta for details of beta bulk component.

Value

dbetagpd gives the density, pbetagpd gives the cumulative distribution function, qbetagpd gives
the quantile function and rbetagpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rbetagpd any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rbetagpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Beta_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

MacDonald, A. (2012). Extreme value mixture modelling with medical and industrial applications.
PhD thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/
10092/6679/1/thesis_fulltext.pdf

See Also

gpd and dbeta

Other betagpd betagpdcon fbetagpd fbetagpdcon: betagpdcon

http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf

20 betagpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rbetagpd(1000, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2)
xx = seq(-0.1, 2, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, dbetagpd(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2))

three tail behaviours
plot(xx, pbetagpd(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2), type = "l")
lines(xx, pbetagpd(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2, xi = 0.3), col = "red")
lines(xx, pbetagpd(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rbetagpd(1000, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, dbetagpd(xx, bshape1 = 2, bshape2 = 0.6, u = 0.7, phiu = 0.5))

plot(xx, dbetagpd(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=0), type = "l")
lines(xx, dbetagpd(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=-0.2), col = "red")
lines(xx, dbetagpd(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

betagpdcon Beta Bulk and GPD Tail Extreme Value Mixture Model with Single
Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with beta for bulk distribution upto the threshold and conditional
GPD above threshold with continuity at threshold. The parameters are the beta shape 1 bshape1
and shape 2 bshape2, threshold u GPD shape xi and tail fraction phiu.

Usage

dbetagpdcon(x, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
xi = 0, phiu = TRUE, log = FALSE)

pbetagpdcon(q, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
xi = 0, phiu = TRUE, lower.tail = TRUE)

qbetagpdcon(p, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
xi = 0, phiu = TRUE, lower.tail = TRUE)

rbetagpdcon(n = 1, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1,
bshape2), xi = 0, phiu = TRUE)

betagpdcon 21

Arguments

x quantiles
bshape1 beta shape 1 (positive)
bshape2 beta shape 2 (positive)
u threshold over (0, 1)
xi shape parameter
phiu probability of being above threshold [0, 1] or TRUE
log logical, if TRUE then log density
q quantiles
lower.tail logical, if FALSE then upper tail probabilities
p cumulative probabilities
n sample size (positive integer)

Details

Extreme value mixture model combining beta distribution for the bulk below the threshold and GPD
for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the beta bulk model.

The usual beta distribution is defined over [0, 1], but this mixture is generally not limited in the
upper tail [0,∞], except for the usual upper tail limits for the GPD when xi<0 discussed in gpd.
Therefore, the threshold is limited to (0, 1).

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
beta bulk model (phiu=TRUE), upto the threshold 0 ≤ x ≤ u < 1, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the beta and conditional GPD cumulative distribution functions (i.e.
pbeta(x, bshape1, bshape2) and pgpd(x, u, sigmau, xi)).

The cumulative distribution function for pre-specified φu, upto the threshold 0 ≤ x ≤ u < 1, is
given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are the
beta and conditional GPD density functions (i.e. dbeta(x, bshape1, bshape2) and dgpd(x, u, sigmau, xi))
respectively. The resulting GPD scale parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

See gpd for details of GPD upper tail component and dbeta for details of beta bulk component.

22 betagpdcon

Value

dbetagpdcon gives the density, pbetagpdcon gives the cumulative distribution function, qbetagpdcon
gives the quantile function and rbetagpdcon gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rbetagpdcon any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rbetagpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Beta_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

MacDonald, A. (2012). Extreme value mixture modelling with medical and industrial applications.
PhD thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/
10092/6679/1/thesis_fulltext.pdf

See Also

gpd and dbeta

Other betagpd betagpdcon fbetagpd fbetagpdcon: betagpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rbetagpdcon(1000, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2)
xx = seq(-0.1, 2, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, dbetagpdcon(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2))

three tail behaviours
plot(xx, pbetagpdcon(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2), type = "l")
lines(xx, pbetagpdcon(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2, xi = 0.3), col = "red")
lines(xx, pbetagpdcon(xx, bshape1 = 1.5, bshape2 = 2, u = 0.7, phiu = 0.2, xi = -0.3), col = "blue")

http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf

checking 23

legend("topleft", paste("xi =",c(0, 0.3, -0.3)),
col=c("black", "red", "blue"), lty = 1)

x = rbetagpdcon(1000, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, dbetagpdcon(xx, bshape1 = 2, bshape2 = 0.6, u = 0.7, phiu = 0.5))

plot(xx, dbetagpdcon(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=0), type = "l")
lines(xx, dbetagpdcon(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=-0.2), col = "red")
lines(xx, dbetagpdcon(xx, bshape1 = 2, bshape2 = 0.8, u = 0.7, phiu = 0.5, xi=0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

checking Internal functions for checking function input arguments

Description

Functions for checking the input arguments to functions, so that main functions are more concise.
They will stop when an inappropriate input is found.

These function are visible and operable by the user. But they should be used with caution, as no
checks on the input validity are carried out.

For likelihood functions you will often not want to stop on finding a non-positive values for positive
parameters, in such cases use check.param rather than check.posparam.

Usage

check.param(param, allowvec = FALSE, allownull = FALSE, allowmiss = FALSE,
allowna = FALSE, allowinf = FALSE)

check.posparam(param, allowvec = FALSE, allownull = FALSE,
allowmiss = FALSE, allowna = FALSE, allowinf = FALSE,
allowzero = FALSE)

check.quant(x, allownull = FALSE, allowna = FALSE, allowinf = FALSE)

check.prob(prob, allownull = FALSE, allowna = FALSE)

check.n(n, allowzero = FALSE)

check.logic(logicarg, allowvec = FALSE, allowna = FALSE)

check.nparam(ns, nparam = 1, allownull = FALSE, allowmiss = FALSE)

check.inputn(inputn, allowscalar = FALSE, allowzero = FALSE)

check.text(textarg, allowvec = FALSE, allownull = FALSE)

check.phiu(phiu, allowvec = FALSE, allownull = FALSE, allowfalse = FALSE)

24 checking

check.optim(method)

check.control(control)

check.bcmethod(bcmethod)

check.nn(nn)

check.offset(offset, bcmethod, allowzero = FALSE)

check.design.knots(beta, xrange, nseg, degree, design.knots)

Arguments

param scalar or vector of parameters

allowvec logical, where TRUE permits vector

allownull logical, where TRUE permits NULL values

allowmiss logical, where TRUE permits missing input

allowna logical, where TRUE permits NA and NaN values

allowinf logical, where TRUE permits +/-Inf values

allowzero logical, where TRUE permits zero values (positive vs non-negative)

x scalar or vector of quantiles

prob scalar or vector of probability

n scalar sample size

logicarg logical input argument

ns vector of lengths of parameter vectors

nparam acceptable length of (non-scalar) vectors of parameter vectors

inputn vector of input lengths

allowscalar logical, where TRUE permits scalar (as opposed to vector) values

textarg character input argument

phiu scalar or vector of phiu (logical, NULL or 0-1 exclusive)

allowfalse logical, where TRUE permits FALSE (and TRUE) values

method optimisation method (see optim)

control optimisation control list (see optim)

bcmethod boundary correction method

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

beta vector of B-spline coefficients (required)

xrange vector of minimum and maximum of B-spline (support of density)

nseg number of segments between knots

degree degree of B-splines (0 is constant, 1 is linear, etc.)

design.knots spline knots for splineDesign function

dwm 25

Value

The checking functions will stop on errors and return no value. The only exception is the check.inputn
which outputs the maximum vector length.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

dwm Dynamically Weighted Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
dynamically weighted mixture model. The parameters are the Weibull shape wshape and scale
wscale, Cauchy location cmu, Cauchy scale ctau, GPD scale sigmau, shape xi and initial value
for the quantile qinit.

Usage

ddwm(x, wshape = 1, wscale = 1, cmu = 1, ctau = 1,
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, log = FALSE)

pdwm(q, wshape = 1, wscale = 1, cmu = 1, ctau = 1,
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, lower.tail = TRUE)

qdwm(p, wshape = 1, wscale = 1, cmu = 1, ctau = 1,
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, lower.tail = TRUE, qinit = NULL)

rdwm(n = 1, wshape = 1, wscale = 1, cmu = 1, ctau = 1,
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0)

Arguments

x quantiles

wshape Weibull shape (positive)

wscale Weibull scale (positive)

cmu Cauchy location

ctau Cauchy scale

sigmau scale parameter (positive)

xi shape parameter

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

26 dwm

p cumulative probabilities

qinit scalar or vector of initial values for the quantile estimate

n sample size (positive integer)

Details

The dynamic weighted mixture model combines a Weibull for the bulk model with GPD for the
tail model. However, unlike all the other mixture models the GPD is defined over the entire range
of support rather than as a conditional model above some threshold. A transition function is used
to apply weights to transition between the bulk and GPD for the upper tail, thus providing the dy-
namically weighted mixture. They use a Cauchy cumulative distribution function for the transition
function.

The density function is then a dynamically weighted mixture given by:

f(x) = [1− p(x)]h(x) + p(x)g(x)/r

where h(x) and g(x) are the Weibull and unscaled GPD density functions respectively (i.e. dweibull(x, wshape, wscale)
and dgpd(x, u, sigmau, xi)). The Cauchy cumulative distribution function used to provide the
transition is defined by p(x) (i.e. pcauchy(x, cmu, ctau. The normalisation constant r ensures a
proper density.

The quantile function is not available in closed form, so has to be solved numerically. The argument
qinit is the initial quantile estimate which is used for numerical optimisation and should be set to
a reasonable guess. When the qinit is NULL, the initial quantile value is given by the midpoint
between the Weibull and GPD quantiles. As with the other inputs qinit is also vectorised, but R
does not permit vectors combining NULL and numeric entries.

Value

ddwm gives the density, pdwm gives the cumulative distribution function, qdwm gives the quantile
function and rdwm gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rdwm any input vector must
be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rdwm is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

dwm 27

References

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Cauchy_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Frigessi, A., Haug, O. and Rue, H. (2002). A dynamic mixture model for unsupervised tail estima-
tion without threshold selection. Extremes 5 (3), 219-235

See Also

gpd, dcauchy and dweibull

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(0.001, 5, 0.01)
f = ddwm(xx, wshape = 2, wscale = 1/gamma(1.5), cmu = 1, ctau = 1, sigmau = 1, xi = 0.5)
plot(xx, f, ylim = c(0, 1), xlim = c(0, 5), type = 'l', lwd = 2,

ylab = "density", main = "Plot example in Frigessi et al. (2002)")
lines(xx, dgpd(xx, sigmau = 1, xi = 0.5), col = "red", lty = 2, lwd = 2)
lines(xx, dweibull(xx, shape = 2, scale = 1/gamma(1.5)), col = "blue", lty = 2, lwd = 2)
legend('topright', c('DWM', 'Weibull', 'GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

three tail behaviours
plot(xx, pdwm(xx, xi = 0), type = "l")
lines(xx, pdwm(xx, xi = 0.3), col = "red")
lines(xx, pdwm(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)), col=c("black", "red", "blue"), lty = 1)

x = rdwm(10000, wshape = 2, wscale = 1/gamma(1.5), cmu = 1, ctau = 1, sigmau = 1, xi = 0.1)
xx = seq(0, 15, 0.01)
hist(x, freq = FALSE, breaks = 100)
lines(xx, ddwm(xx, wshape = 2, wscale = 1/gamma(1.5), cmu = 1, ctau = 1, sigmau = 1, xi = 0.1),

lwd = 2, col = 'black')

plot(xx, pdwm(xx, wshape = 2, wscale = 1/gamma(1.5), cmu = 1, ctau = 1, sigmau = 1, xi = 0.1),
xlim = c(0, 15), type = 'l', lwd = 2,
xlab = "x", ylab = "F(x)")

lines(xx, pgpd(xx, sigmau = 1, xi = 0.1), col = "red", lty = 2, lwd = 2)
lines(xx, pweibull(xx, shape = 2, scale = 1/gamma(1.5)), col = "blue", lty = 2, lwd = 2)
legend('bottomright', c('DWM', 'Weibull', 'GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

End(Not run)

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

28 evmix.diag

evmix.diag Diagnostic Plots for Extreme Value Mixture Models

Description

The classic four diagnostic plots for evaluating extreme value mixture models: 1) return level plot,
2) Q-Q plot, 3) P-P plot and 4) density plot. Each plot is available individually or as the usual 2x2
collection.

Usage

evmix.diag(modelfit, upperfocus = TRUE, alpha = 0.05, N = 1000,
legend = FALSE, ...)

rlplot(modelfit, upperfocus = TRUE, alpha = 0.05, N = 1000,
legend = TRUE, rplim = NULL, rllim = NULL, ...)

qplot(modelfit, upperfocus = TRUE, alpha = 0.05, N = 1000,
legend = TRUE, ...)

pplot(modelfit, upperfocus = TRUE, alpha = 0.05, N = 1000,
legend = TRUE, ...)

densplot(modelfit, upperfocus = TRUE, legend = TRUE, ...)

Arguments

modelfit fitted extreme value mixture model object

upperfocus logical, should plot focus on upper tail?

alpha significance level over range (0, 1), or NULL for no CI

N number of Monte Carlo simulation for CI (N>=10)

legend logical, should legend be included

... further arguments to be passed to the plotting functions

rplim return period range

rllim return level range

Details

Model diagnostics are available for all the fitted extreme mixture models in the evmix package.
These modelfit is output by all the fitting functions, e.g. fgpd and fnormgpd.

Consistent with plot function in the evd library the ppoints to estimate the empirical cumulative
probabilities. The default behaviour of this function is to use

(i− 0.5)/n

as the estimate for the ith order statistic of the given sample of size n.

The return level plot has the quantile (q where P (X ≥ q) = p on the y-axis, for a particular survival
probability p. The return period t = 1/p is shown on the x-axis. The return level is given by:

q = u+ σu[(φut)
ξ − 1]/ξ

evmix.diag 29

for ξ 6= 0. But in the case of ξ = 0 this simplifies to

q = u+ σulog(φut)

which is linear when plotted against the return period on a logarithmic scale. The special case
of exponential/Type I (ξ = 0) upper tail behaviour will be linear on this scale. This is the same
tranformation as in the GPD/POT diagnostic plot function plot.uvevd in the evd package, from
which these functions were derived.

The crosses are the empirical quantiles/return levels (i.e. the ordered sample data) against their
corresponding transformed empirical return period (from ppoints). The solid line is the theoretical
return level (quantile) function using the estimated parameters. The estimated threshold u and tail
fraction phiu are shown. For the two tailed models both thresholds ul and ur and corresponding
tail fractions phiul and phiur are shown. The approximate pointwise confidence intervals for the
quantiles are obtained by Monte Carlo simulation using the estimated parameters. Notice that these
intervals ignore the parameter estimation uncertainty.

The Q-Q and P-P plots have the empirical values on the y-axis and theoretical values from the fitted
model on the x-axis.

The density plot provides a histogram of the sample data overlaid with the fitted density and a
standard kernel density estimate using the density function. The default settings for the density
function are used. Note that for distributions with bounded support (e.g. GPD) with high density
near the boundary standard kernel density estimators exhibit a negative bias due to leakage past the
boundary. So in this case they should not be taken too seriously.

For the kernel density estimates (i.e. kden and bckden) there is no threshold, so no upper tail focus
is carried out.

See plot.uvevd for more detailed explanations of these types of plots.

Value

rlplot gives the return level plot, qplot gives the Q-Q plot, pplot gives the P-P plot, densplot
gives density plot and evmix.diag gives the collection of all 4.

Acknowledgments

Based on the GPD/POT diagnostic function plot.uvevd in the evd package for which Stuart Coles’
and Alec Stephenson’s contributions are gratefully acknowledged. They are designed to have simi-
lar syntax and functionality to simplify the transition for users of these packages.

Note

For all mixture models the missing values are removed by the fitting functions (e.g. fnormgpd and
fgng). However, these are retained in the GPD fitting fgpd, as they are interpreted as values below
the threshold.

By default all the plots focus in on the upper tail, but they can be used to display the fit over the
entire range of support.

You cannot pass xlim or ylim to the plotting functions via ...

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

30 fbckden

References

http://en.wikipedia.org/wiki/Q-Q_plot

http://en.wikipedia.org/wiki/P-P_plot

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Coles S.G. (2004). An Introduction to the Statistical Modelling of Extreme Values. Springer-Verlag:
London.

See Also

ppoints, plot.uvevd and gpd.diag.

Examples

Not run:
set.seed(1)

x = sort(rnorm(1000))
fit = fnormgpd(x)
evmix.diag(fit)

repeat without focussing on upper tail
par(mfrow=c(2,2))
rlplot(fit, upperfocus = FALSE)
qplot(fit, upperfocus = FALSE)
pplot(fit, upperfocus = FALSE)
densplot(fit, upperfocus = FALSE)

End(Not run)

fbckden Cross-validation MLE Fitting of Boundary Corrected Kernel Density
Estimation Using a Variety of Approaches

Description

Maximum likelihood estimation for fitting boundary corrected kernel density estimator using a
variety of approaches (and many possible kernels), by treating it as a mixture model.

Usage

fbckden(x, linit = NULL, bwinit = NULL, kernel = "gaussian",
extracentres = NULL, bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, add.jitter = FALSE, factor = 0.1,
amount = NULL, std.err = TRUE, method = "BFGS", control = list(maxit =
10000), finitelik = TRUE, ...)

lbckden(x, lambda = NULL, bw = NULL, kernel = "gaussian",
extracentres = NULL, bcmethod = "simple", proper = TRUE, nn = "jf96",

http://en.wikipedia.org/wiki/Q-Q_plot
http://en.wikipedia.org/wiki/P-P_plot
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

fbckden 31

offset = NULL, xmax = NULL, log = TRUE)

nlbckden(lambda, x, bw = NULL, kernel = "gaussian", extracentres = NULL,
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, finitelik = FALSE)

Arguments

x vector of sample data

linit initial value for bandwidth (as kernel half-width) or NULL

bwinit initial value for bandwidth (as kernel standard deviations) or NULL

kernel kernel name (default = "gaussian")

extracentres extra kernel centres used in KDE, but likelihood contribution not evaluated, or
NULL

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

add.jitter logical, whether jitter is needed for rounded kernel centres

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lambda bandwidth for kernel (as half-width of kernel) or NULL

bw bandwidth for kernel (as standard deviations of kernel) or NULL

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The boundary corrected kernel density estimator using a variety of approaches (and many possible
kernels) is fitted to the entire dataset using cross-validation maximum likelihood estimation. The
estimated bandwidth, variance and standard error are automatically output.

The log-likelihood and negative log-likelihood are also provided for wider usage, e.g. constructing
your own extreme value mixture models or profile likelihood functions. The parameter lambda
must be specified in the negative log-likelihood nlbckden.

Log-likelihood calculations are carried out in lbckden, which takes bandwidths as inputs in the
same form as distribution functions. The negative log-likelihood is a wrapper for lbckden, designed
towards making it useable for optimisation (e.g. lambda given as first input).

The alternate bandwidth definitions are discussed in the kernels, with the lambda used here but bw
also output. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels help documentation with the "gaussian" as the
default choice.

32 fbckden

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all these estimators, with
only certain methods having a guideline in the literature, so none have been implemented. Hence, a
bandwidth must always be specified.

The simple, renorm, beta1, beta2 gamma1 and gamma2 density estimates require renormalisation,
achieved by numerical integration, so is very time consuming.

Missing values (NA and NaN) are assumed to be invalid data so are ignored.

Cross-validation likelihood is used for kernel density component, obtained by leaving each point
out in turn and evaluating the KDE at the point left out:

L(λ)

n∏
i=1

f̂−i(xi)

where

f̂−i(xi) =
1

(n− 1)λ

n∑
j=1:j 6=i

K(
xi − xj
λ

)

is the KDE obtained when the ith datapoint is dropped out and then evaluated at that dropped
datapoint at xi.

Normally for likelihood estimation of the bandwidth the kernel centres and the data where the
likelihood is evaluated are the same. However, when using KDE for extreme value mixture mod-
elling the likelihood only those data in the bulk of the distribution should contribute to the like-
lihood, but all the data (including those beyond the threshold) should contribute to the density
estimate. The extracentres option allows the use to specify extra kernel centres used in estimat-
ing the density, but not evaluated in the likelihood. The default is to just use the existing data, so
extracentres=NULL.

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call.

If the hessian is of reduced rank then the variance (from inverse hessian) and standard error of
bandwidth parameter cannot be calculated, then by default std.err=TRUE and the function will
stop. If you want the bandwidth estimate even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Value

fbckden gives leave one out cross-validation (log-)likelihood and lbckden gives the negative log-
likelihood. nlbckden returns a simple list with the following elements

call: optim call
x: (jittered) data vector x
kerncentres: actual kernel centres used x
init: linit for lambda
optim: complete optim output
mle: vector of MLE of bandwidth
cov: variance of MLE of bandwidth
se: standard error of MLE of bandwidth
nllh: minimum negative cross-validation log-likelihood
n: total sample size

fbckden 33

lambda: MLE of lambda (kernel half-width)
bw: MLE of bw (kernel standard deviations)
kernel: kernel name
bcmethod: boundary correction method
proper: logical, whether renormalisation is requested
nn: non-negative correction method
offset: offset for log transformation method
xmax: maximum value of scale beta or copula

The output list has some duplicate entries and repeats some of the inputs to both provide similar
items to those from fpot and to make it as useable as possible.

Warning

Two important practical issues arise with MLE for the kernel bandwidth: 1) Cross-validation like-
lihood is needed for the KDE bandwidth parameter as the usual likelihood degenerates, so that
the MLE λ̂ → 0 as n → ∞, thus giving a negative bias towards a small bandwidth. Leave one
out cross-validation essentially ensures that some smoothing between the kernel centres is required
(i.e. a non-zero bandwidth), otherwise the resultant density estimates would always be zero if the
bandwidth was zero.

This problem occassionally rears its ugly head for data which has been heavily rounded, as even
when using cross-validation the density can be non-zero even if the bandwidth is zero. To overcome
this issue an option to add a small jitter should be added to the data (x only) has been included in the
fitting inputs, using the jitter function, to remove the ties. The default options red in the jitter
are specified above, but the user can override these. Notice the default scaling factor=0.1, which
is a tenth of the default value in the jitter function itself.

A warning message is given if the data appear to be rounded (i.e. more than 5 data rounding is the
likely culprit. Only use the jittering when the MLE of the bandwidth is far too small.

2) For heavy tailed populations the bandwidth is positively biased, giving oversmoothing (see ex-
ample). The bias is due to the distance between the upper (or lower) order statistics not necessarily
decaying to zero as the sample size tends to infinity. Essentially, as the distance between the two
largest (or smallest) sample datapoints does not decay to zero, some smoothing between them is
required (i.e. bandwidth cannot be zero). One solution to this problem is to splice the GPD at a
suitable threshold to remove the problematic tail from the inference for the bandwidth, using the
fbckdengpd function for a heavy upper tail. See MacDonald et al (2013).

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

An initial bandwidth must be provided, so linit and bwinit cannot both be NULL

The extra kernel centres extracentres can either be a vector of data or NULL.

Invalid parameter ranges will give 0 for likelihood, log(0)=-Inf for log-likelihood and -log(0)=Inf
for negative log-likelihood.

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

34 fbckden

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, jitter, density and bw.nrd0

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpdcon
fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, bckden, fkden, kdengpdcon,
kdengpd, kden

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

nk=500
x = rgamma(nk, shape = 1, scale = 2)
xx = seq(-1, 10, 0.01)

cut and normalize is very quick
fit = fbckden(x, linit = 0.2, bcmethod = "cutnorm")
hist(x, nk/5, freq = FALSE)
rug(x)
lines(xx, dgamma(xx, shape = 1, scale = 2), col = "black")
but cut and normalize does not always work well for boundary correction
lines(xx, dbckden(xx, x, lambda = fit$lambda, bcmethod = "cutnorm"), lwd = 2, col = "red")
Handily, the bandwidth usually works well for other approaches as well
lines(xx, dbckden(xx, x, lambda = fit$lambda, bcmethod = "simple"), lwd = 2, col = "blue")
lines(density(x), lty = 2, lwd = 2, col = "green")
legend("topright", c("True Density", "BC KDE using cutnorm",

"BC KDE using simple", "KDE Using density"),
lty = c(1, 1, 1, 2), lwd = c(1, 2, 2, 2), col = c("black", "red", "blue", "green"))

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

fbckdengpd 35

By contrast simple boundary correction is very slow
a crude trick to speed it up is to ignore the normalisation and non-negative correction,
which generally leads to bandwidth being biased high
fit = fbckden(x, linit = 0.2, bcmethod = "simple", proper = FALSE, nn = "none")
hist(x, nk/5, freq = FALSE)
rug(x)
lines(xx, dgamma(xx, shape = 1, scale = 2), col = "black")
lines(xx, dbckden(xx, x, lambda = fit$lambda, bcmethod = "simple"), lwd = 2, col = "blue")
lines(density(x), lty = 2, lwd = 2, col = "green")

but ignoring upper tail in likelihood works a lot better
q75 = qgamma(0.75, shape = 1, scale = 2)
fitnotail = fbckden(x[x <= q75], linit = 0.1,

bcmethod = "simple", proper = FALSE, nn = "none", extracentres = x[x > q75])
lines(xx, dbckden(xx, x, lambda = fitnotail$lambda, bcmethod = "simple"), lwd = 2, col = "red")
legend("topright", c("True Density", "BC KDE using simple", "BC KDE (upper tail ignored)",

"KDE Using density"),
lty = c(1, 1, 1, 2), lwd = c(1, 2, 2, 2), col = c("black", "blue", "red", "green"))

End(Not run)

fbckdengpd MLE Fitting of Boundary Corrected Kernel Density Estimate for Bulk
and GPD Tail Extreme Value Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with boundary cor-
rected kernel density estimate for bulk distribution upto the threshold and conditional GPD above
threshold. With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fbckdengpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, add.jitter = FALSE, factor = 0.1,
amount = NULL, std.err = TRUE, method = "BFGS", control = list(maxit =
10000), finitelik = TRUE, ...)

lbckdengpd(x, lambda = NULL, u = 0, sigmau = 1, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", bcmethod = "simple", proper = TRUE,
nn = "jf96", offset = NULL, xmax = NULL, log = TRUE)

nlbckdengpd(pvector, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, finitelik = FALSE)

proflubckdengpd(u, pvector, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

36 fbckdengpd

nlubckdengpd(pvector, u, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

kernel kernel name (default = "gaussian")

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

add.jitter logical, whether jitter is needed for rounded kernel centres

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lambda bandwidth for kernel (as half-width of kernel) or NULL

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

bw bandwidth for kernel (as standard deviations of kernel) or NULL

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with boundary corrected kernel density estimate (BCKDE) for
bulk and GPD tail is fitted to the entire dataset using maximum likelihood estimation. The estimated
parameters, variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (lambda, u, sigmau, xi) if threshold is also estimated and (lambda,
sigmau, xi) for profile likelihood or fixed threshold approach.

Negative data are ignored.

fbckdengpd 37

Cross-validation likelihood is used for BCKDE, but standard likelihood is used for GPD component.
See help for fkden for details, type help fkden.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all these estimators, with
only certain methods having a guideline in the literature, so none have been implemented. Hence, a
bandwidth must always be specified.

The simple, renorm, beta1, beta2 gamma1 and gamma2 boundary corrected kernel density esti-
mates require renormalisation, achieved by numerical integration, so are very time consuming.

Value

lbckdengpd, nlbckdengpd, and nlubckdengpd give the log-likelihood, negative log-likelihood and
profile likelihood for threshold. Profile likelihood for single threshold is given by proflubckdengpd.
fbckdengpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name
bcmethod: boundary correction method
proper: logical, whether renormalisation is requested
nn: non-negative correction method
offset: offset for log transformation method
xmax: maximum value of scaled beta or copula

Boundary Correction Methods

See dbckden for details of BCKDE methods.

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

See important warnings about boundary correction approaches in dbckden, type help bckden.

38 fbckdengpd

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

See notes in fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

No default initial values for parameter vector are provided, so will stop evaluation if pvector is
left as NULL. Avoid setting the starting value for the shape parameter to xi=0 as depending on the
optimisation method it may be get stuck.

The data and kernel centres are both vectors. Infinite, missing and negative sample values (and
kernel centres) are dropped.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd kden bckden bckdengpd
bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fbckdengpdcon, fkdengpdcon, fkdengpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

fbckdengpdcon 39

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rgamma(500, 2, 1)
xx = seq(-0.1, 10, 0.01)
y = dgamma(xx, 2, 1)

Bulk model based tail fraction
pinit = c(0.1, quantile(x, 0.9), 1, 0.1) # initial values required for BCKDE
fit = fbckdengpd(x, pvector = pinit, bcmethod = "cutnorm")
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10))
lines(xx, y)
with(fit, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, bcmethod = "cutnorm"), col="red"))
abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fbckdengpd(x, phiu = FALSE, pvector = pinit, bcmethod = "cutnorm")
with(fit2, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, phiu, bc = "cutnorm"), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
pinit = c(0.1, 1, 0.1) # notice threshold dropped from initial values
fitu = fbckdengpd(x, useq = seq(1, 6, length = 20), pvector = pinit, bcmethod = "cutnorm")
fitfix = fbckdengpd(x, useq = seq(1, 6, length = 20), fixedu = TRUE, pv = pinit, bc = "cutnorm")

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10))
lines(xx, y)
with(fit, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, bc = "cutnorm"), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, bc = "cutnorm"), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, bc = "cutnorm"), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fbckdengpdcon MLE Fitting of Boundary Corrected Kernel Density Estimate for Bulk
and GPD Tail Extreme Value Mixture Model with Single Continuity
Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with boundary cor-
rected kernel density estimate for bulk distribution upto the threshold and conditional GPD above
thresholdwith continuity at threshold. With options for profile likelihood estimation for threshold
and fixed threshold approach.

40 fbckdengpdcon

Usage

fbckdengpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, kernel = "gaussian", bcmethod = "simple",
proper = TRUE, nn = "jf96", offset = NULL, xmax = NULL,
add.jitter = FALSE, factor = 0.1, amount = NULL, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lbckdengpdcon(x, lambda = NULL, u = 0, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian", bcmethod = "simple", proper = TRUE, nn = "jf96",
offset = NULL, xmax = NULL, log = TRUE)

nlbckdengpdcon(pvector, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, finitelik = FALSE)

proflubckdengpdcon(u, pvector, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

nlubckdengpdcon(pvector, u, x, phiu = TRUE, kernel = "gaussian",
bcmethod = "simple", proper = TRUE, nn = "jf96", offset = NULL,
xmax = NULL, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

kernel kernel name (default = "gaussian")

bcmethod boundary correction method

proper logical, whether density is renormalised to integrate to unity (where needed)

nn non-negativity correction method (simple boundary correction only)

offset offset added to kernel centres (logtrans only) or NULL

xmax upper bound on support (copula and beta kernels only) or NULL

add.jitter logical, whether jitter is needed for rounded kernel centres

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

fbckdengpdcon 41

... optional inputs passed to optim

lambda bandwidth for kernel (as half-width of kernel) or NULL

u scalar threshold value

xi scalar shape parameter

bw bandwidth for kernel (as standard deviations of kernel) or NULL

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with boundary corrected kernel density estimate (BCKDE) for
bulk and GPD tail with continuity at threshold is fitted to the entire dataset using maximum like-
lihood estimation. The estimated parameters, variance-covariance matrix and their standard errors
are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dbckdengpdcon
for details, type help bckdengpdcon. Therefore, sigmau should not be included in the parameter
vector if initial values are provided, making the full parameter vector (lambda, u, xi) if threshold is
also estimated and (lambda, xi) for profile likelihood or fixed threshold approach.

Negative data are ignored.

Cross-validation likelihood is used for BCKDE, but standard likelihood is used for GPD component.
See help for fkden for details, type help fkden.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Unlike the standard KDE, there is no general rule-of-thumb bandwidth for all these estimators, with
only certain methods having a guideline in the literature, so none have been implemented. Hence, a
bandwidth must always be specified.

The simple, renorm, beta1, beta2 gamma1 and gamma2 boundary corrected kernel density esti-
mates require renormalisation, achieved by numerical integration, so are very time consuming.

Value

lbckdengpdcon, nlbckdengpdcon, and nlubckdengpdcon give the log-likelihood, negative log-
likelihood and profile likelihood for threshold. Profile likelihood for single threshold is given by
proflubckdengpdcon. fbckdengpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood

42 fbckdengpdcon

n: total sample size
lambda: MLE of lambda (kernel half-width)
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale(estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name
bcmethod: boundary correction method
proper: logical, whether renormalisation is requested
nn: non-negative correction method
offset: offset for log transformation method
xmax: maximum value of scaled beta or copula

Boundary Correction Methods

See dbckden for details of BCKDE methods.

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

See important warnings about boundary correction approaches in dbckden, type help bckden.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

See notes in fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

No default initial values for parameter vector are provided, so will stop evaluation if pvector is
left as NULL. Avoid setting the starting value for the shape parameter to xi=0 as depending on the
optimisation method it may be get stuck.

The data and kernel centres are both vectors. Infinite, missing and negative sample values (and
kernel centres) are dropped.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

fbckdengpdcon 43

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd kden bckden bckdengpd
bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fbckdengpd, fkdengpdcon, fkdengpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rgamma(500, 2, 1)
xx = seq(-0.1, 10, 0.01)
y = dgamma(xx, 2, 1)

Continuity constraint
pinit = c(0.1, quantile(x, 0.9), 0.1) # initial values required for BCKDE
fit = fbckdengpdcon(x, pvector = pinit, bcmethod = "cutnorm")
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10))
lines(xx, y)
with(fit, lines(xx, dbckdengpdcon(xx, x, lambda, u, xi, bcmethod = "cutnorm"), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
pinit = c(0.1, quantile(x, 0.9), 1, 0.1) # initial values required for BCKDE
fit2 = fbckdengpd(x, pvector = pinit, bcmethod = "cutnorm")
with(fit2, lines(xx, dbckdengpd(xx, x, lambda, u, sigmau, xi, bc = "cutnorm"), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
pinit = c(0.1, 0.1) # notice threshold dropped from initial values
fitu = fbckdengpdcon(x, useq = seq(1, 6, length = 20), pvector = pinit, bcmethod = "cutnorm")
fitfix = fbckdengpdcon(x, useq = seq(1, 6, length = 20), fixedu = TRUE, pv = pinit, bc = "cutnorm")

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10))
lines(xx, y)
with(fit, lines(xx, dbckdengpdcon(xx, x, lambda, u, xi, bc = "cutnorm"), col="red"))

http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

44 fbetagpd

abline(v = fit$u, col = "red")
with(fitu, lines(xx, dbckdengpdcon(xx, x, lambda, u, xi, bc = "cutnorm"), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dbckdengpdcon(xx, x, lambda, u, xi, bc = "cutnorm"), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fbetagpd MLE Fitting of beta Bulk and GPD Tail Extreme Value Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with beta for bulk
distribution upto the threshold and conditional GPD above threshold. With options for profile like-
lihood estimation for threshold and fixed threshold approach.

Usage

fbetagpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lbetagpd(x, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
sigmau = sqrt(bshape1 * bshape2/(bshape1 + bshape2)^2/(bshape1 + bshape2 +
1)), xi = 0, phiu = TRUE, log = TRUE)

nlbetagpd(pvector, x, phiu = TRUE, finitelik = FALSE)

proflubetagpd(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlubetagpd(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

fbetagpd 45

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

bshape1 scalar beta shape 1 (positive)

bshape2 scalar beta shape 2 (positive)

u scalar threshold over (0, 1)

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with beta bulk and GPD tail is fitted to the entire dataset using
maximum likelihood estimation. The estimated parameters, variance-covariance matrix and their
standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (bshape1, bshape2, u, sigmau, xi) if threshold is also estimated and
(bshape1, bshape2, sigmau, xi) for profile likelihood or fixed threshold approach.

Negative data are ignored. Values above 1 must come from GPD component, as threshold u<1.

Value

Log-likelihood is given by lbetagpd and it’s wrappers for negative log-likelihood from nlbetagpd
and nlubetagpd. Profile likelihood for single threshold given by proflubetagpd. Fitting function
fbetagpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
bshape1: MLE of beta shape1
bshape2: MLE of beta shape2
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

46 fbetagpd

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

When pvector=NULL then the initial values are:

• method of moments estimator of beta parameters assuming entire population is beta; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Beta_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

MacDonald, A. (2012). Extreme value mixture modelling with medical and industrial applications.
PhD thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/
10092/6679/1/thesis_fulltext.pdf

See Also

dbeta, fgpd and gpd

Other betagpd betagpdcon fbetagpd fbetagpdcon normgpd fnormgpd: fbetagpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rbeta(1000, shape1 = 2, shape2 = 4)
xx = seq(-0.1, 2, 0.01)
y = dbeta(xx, shape1 = 2, shape2 = 4)

Bulk model based tail fraction
fit = fbetagpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, y)
with(fit, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi), col="red"))

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf

fbetagpdcon 47

abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fbetagpd(x, phiu = FALSE)
with(fit2, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fbetagpd(x, useq = seq(0.3, 0.7, length = 20))
fitfix = fbetagpd(x, useq = seq(0.3, 0.7, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, y)
with(fit, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fbetagpdcon MLE Fitting of beta Bulk and GPD Tail Extreme Value Mixture Model
with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with beta for bulk
distribution upto the threshold and conditional GPD above threshold with continuity at threshold.
With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fbetagpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lbetagpdcon(x, bshape1 = 1, bshape2 = 1, u = qbeta(0.9, bshape1, bshape2),
xi = 0, phiu = TRUE, log = TRUE)

nlbetagpdcon(pvector, x, phiu = TRUE, finitelik = FALSE)

proflubetagpdcon(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlubetagpdcon(pvector, u, x, phiu = TRUE, finitelik = FALSE)

48 fbetagpdcon

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

bshape1 scalar beta shape 1 (positive)

bshape2 scalar beta shape 2 (positive)

u scalar threshold over (0, 1)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with beta bulk and GPD tail with continuity at threshold is fitted
to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dbetagpdcon
for details, type help betagpdcon. Therefore, sigmau should not be included in the parameter
vector if initial values are provided, making the full parameter vector (bshape1, bshape2, u, xi)
if threshold is also estimated and (bshape1, bshape2, xi) for profile likelihood or fixed threshold
approach.

Negative data are ignored. Values above 1 must come from GPD component, as threshold u<1.

Value

Log-likelihood is given by lbetagpdcon and it’s wrappers for negative log-likelihood from nlbetagpdcon
and nlubetagpdcon. Profile likelihood for single threshold given by proflubetagpdcon. Fitting
function fbetagpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output

fbetagpdcon 49

mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
bshape1: MLE of beta shape1
bshape2: MLE of beta shape2
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

When pvector=NULL then the initial values are:

• method of moments estimator of beta parameters assuming entire population is beta; and
• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold

approaches);
• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Beta_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

MacDonald, A. (2012). Extreme value mixture modelling with medical and industrial applications.
PhD thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/bitstream/
10092/6679/1/thesis_fulltext.pdf

See Also

dbeta, fgpd and gpd

Other betagpd betagpdcon fbetagpd fbetagpdcon normgpd fnormgpd: fbetagpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf
http://ir.canterbury.ac.nz/bitstream/10092/6679/1/thesis_fulltext.pdf

50 fdwm

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rbeta(1000, shape1 = 2, shape2 = 4)
xx = seq(-0.1, 2, 0.01)
y = dbeta(xx, shape1 = 2, shape2 = 4)

Continuity constraint
fit = fbetagpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, y)
with(fit, lines(xx, dbetagpdcon(xx, bshape1, bshape2, u, xi), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
fit2 = fbetagpd(x, phiu = FALSE)
with(fit2, lines(xx, dbetagpd(xx, bshape1, bshape2, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fbetagpdcon(x, useq = seq(0.3, 0.7, length = 20))
fitfix = fbetagpdcon(x, useq = seq(0.3, 0.7, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 2))
lines(xx, y)
with(fit, lines(xx, dbetagpdcon(xx, bshape1, bshape2, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dbetagpdcon(xx, bshape1, bshape2, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dbetagpdcon(xx, bshape1, bshape2, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fdwm MLE Fitting of Dynamically Weighted Mixture Model

Description

Maximum likelihood estimation for fitting the dynamically weighted mixture model

Usage

fdwm(x, pvector = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

fdwm 51

ldwm(x, wshape = 1, wscale = 1, cmu = 1, ctau = 1,
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, log = TRUE)

nldwm(pvector, x, finitelik = FALSE)

Arguments

x vector of sample data
pvector vector of initial values of parameters (wshape, wscale, cmu, ctau, sigmau, xi)

or NULL
std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

wshape Weibull shape (positive)
wscale Weibull scale (positive)
cmu Cauchy location
ctau Cauchy scale
sigmau scalar scale parameter (positive)
xi scalar shape parameter
log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The dynamically weighted mixture model is fitted to the entire dataset using maximum likelihood
estimation. The estimated parameters, variance-covariance matrix and their standard errors are
automatically output.

The log-likelihood and negative log-likelihood are also provided for wider usage, e.g. constructing
profile likelihood functions. The parameter vector pvector must be specified in the negative log-
likelihood nldwm.

Log-likelihood calculations are carried out in ldwm, which takes parameters as inputs in the same
form as distribution functions. The negative log-likelihood is a wrapper for ldwm, designed towards
making it useable for optimisation (e.g. parameters are given a vector as first input).

Non-negative data are ignored.

Missing values (NA and NaN) are assumed to be invalid data so are ignored, which is inconsistent
with the evd library which assumes the missing values are below the threshold.

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call.

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

52 fdwm

Value

ldwm gives (log-)likelihood and nldwm gives the negative log-likelihood. fdwm returns a simple list
with the following elements

call: optim call
x: data vector x
init: pvector
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
wshape: MLE of Weibull shape
wscale: MLE of Weibull scale
mu: MLE of Cauchy location
tau: MLE of Cauchy scale
sigmau: MLE of GPD scale
xi: MLE of GPD shape

The output list has some duplicate entries and repeats some of the inputs to both provide similar
items to those from fpot and to make it as useable as possible.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

Unlike most of the distribution functions for the extreme value mixture models, the MLE fitting
only permits single scalar values for each parameter and phiu. Only the data is a vector.

When pvector=NULL then the initial values are calculated, type fdwm to see the default formulae
used. The mixture model fitting can be ***extremely*** sensitive to the initial values, so you if
you get a poor fit then try some alternatives. Avoid setting the starting value for the shape parameter
to xi=0 as depending on the optimisation method it may be get stuck.

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Cauchy_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Cauchy_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

fgammagpd 53

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Frigessi, A., O. Haug, and H. Rue (2002). A dynamic mixture model for unsupervised tail estima-
tion without threshold selection. Extremes 5 (3), 219-235

See Also

fgpd and gpd

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rweibull(1000, shape = 2)
xx = seq(-0.1, 4, 0.01)
y = dweibull(xx, shape = 2)

fit = fdwm(x, std.err = FALSE)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 4))
lines(xx, y)
with(fit, lines(xx, ddwm(xx, wshape, wscale, cmu, ctau, sigmau, xi), col="red"))

End(Not run)

fgammagpd MLE Fitting of Gamma Bulk and GPD Tail Extreme Value Mixture
Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with gamma for bulk
distribution upto the threshold and conditional GPD above threshold. With options for profile like-
lihood estimation for threshold and fixed threshold approach.

Usage

fgammagpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lgammagpd(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE, log = TRUE)

nlgammagpd(pvector, x, phiu = TRUE, finitelik = FALSE)

proflugammagpd(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlugammagpd(pvector, u, x, phiu = TRUE, finitelik = FALSE)

http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

54 fgammagpd

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

gshape scalar gamma shape (positive)

gscale scalar gamma scale (positive)

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with gamma bulk and GPD tail is fitted to the entire dataset using
maximum likelihood estimation. The estimated parameters, variance-covariance matrix and their
standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (gshape, gscale, u, sigmau, xi) if threshold is also estimated and
(gshape, gscale, sigmau, xi) for profile likelihood or fixed threshold approach.

Non-positive data are ignored as likelihood is infinite, except for gshape=1.

Value

Log-likelihood is given by lgammagpd and it’s wrappers for negative log-likelihood from nlgammagpd
and nlugammagpd. Profile likelihood for single threshold given by proflugammagpd. Fitting func-
tion fgammagpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters

fgammagpd 55

se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
gshape: MLE of gamma shape
gscale: MLE of gamma scale
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• approximation of MLE of gamma parameters assuming entire population is gamma; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dgamma, fgpd and gpd

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fmgammagpdcon,
fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd, mgamma

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

56 fgammagpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rgamma(1000, shape = 2)
xx = seq(-0.1, 8, 0.01)
y = dgamma(xx, shape = 2)

Bulk model based tail fraction
fit = fgammagpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 8))
lines(xx, y)
with(fit, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fgammagpd(x, phiu = FALSE)
with(fit2, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgammagpd(x, useq = seq(1, 5, length = 20))
fitfix = fgammagpd(x, useq = seq(1, 5, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 8))
lines(xx, y)
with(fit, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fgammagpdcon MLE Fitting of Gamma Bulk and GPD Tail Extreme Value Mixture
Model with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with gamma for bulk
distribution upto the threshold and conditional GPD above threshold with continuity at threshold.
With options for profile likelihood estimation for threshold and fixed threshold approach.

fgammagpdcon 57

Usage

fgammagpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

lgammagpdcon(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, log = TRUE)

nlgammagpdcon(pvector, x, phiu = TRUE, finitelik = FALSE)

proflugammagpdcon(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlugammagpdcon(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data
phiu probability of being above threshold (0, 1) or logical, see Details in help for

fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below
std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

gshape scalar gamma shape (positive)
gscale scalar gamma scale (positive)
u scalar threshold value
xi scalar shape parameter
log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with gamma bulk and GPD tail with continuity at threshold
is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dgammagpdcon
for details, type help gammagpdcon. Therefore, sigmau should not be included in the parameter
vector if initial values are provided, making the full parameter vector (gshape, gscale, u, xi) if
threshold is also estimated and (gshape, gscale, xi) for profile likelihood or fixed threshold ap-
proach.

Non-positive data are ignored as likelihood is infinite, except for gshape=1.

58 fgammagpdcon

Value

Log-likelihood is given by lgammagpdcon and it’s wrappers for negative log-likelihood from nlgammagpdcon
and nlugammagpdcon. Profile likelihood for single threshold given by proflugammagpdcon. Fitting
function fgammagpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
gshape: MLE of gamma shape
gscale: MLE of gamma scale
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• approximation of MLE of gamma parameters assuming entire population is gamma; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

fgammagpdcon 59

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dgamma, fgpd and gpd

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpd, fmgammagpdcon,
fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rgamma(1000, shape = 2)
xx = seq(-0.1, 8, 0.01)
y = dgamma(xx, shape = 2)

Continuity constraint
fit = fgammagpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 8))
lines(xx, y)
with(fit, lines(xx, dgammagpdcon(xx, gshape, gscale, u, xi), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
fit2 = fgammagpd(x, phiu = FALSE)
with(fit2, lines(xx, dgammagpd(xx, gshape, gscale, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgammagpdcon(x, useq = seq(1, 5, length = 20))
fitfix = fgammagpdcon(x, useq = seq(1, 5, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 8))
lines(xx, y)
with(fit, lines(xx, dgammagpdcon(xx, gshape, gscale, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dgammagpdcon(xx, gshape, gscale, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dgammagpdcon(xx, gshape, gscale, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

60 fgkg

fgkg MLE Fitting of Kernel Density Estimate for Bulk and GPD for Both
Tails Extreme Value Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with kernel density
estimate for bulk distribution between thresholds and conditional GPDs beyond thresholds. With
options for profile likelihood estimation for both thresholds and fixed threshold approach.

Usage

fgkg(x, phiul = TRUE, phiur = TRUE, ulseq = NULL, urseq = NULL,
fixedu = FALSE, pvector = NULL, kernel = "gaussian",
add.jitter = FALSE, factor = 0.1, amount = NULL, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lgkg(x, lambda = NULL, ul = 0, sigmaul = 1, xil = 0, phiul = TRUE,
ur = 0, sigmaur = 1, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", log = TRUE)

nlgkg(pvector, x, phiul = TRUE, phiur = TRUE, kernel = "gaussian",
finitelik = FALSE)

proflugkg(ulr, pvector, x, phiul = TRUE, phiur = TRUE,
kernel = "gaussian", method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

nlugkg(pvector, ul, ur, x, phiul = TRUE, phiur = TRUE,
kernel = "gaussian", finitelik = FALSE)

Arguments

x vector of sample data

phiul probability of being below lower threshold (0, 1) or logical, see Details in help
for fgng

phiur probability of being above upper threshold (0, 1) or logical, see Details in help
for fgng

ulseq vector of lower thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

urseq vector of upper thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in ulseq/urseq, or esti-
mated from maximum of profile likelihood evaluated at sequence of thresholds
in ulseq/urseq)

pvector vector of initial values of parameters or NULL for default values, see below

kernel kernel name (default = "gaussian")

add.jitter logical, whether jitter is needed for rounded kernel centres

fgkg 61

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lambda scalar bandwidth for kernel (as half-width of kernel)

ul scalar lower tail threshold

sigmaul scalar lower tail GPD scale parameter (positive)

xil scalar lower tail GPD shape parameter

ur scalar upper tail threshold

sigmaur scalar upper tail GPD scale parameter (positive)

xir scalar upper tail GPD shape parameter

bw scalar bandwidth for kernel (as standard deviations of kernel)

log logical, if TRUE then log-likelihood rather than likelihood is output

ulr vector of length 2 giving lower and upper tail thresholds or NULL for default
values

Details

The extreme value mixture model with kernel density estimate for bulk and GPD for both tails
is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd and fgkg for details, type help fnormgpd and help fgkg. Only the different
features are outlined below for brevity.

The full parameter vector is (lambda, ul, sigmaul, xil, ur, sigmaur, xir) if thresholds are also
estimated and (lambda, sigmaul, xil, sigmaur, xir) for profile likelihood or fixed threshold ap-
proach.

Cross-validation likelihood is used for KDE, but standard likelihood is used for GPD components.
See help for fkden for details, type help fkden.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The tail fractions phiul and phiur are treated separately to the other parameters, to allow for all
their representations. In the fitting functions fgkg and proflugkg they are logical:

• default values phiul=TRUE and phiur=TRUE - tail fractions specified by KDE distribution and
survivior functions respectively and standard error is output as NA.

• phiul=FALSE and phiur=FALSE - treated as extra parameters estimated using the MLE which
is the sample proportion beyond the thresholds and standard error is output.

In the likelihood functions lgkg, nlgkg and nlugkg it can be logical or numeric:

• logical - same as for fitting functions with default values phiul=TRUE and phiur=TRUE.

62 fgkg

• numeric - any value over range (0, 1). Notice that the tail fraction probability cannot be 0 or
1 otherwise there would be no contribution from either tail or bulk components respectively.
Also, phiul+phiur<1 as bulk must contribute.

If the profile likelihood approach is used, then a grid search over all combinations of both thresholds
is carried out. The combinations which lead to less than 5 in any datapoints beyond the thresholds
are not considered.

Value

Log-likelihood is given by lgkg and it’s wrappers for negative log-likelihood from nlgkg and
nlugkg. Profile likelihood for both thresholds given by proflugkg. Fitting function fgkg returns a
simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed thresholds, logical
ulseq: lower threshold vector for profile likelihood or scalar for fixed threshold
urseq: upper threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold pair in (ulseq, urseq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
ul: lower threshold (fixed or MLE)
sigmaul: MLE of lower tail GPD scale
xil: MLE of lower tail GPD shape
phiul: MLE of lower tail fraction (bulk model or parameterised approach)
se.phiul: standard error of MLE of lower tail fraction
ur: upper threshold (fixed or MLE)
sigmaur: MLE of upper tail GPD scale
xir: MLE of upper tail GPD shape
phiur: MLE of upper tail fraction (bulk model or parameterised approach)
se.phiur: standard error of MLE of upper tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

fgkg 63

Note

The data and kernel centres are both vectors. Infinite and missing sample values (and kernel centres)
are dropped.

When pvector=NULL then the initial values are:

• normal reference rule for bandwidth, using the bw.nrd0 function, which is consistent with the
density function. At least two kernel centres must be provided as the variance needs to be
estimated.

• lower threshold 10% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• upper threshold 90% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• MLE of GPD parameters beyond thresholds.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd gkg gkgcon fgkg fgkgcon
kden bckden bckdengpd bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fgkgcon

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

64 fgkgcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Bulk model based tail fraction
fit = fgkg(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")

Parameterised tail fraction
fit2 = fgkg(x, phiul = FALSE, phiur = FALSE)
with(fit2, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="blue"))
abline(v = c(fit2$ul, fit2$ur), col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgkg(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10))

fitfix = fgkg(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")
with(fitu, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="purple"))
abline(v = c(fitu$ul, fitu$ur), col = "purple")
with(fitfix, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="darkgreen"))
abline(v = c(fitfix$ul, fitfix$ur), col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fgkgcon MLE Fitting of Kernel Density Estimate for Bulk and GPD for Both
Tails with Single Continuity Constraint at Both Thresholds Extreme
Value Mixture Model

fgkgcon 65

Description

Maximum likelihood estimation for fitting the extreme value mixture model with kernel density es-
timate for bulk distribution between thresholds and conditional GPDs for both tails with continuity
at thresholds. With options for profile likelihood estimation for both thresholds and fixed threshold
approach.

Usage

fgkgcon(x, phiul = TRUE, phiur = TRUE, ulseq = NULL, urseq = NULL,
fixedu = FALSE, pvector = NULL, kernel = "gaussian",
add.jitter = FALSE, factor = 0.1, amount = NULL, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lgkgcon(x, lambda = NULL, ul = 0, xil = 0, phiul = TRUE, ur = 0,
xir = 0, phiur = TRUE, bw = NULL, kernel = "gaussian", log = TRUE)

nlgkgcon(pvector, x, phiul = TRUE, phiur = TRUE, kernel = "gaussian",
finitelik = FALSE)

proflugkgcon(ulr, pvector, x, phiul = TRUE, phiur = TRUE,
kernel = "gaussian", method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

nlugkgcon(pvector, ul, ur, x, phiul = TRUE, phiur = TRUE,
kernel = "gaussian", finitelik = FALSE)

Arguments

x vector of sample data

phiul probability of being below lower threshold (0, 1) or logical, see Details in help
for fgng

phiur probability of being above upper threshold (0, 1) or logical, see Details in help
for fgng

ulseq vector of lower thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

urseq vector of upper thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in ulseq/urseq, or esti-
mated from maximum of profile likelihood evaluated at sequence of thresholds
in ulseq/urseq)

pvector vector of initial values of parameters or NULL for default values, see below

kernel kernel name (default = "gaussian")

add.jitter logical, whether jitter is needed for rounded kernel centres

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

66 fgkgcon

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lambda scalar bandwidth for kernel (as half-width of kernel)

ul scalar lower tail threshold

xil scalar lower tail GPD shape parameter

ur scalar upper tail threshold

xir scalar upper tail GPD shape parameter

bw scalar bandwidth for kernel (as standard deviations of kernel)

log logical, if TRUE then log-likelihood rather than likelihood is output

ulr vector of length 2 giving lower and upper tail thresholds or NULL for default
values

Details

The extreme value mixture model with kernel density estimate for bulk and GPD for both tails
with continuity at thresholds is fitted to the entire dataset using maximum likelihood estimation.
The estimated parameters, variance-covariance matrix and their standard errors are automatically
output.

See help for fnormgpd and fgng for details, type help fnormgpd and help fgng. Only the different
features are outlined below for brevity.

The GPD sigmaul and sigmaur parameters are now specified as function of other parameters, see
help for dgkgcon for details, type help gkgcon. Therefore, sigmaul and sigmaur should not be
included in the parameter vector if initial values are provided, making the full parameter vector The
full parameter vector is (lambda, ul, xil, ur, xir) if thresholds are also estimated and (lambda,
xil, xir) for profile likelihood or fixed threshold approach.

Cross-validation likelihood is used for KDE, but standard likelihood is used for GPD components.
See help for fkden for details, type help fkden.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The tail fractions phiul and phiur are treated separately to the other parameters, to allow for all
their representations. In the fitting functions fgkgcon and proflugkgcon they are logical:

• default values phiul=TRUE and phiur=TRUE - tail fractions specified by KDE distribution and
survivior functions respectively and standard error is output as NA.

• phiul=FALSE and phiur=FALSE - treated as extra parameters estimated using the MLE which
is the sample proportion beyond the thresholds and standard error is output.

In the likelihood functions lgkgcon, nlgkgcon and nlugkgcon it can be logical or numeric:

• logical - same as for fitting functions with default values phiul=TRUE and phiur=TRUE.

• numeric - any value over range (0, 1). Notice that the tail fraction probability cannot be 0 or
1 otherwise there would be no contribution from either tail or bulk components respectively.
Also, phiul+phiur<1 as bulk must contribute.

If the profile likelihood approach is used, then a grid search over all combinations of both thresholds
is carried out. The combinations which lead to less than 5 in any datapoints beyond the thresholds
are not considered.

fgkgcon 67

Value

Log-likelihood is given by lgkgcon and it’s wrappers for negative log-likelihood from nlgkgcon
and nlugkgcon. Profile likelihood for both thresholds given by proflugkgcon. Fitting function
fgkgcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed thresholds, logical
ulseq: lower threshold vector for profile likelihood or scalar for fixed threshold
urseq: upper threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold pair in (ulseq, urseq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
ul: lower threshold (fixed or MLE)
sigmaul: MLE of lower tail GPD scale (estimated from other parameters)
xil: MLE of lower tail GPD shape
phiul: MLE of lower tail fraction (bulk model or parameterised approach)
se.phiul: standard error of MLE of lower tail fraction
ur: upper threshold (fixed or MLE)
sigmaur: MLE of upper tail GPD scale (estimated from other parameters)
xir: MLE of upper tail GPD shape
phiur: MLE of upper tail fraction (bulk model or parameterised approach)
se.phiur: standard error of MLE of lower tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

The data and kernel centres are both vectors. Infinite and missing sample values (and kernel centres)
are dropped.

When pvector=NULL then the initial values are:

• normal reference rule for bandwidth, using the bw.nrd0 function, which is consistent with the
density function. At least two kernel centres must be provided as the variance needs to be
estimated.

68 fgkgcon

• lower threshold 10% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• upper threshold 90% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• MLE of GPD shape parameters beyond thresholds.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd gkg gkgcon fgkg fgkgcon
kden bckden bckdengpd bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fgkg

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Continuity constraint
fit = fgkgcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgkgcon(xx, x, lambda, ul, xil, phiul,

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fgng 69

ur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")

No continuity constraint
fit2 = fgkg(x)
with(fit2, lines(xx, dgkg(xx, x, lambda, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="blue"))
abline(v = c(fit2$ul, fit2$ur), col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgkgcon(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10))

fitfix = fgkgcon(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgkgcon(xx, x, lambda, ul, xil, phiul,

ur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")
with(fitu, lines(xx, dgkgcon(xx, x, lambda, ul, xil, phiul,

ur, xir, phiur), col="purple"))
abline(v = c(fitu$ul, fitu$ur), col = "purple")
with(fitfix, lines(xx, dgkgcon(xx, x, lambda, ul, xil, phiul,

ur, xir, phiur), col="darkgreen"))
abline(v = c(fitfix$ul, fitfix$ur), col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fgng MLE Fitting of Normal Bulk and GPD for Both Tails Extreme Value
Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with normal for bulk
distribution between thresholds and conditional GPDs beyond thresholds. With options for profile
likelihood estimation for both thresholds and fixed threshold approach.

Usage

fgng(x, phiul = TRUE, phiur = TRUE, ulseq = NULL, urseq = NULL,
fixedu = FALSE, pvector = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

lgng(x, nmean = 0, nsd = 1, ul = 0, sigmaul = 1, xil = 0,
phiul = TRUE, ur = 0, sigmaur = 1, xir = 0, phiur = TRUE,
log = TRUE)

70 fgng

nlgng(pvector, x, phiul = TRUE, phiur = TRUE, finitelik = FALSE)

proflugng(ulr, pvector, x, phiul = TRUE, phiur = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlugng(pvector, ul, ur, x, phiul = TRUE, phiur = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiul probability of being below lower threshold (0, 1) or logical, see Details in help
for fgng

phiur probability of being above upper threshold (0, 1) or logical, see Details in help
for fgng

ulseq vector of lower thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

urseq vector of upper thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in ulseq/urseq, or esti-
mated from maximum of profile likelihood evaluated at sequence of thresholds
in ulseq/urseq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

ul scalar lower tail threshold

sigmaul scalar lower tail GPD scale parameter (positive)

xil scalar lower tail GPD shape parameter

ur scalar upper tail threshold

sigmaur scalar upper tail GPD scale parameter (positive)

xir scalar upper tail GPD shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

ulr vector of length 2 giving lower and upper tail thresholds or NULL for default
values

Details

The extreme value mixture model with normal bulk and GPD for both tails is fitted to the entire
dataset using maximum likelihood estimation. The estimated parameters, variance-covariance ma-
trix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

fgng 71

The full parameter vector is (nmean, nsd, ul, sigmaul, xil, ur, sigmaur, xir) if thresholds are also
estimated and (nmean, nsd, sigmaul, xil, sigmaur, xir) for profile likelihood or fixed threshold
approach.

The tail fractions phiul and phiur are treated separately to the other parameters, to allow for all
their representations. In the fitting functions fgng and proflugng they are logical:

• default values phiul=TRUE and phiur=TRUE - tail fractions specified by normal distribution
pnorm(ul, nmean, nsd) and survivior functions 1-pnorm(ur, nmean, nsd) respectively
and standard error is output as NA.

• phiul=FALSE and phiur=FALSE - treated as extra parameters estimated using the MLE which
is the sample proportion beyond the thresholds and standard error is output.

In the likelihood functions lgng, nlgng and nlugng it can be logical or numeric:

• logical - same as for fitting functions with default values phiul=TRUE and phiur=TRUE.

• numeric - any value over range (0, 1). Notice that the tail fraction probability cannot be 0 or
1 otherwise there would be no contribution from either tail or bulk components respectively.
Also, phiul+phiur<1 as bulk must contribute.

If the profile likelihood approach is used, then a grid search over all combinations of both thresholds
is carried out. The combinations which lead to less than 5 in any datapoints beyond the thresholds
are not considered.

Value

Log-likelihood is given by lgng and it’s wrappers for negative log-likelihood from nlgng and
nlugng. Profile likelihood for both thresholds given by proflugng. Fitting function fgng returns a
simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed thresholds, logical
ulseq: lower threshold vector for profile likelihood or scalar for fixed threshold
urseq: upper threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold pair in (ulseq, urseq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
ul: lower threshold (fixed or MLE)
sigmaul: MLE of lower tail GPD scale
xil: MLE of lower tail GPD shape
phiul: MLE of lower tail fraction (bulk model or parameterised approach)
se.phiul: standard error of MLE of lower tail fraction
ur: upper threshold (fixed or MLE)
sigmaur: MLE of upper tail GPD scale
xir: MLE of upper tail GPD shape

72 fgng

phiur: MLE of upper tail fraction (bulk model or parameterised approach)
se.phiur: standard error of MLE of upper tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Xin Zhao produced
for MATLAB.

Note

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• lower threshold 10% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• upper threshold 90% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• MLE of GPD parameters beyond threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Zhao, X., Scarrott, C.J. Reale, M. and Oxley, L. (2010). Extreme value modelling for forecasting
the market crisis. Applied Financial Econometrics 20(1), 63-72.

Mendes, B. and H. F. Lopes (2004). Data driven estimates for mixtures. Computational Statistics
and Data Analysis 47(3), 583-598.

See Also

dnorm, fgpd and gpd

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fitmgng,
fnormgpdcon, fnormgpd, gngcon, gng, itmgng, normgpdcon, normgpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fgngcon 73

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Bulk model based tail fraction
fit = fgng(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")

Parameterised tail fraction
fit2 = fgng(x, phiul = FALSE, phiur = FALSE)
with(fit2, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="blue"))
abline(v = c(fit2$ul, fit2$ur), col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgng(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10))

fitfix = fgng(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")
with(fitu, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="purple"))
abline(v = c(fitu$ul, fitu$ur), col = "purple")
with(fitfix, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="darkgreen"))
abline(v = c(fitfix$ul, fitfix$ur), col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fgngcon MLE Fitting of Normal Bulk and GPD for Both Tails with Single Con-
tinuity Constraint at Both Thresholds Extreme Value Mixture Model

74 fgngcon

Description

Maximum likelihood estimation for fitting the extreme value mixture model with normal for bulk
distribution between thresholds and conditional GPDs for both tails with continuity at thresholds.
With options for profile likelihood estimation for both thresholds and fixed threshold approach.

Usage

fgngcon(x, phiul = TRUE, phiur = TRUE, ulseq = NULL, urseq = NULL,
fixedu = FALSE, pvector = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

lgngcon(x, nmean = 0, nsd = 1, ul = 0, xil = 0, phiul = TRUE,
ur = 0, xir = 0, phiur = TRUE, log = TRUE)

nlgngcon(pvector, x, phiul = TRUE, phiur = TRUE, finitelik = FALSE)

proflugngcon(ulr, pvector, x, phiul = TRUE, phiur = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlugngcon(pvector, ul, ur, x, phiul = TRUE, phiur = TRUE,
finitelik = FALSE)

Arguments

x vector of sample data

phiul probability of being below lower threshold (0, 1) or logical, see Details in help
for fgng

phiur probability of being above upper threshold (0, 1) or logical, see Details in help
for fgng

ulseq vector of lower thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

urseq vector of upper thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in ulseq/urseq, or esti-
mated from maximum of profile likelihood evaluated at sequence of thresholds
in ulseq/urseq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

ul scalar lower tail threshold

xil scalar lower tail GPD shape parameter

ur scalar upper tail threshold

fgngcon 75

xir scalar upper tail GPD shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

ulr vector of length 2 giving lower and upper tail thresholds or NULL for default
values

Details

The extreme value mixture model with normal bulk and GPD for both tails with continuity at thresh-
olds is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd and fgngfor details, type help fnormgpd and help fgng. Only the different
features are outlined below for brevity.

The GPD sigmaul and sigmaur parameters are now specified as function of other parameters, see
help for dgngcon for details, type help gngcon. Therefore, sigmaul and sigmaur should not be
included in the parameter vector if initial values are provided, making the full parameter vector The
full parameter vector is (nmean, nsd, ul, xil, ur, xir) if thresholds are also estimated and (nmean,
nsd, xil, xir) for profile likelihood or fixed threshold approach.

If the profile likelihood approach is used, then a grid search over all combinations of both thresholds
is carried out. The combinations which lead to less than 5 in any datapoints beyond the thresholds
are not considered.

Value

Log-likelihood is given by lgngcon and it’s wrappers for negative log-likelihood from nlgngcon
and nlugngcon. Profile likelihood for both thresholds given by proflugngcon. Fitting function
fgngcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed thresholds, logical
ulseq: lower threshold vector for profile likelihood or scalar for fixed threshold
urseq: upper threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold pair in (ulseq, urseq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
ul: lower threshold (fixed or MLE)
sigmaul: MLE of lower tail GPD scale (estimated from other parameters)
xil: MLE of lower tail GPD shape
phiul: MLE of lower tail fraction (bulk model or parameterised approach)
se.phiul: standard error of MLE of lower tail fraction
ur: upper threshold (fixed or MLE)
sigmaur: MLE of upper tail GPD scale (estimated from other parameters)
xir: MLE of upper tail GPD shape
phiur: MLE of upper tail fraction (bulk model or parameterised approach)

76 fgngcon

se.phiur: standard error of MLE of upper tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Xin Zhao produced
for MATLAB.

Note

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• lower threshold 10% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• upper threshold 90% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• MLE of GPD shape parameters beyond threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Zhao, X., Scarrott, C.J. Reale, M. and Oxley, L. (2010). Extreme value modelling for forecasting
the market crisis. Applied Financial Econometrics 20(1), 63-72.

Mendes, B. and H. F. Lopes (2004). Data driven estimates for mixtures. Computational Statistics
and Data Analysis 47(3), 583-598.

See Also

dnorm, fgpd and gpd

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgng, fitmgng,
fnormgpdcon, fnormgpd, gngcon, gng, itmgng, normgpdcon, normgpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fgpd 77

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Continuity constraint
fit = fgngcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgngcon(xx, nmean, nsd, ul, xil, phiul,

ur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")

No continuity constraint
fit2 = fgng(x)
with(fit2, lines(xx, dgng(xx, nmean, nsd, ul, sigmaul, xil, phiul,

ur, sigmaur, xir, phiur), col="blue"))
abline(v = c(fit2$ul, fit2$ur), col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fgngcon(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10))

fitfix = fgngcon(x, ulseq = seq(-2, -0.2, length = 10),
urseq = seq(0.2, 2, length = 10), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dgngcon(xx, nmean, nsd, ul, xil, phiul,

ur, xir, phiur), col="red"))
abline(v = c(fitul, fitur), col = "red")
with(fitu, lines(xx, dgngcon(xx, nmean, nsd, ul, xil, phiul,

ur, xir, phiur), col="purple"))
abline(v = c(fitu$ul, fitu$ur), col = "purple")
with(fitfix, lines(xx, dgngcon(xx, nmean, nsd, ul, xil, phiul,

ur, xir, phiur), col="darkgreen"))
abline(v = c(fitfix$ul, fitfix$ur), col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fgpd MLE Fitting of Generalised Pareto Distribution (GPD)

78 fgpd

Description

Maximum likelihood estimation for fitting the GPD with parameters scale sigmau and shape xi
to the threshold exceedances, conditional on being above a threshold u. Unconditional likelihood
fitting also provided when the probability phiu of being above the threshold u is given.

Usage

fgpd(x, u = 0, phiu = NULL, pvector = NULL, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lgpd(x, u = 0, sigmau = 1, xi = 0, phiu = 1, log = TRUE)

nlgpd(pvector, x, u = 0, phiu = 1, finitelik = FALSE)

Arguments

x vector of sample data

u scalar threshold

phiu probability of being above threshold [0, 1] or NULL, see Details

pvector vector of initial values of GPD parameters (sigmau, xi) or NULL

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The GPD is fitted to the exceedances of the threshold u using maximum likelihood estimation.
The estimated parameters, variance-covariance matrix and their standard errors are automatically
output.

The log-likelihood and negative log-likelihood are also provided for wider usage, e.g. construct-
ing your own extreme value mixture model or profile likelihood functions. The parameter vector
pvector must be specified in the negative log-likelihood nlgpd.

Log-likelihood calculations are carried out in lgpd, which takes parameters as inputs in the same
form as distribution functions. The negative log-likelihood is a wrapper for lgpd, designed towards
making it useable for optimisation (e.g. parameters are given a vector as first input).

The default value for the tail fraction phiu in the fitting function fgpd is NULL, in which case the
MLE is calculated using the sample proportion of exceedances. In this case the standard error for
phiu is estimated and output as se.phiu, otherwise it is set to NA. Consistent with the evd library the
missing values (NA and NaN) are assumed to be below the threshold in calculating the tail fraction.

Otherwise, in the fitting function fgpd the tail fraction phiu can be specified as any value over
(0, 1], i.e. excludes φu = 0, leading to the unconditional log-likelihood being used for estimation.
In this case the standard error will be output as NA.

fgpd 79

In the log-likelihood functions lgpd and nlgpd the tail fraction phiu cannot be NULL but can be
over the range [0, 1], i.e. which includes φu = 0.

The value of phiu does not effect the GPD parameter estimates, only the value of the likelihood, as:

L(σu, ξ;u, φu) = (φnuu)L(σu, ξ;u, φu = 1)

where the GPD has scale σu and shape ξ, the threshold is u and nu is the number of exceedances.
A non-unit value for phiu simply scales the likelihood and shifts the log-likelihood, thus the GPD
parameter estimates are invariant to phiu.

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call.

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Value

lgpd gives (log-)likelihood and nlgpd gives the negative log-likelihood. fgpd returns a simple list
with the following elements

call: optim call
x: data vector x
init: pvector
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
u: threshold
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction
se.phiu: standard error of MLE of tail fraction (parameterised approach using sample proportion)

The output list has some duplicate entries and repeats some of the inputs to both provide similar
items to those from fpot and increase usability.

Acknowledgments

Based on the gpd.fit and fpot functions in the ismev and evd packages for which their author’s
contributions are gratefully acknowledged. They are designed to have similar syntax and function-
ality to simplify the transition for users of these packages.

80 fgpd

Note

Unlike all the distribution functions for the GPD, the MLE fitting only permits single scalar values
for each parameter, phiu and threshold u.

When pvector=NULL then the initial values are calculated, type fgpd to see the default formulae
used. The GPD fitting is not very sensitive to the initial values, so you will rarely have to give
alternatives. Avoid setting the starting value for the shape parameter to xi=0 as depending on the
optimisation method it may be get stuck.

Default values for the threshold u=0 and tail fraction phiu=NULL are given in the fitting fpgd, in
which case the MLE assumes that excesses over the threshold are given, rather than exceedances.

The usual default of phiu=1 is given in the likelihood functions lpgd and nlpgd.

The lgpd also has the usual defaults for the other parameters, but nlgpd has no defaults.

Infinite sample values are dropped in fitting function fpgd, but missing values are used to estimate
phiu as described above. But in likelihood functions lpgd and nlpgd both infinite and missing
values are ignored.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

See Also

dgpd, fpot and fitdistr

Other gpd fgpd: gpd

Examples

set.seed(1)
par(mfrow = c(2, 1))

GPD is conditional model for threshold exceedances
so tail fraction phiu not relevant when only have exceedances
x = rgpd(1000, u = 10, sigmau = 5, xi = 0.2)
xx = seq(0, 100, 0.1)
hist(x, breaks = 100, freq = FALSE, xlim = c(0, 100))
lines(xx, dgpd(xx, u = 10, sigmau = 5, xi = 0.2))
fit = fgpd(x, u = 10)
lines(xx, dgpd(xx, u = fit$u, sigmau = fit$sigmau, xi = fit$xi), col="red")

but tail fraction phiu is needed for conditional modelling of population tail
x = rnorm(10000)
xx = seq(-4, 4, 0.01)
hist(x, breaks = 200, freq = FALSE, xlim = c(0, 4))
lines(xx, dnorm(xx), lwd = 2)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

fhpd 81

fit = fgpd(x, u = 1)
lines(xx, dgpd(xx, u = fit$u, sigmau = fit$sigmau, xi = fit$xi, phiu = fit$phiu),

col = "red", lwd = 2)
legend("topright", c("True Density","Fitted Density"), col=c("black", "red"), lty = 1)

fhpd MLE Fitting of Hybrid Pareto Extreme Value Mixture Model

Description

Maximum likelihood estimation for fitting the hybrid Pareto extreme value mixture model

Usage

fhpd(x, pvector = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

lhpd(x, nmean = 0, nsd = 1, xi = 0, log = TRUE)

nlhpd(pvector, x, finitelik = FALSE)

Arguments

x vector of sample data

pvector vector of initial values of parameters (nmean, nsd, xi) or NULL

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The hybrid Pareto model is fitted to the entire dataset using maximum likelihood estimation. The
estimated parameters, variance-covariance matrix and their standard errors are automatically output.

The log-likelihood and negative log-likelihood are also provided for wider usage, e.g. constructing
profile likelihood functions. The parameter vector pvector must be specified in the negative log-
likelihood nlhpd.

Log-likelihood calculations are carried out in lhpd, which takes parameters as inputs in the same
form as distribution functions. The negative log-likelihood is a wrapper for lhpd, designed towards
making it useable for optimisation (e.g. parameters are given a vector as first input).

Missing values (NA and NaN) are assumed to be invalid data so are ignored, which is inconsistent
with the evd library which assumes the missing values are below the threshold.

82 fhpd

The function lhpd carries out the calculations for the log-likelihood directly, which can be expo-
nentiated to give actual likelihood using (log=FALSE).

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call.

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Value

lhpd gives (log-)likelihood and nlhpd gives the negative log-likelihood. fhpd returns a simple list
with the following elements

call: optim call
x: data vector x
init: pvector
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
u: threshold (implicit from other parameters)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (implied by 1/(1+pnorm(u,nmean,nsd)))

The output list has some duplicate entries and repeats some of the inputs to both provide similar
items to those from fpot and to make it as useable as possible.

Note

Unlike most of the distribution functions for the extreme value mixture models, the MLE fitting
only permits single scalar values for each parameter. Only the data is a vector.

When pvector=NULL then the initial values are calculated, type fhpd to see the default formulae
used. The mixture model fitting can be ***extremely*** sensitive to the initial values, so you if
you get a poor fit then try some alternatives. Avoid setting the starting value for the shape parameter
to xi=0 as depending on the optimisation method it may be get stuck.

A default value for the tail fraction phiu=TRUE is given. The lhpd also has the usual defaults for
the other parameters, but nlhpd has no defaults.

Invalid parameter ranges will give 0 for likelihood, log(0)=-Inf for log-likelihood and -log(0)=Inf
for negative log-likelihood.

fhpd 83

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Carreau, J. and Y. Bengio (2008). A hybrid Pareto model for asymmetric fat-tailed data: the uni-
variate case. Extremes 12 (1), 53-76.

See Also

fgpd and gpd

The condmixt package written by one of the original authors of the hybrid Pareto model (Carreau
and Bengio, 2008) also has similar functions for the likelihood of the hybrid Pareto hpareto.negloglike
and fitting hpareto.fit.

Other hpd hpdcon normgpd normgpdcon gng gngcon fhpd fhpdcon fnormgpd fnormgpdcon fgng
fgngcon: fhpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributions
but not for cases such as the normal distribution
fit = fhpd(x, std.err = FALSE)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dhpd(xx, nmean, nsd, xi), col="red"))
abline(v = fit$u)

Notice that if tail fraction is included a better fit is obtained
fit2 = fnormgpdcon(x, std.err = FALSE)
with(fit2, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="blue"))
abline(v = fit2$u)
legend("topright", c("Standard Normal", "Hybrid Pareto", "Normal+GPD Continuous"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

84 fhpdcon

fhpdcon MLE Fitting of Hybrid Pareto Extreme Value Mixture Model with Sin-
gle Continuity Constraint

Description

Maximum likelihood estimation for fitting the Hybrid Pareto extreme value mixture model, with
only continuity at threshold and not necessarily continuous in first derivative. With options for
profile likelihood estimation for threshold and fixed threshold approach.

Usage

fhpdcon(x, useq = NULL, fixedu = FALSE, pvector = NULL, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lhpdcon(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
log = TRUE)

nlhpdcon(pvector, x, finitelik = FALSE)

profluhpdcon(u, pvector, x, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

nluhpdcon(pvector, u, x, finitelik = FALSE)

Arguments

x vector of sample data

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

u scalar threshold value

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

fhpdcon 85

Details

The hybrid Pareto model is fitted to the entire dataset using maximum likelihood estimation, with
only continuity at threshold and not necessarily continuous in first derivative. The estimated param-
eters, variance-covariance matrix and their standard errors are automatically output.

Note that the key difference between this model (hpdcon) and the normal with GPD tail and con-
tinuity at threshold (normgpdcon) is that the latter includes the rescaling of the conditional GPD
component by the tail fraction to make it an unconditional tail model. However, for the hybrid
Pareto with single continuity constraint use the GPD in it’s conditional form with no differential
scaling compared to the bulk model.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The profile likelihood and fixed threshold approach functionality are implemented for this version
of the hybrid Pareto as it includes the threshold as a parameter. Whereas the usual hybrid Pareto
does not naturally have a threshold parameter.

The GPD sigmau parameter is now specified as function of other parameters, see help for dhpdcon
for details, type help hpdcon. Therefore, sigmau should not be included in the parameter vector if
initial values are provided, making the full parameter vector (nmean, nsd, u, xi) if threshold is also
estimated and (nmean, nsd, xi) for profile likelihood or fixed threshold approach.

Value

lhpdcon, nlhpdcon, and nluhpdcon give the log-likelihood, negative log-likelihood and profile
likelihood for threshold. Profile likelihood for single threshold is given by profluhpdcon. fhpdcon
returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (implied by 1/(1+pnorm(u,nmean,nsd)))

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

86 fhpdcon

Note

When pvector=NULL then the initial values are:

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of normal parameters assuming entire population is normal; and

• MLE of GPD parameters above threshold.

Avoid setting the starting value for the shape parameter to xi=0 as depending on the optimisation
method it may be get stuck.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Carreau, J. and Y. Bengio (2008). A hybrid Pareto model for asymmetric fat-tailed data: the uni-
variate case. Extremes 12 (1), 53-76.

See Also

dnorm, fgpd and gpd

The condmixt package written by one of the original authors of the hybrid Pareto model (Carreau
and Bengio, 2008) also has similar functions for the likelihood of the hybrid Pareto hpareto.negloglike
and fitting hpareto.fit.

Other hpd hpdcon normgpd normgpdcon gng gngcon fhpd fhpdcon fnormgpd fnormgpdcon fgng
fgngcon: fhpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Hybrid Pareto provides reasonable fit for some asymmetric heavy upper tailed distributions
but not for cases such as the normal distribution

Continuity constraint

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fitmgng 87

fit = fhpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
fit2 = fhpd(x)
with(fit2, lines(xx, dhpd(xx, nmean, nsd, xi), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fhpdcon(x, useq = seq(-2, 2, length = 20))
fitfix = fhpdcon(x, useq = seq(-2, 2, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topleft", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

Notice that if tail fraction is included a better fit is obtained
fittailfrac = fnormgpdcon(x)

par(mfrow = c(1, 1))
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dhpdcon(xx, nmean, nsd, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fittailfrac, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="blue"))
abline(v = fittailfrac$u)
legend("topright", c("Standard Normal", "Hybrid Pareto Continuous", "Normal+GPD Continuous"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

fitmgng MLE Fitting of Normal Bulk and GPD for Both Tails Interval Transi-
tion Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with normal for bulk
distribution between thresholds, conditional GPDs beyond thresholds and interval transition. With
options for profile likelihood estimation for both thresholds and interval half-width, which can also
be fixed.

88 fitmgng

Usage

fitmgng(x, eseq = NULL, ulseq = NULL, urseq = NULL, fixedeu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

litmgng(x, nmean = 0, nsd = 1, epsilon = nsd, ul = 0, sigmaul = 1,
xil = 0, ur = 0, sigmaur = 1, xir = 0, log = TRUE)

nlitmgng(pvector, x, finitelik = FALSE)

profleuitmgng(eulr, pvector, x, method = "BFGS", control = list(maxit =
10000), finitelik = TRUE, ...)

nleuitmgng(pvector, epsilon, ul, ur, x, finitelik = FALSE)

Arguments

x vector of sample data

eseq vector of epsilons (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

ulseq vector of lower thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

urseq vector of upper thresholds (or scalar) to be considered in profile likelihood or
NULL for no profile likelihood

fixedeu logical, should threshold and epsilon be fixed (at either scalar value in useq
and eseq, or estimated from maximum of profile likelihood evaluated at grid of
thresholds and epsilons in useq and eseq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

epsilon interval half-width

ul lower tail threshold

sigmaul lower tail GPD scale parameter (positive)

xil lower tail GPD shape parameter

ur upper tail threshold

sigmaur upper tail GPD scale parameter (positive)

xir upper tail GPD shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

eulr vector of epsilon, lower and upper thresholds considered in profile likelihood

fitmgng 89

Details

The extreme value mixture model with the normal bulk and GPD for both tails interval transition
is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See ditmgng for explanation of GPD-normal-GPD interval transition model, including mixing func-
tions.

See also help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (nmean, nsd, epsilon, ul, sigmaul, xil, ur, sigmaur, xir) if thresh-
olds and interval half-width are also estimated and (nmean, nsd, sigmaul, xil, sigmaur, xir) for
profile likelihood or fixed threshold approach.

If the profile likelihood approach is used, then a grid search over all combinations of epsilons and
both thresholds are carried out. The combinations which lead to less than 5 in any component
outside of the intervals are not considered.

A fixed pair of thresholds and epsilon approach is acheived by setting a single scalar value to each
in ulseq, urseq and eseq respectively.

Value

Log-likelihood is given by litmgng and it’s wrappers for negative log-likelihood from nlitmgng
and nluitmgng. Profile likelihood for thresholds and interval half-width given by profluitmgng.
Fitting function fitmgng returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedeu: fixed epsilon and threshold, logical
ulseq: lower threshold vector for profile likelihood or scalar for fixed threshold
urseq: upper threshold vector for profile likelihood or scalar for fixed threshold
eseq: interval half-width vector for profile likelihood or scalar for fixed threshold
nllheuseq: profile negative log-likelihood at each combination in (eseq, ulseq, urseq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
epsilon: MLE of transition half-width
ul: lower threshold (fixed or MLE)
sigmaul: MLE of lower tail GPD scale
xil: MLE of lower tail GPD shape
ur: upper threshold (fixed or MLE)
sigmaur: MLE of upper tail GPD scale
xir: MLE of upper tail GPD shape

90 fitmgng

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Xin Zhao produced
for MATLAB.

Note

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• lower threshold 10% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• upper threshold 90% quantile (not relevant for profile likelihood for threshold or fixed thresh-
old approaches);

• MLE of GPD parameters beyond threshold.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

fgng, dnorm, fgpd and gpd

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fnormgpdcon, fnormgpd, gngcon, gng, itmgng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

MLE for complete parameter set (not recommended!)
fit = fitmgng(x)
hist(x, breaks = seq(-6, 6, 0.1), freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, ditmgng(xx, nmean, nsd, epsilon, ul, sigmaul, xil,

ur, sigmaur, xir), col="red"))
abline(v = fit$ul + fit$epsilon * seq(-1, 1), col = "red")

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

fitmnormgpd 91

abline(v = fit$ur + fit$epsilon * seq(-1, 1), col = "darkred")

Profile likelihood for threshold which is then fixed
fitfix = fitmgng(x, eseq = seq(0, 2, 0.1), ulseq = seq(-2.5, 0, 0.25),

urseq = seq(0, 2.5, 0.25), fixedeu = TRUE)
with(fitfix, lines(xx, ditmgng(xx, nmean, nsd, epsilon, ul, sigmaul, xil,

ur, sigmaur, xir), col="blue"))
abline(v = fitfix$ul + fitfix$epsilon * seq(-1, 1), col = "blue")
abline(v = fitfix$ur + fitfix$epsilon * seq(-1, 1), col = "darkblue")
legend("topright", c("True Density", "GPD-normal-GPD ITM", "Profile likelihood"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

fitmnormgpd MLE Fitting of Normal Bulk and GPD Tail Interval Transition Mixture
Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with the normal bulk
and GPD tail interval transition mixture model. With options for profile likelihood estimation for
threshold and interval half-width, which can both be fixed.

Usage

fitmnormgpd(x, eseq = NULL, useq = NULL, fixedeu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

litmnormgpd(x, nmean = 0, nsd = 1, epsilon = nsd, u = qnorm(0.9, nmean,
nsd), sigmau = nsd, xi = 0, log = TRUE)

nlitmnormgpd(pvector, x, finitelik = FALSE)

profleuitmnormgpd(eu, pvector, x, method = "BFGS", control = list(maxit =
10000), finitelik = TRUE, ...)

nleuitmnormgpd(pvector, epsilon, u, x, finitelik = FALSE)

Arguments

x vector of sample data

eseq vector of epsilons (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedeu logical, should threshold and epsilon be fixed (at either scalar value in useq
and eseq, or estimated from maximum of profile likelihood evaluated at grid of
thresholds and epsilons in useq and eseq)

92 fitmnormgpd

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

epsilon interval half-width

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

eu vector of epsilon and threshold pair considered in profile likelihood

Details

The extreme value mixture model with the normal bulk and GPD tail with interval transition is fitted
to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See ditmnormgpd for explanation of normal-GPD interval transition model, including mixing func-
tions.

See also help for fnormgpd for mixture model fitting details. Only the different features are outlined
below for brevity.

The full parameter vector is (nmean, nsd, epsilon, u, sigmau, xi) if threshold and interval half-
width are both estimated and (nmean, nsd, sigmau, xi) for profile likelihood or fixed threshold and
epsilon approach.

If the profile likelihood approach is used, then it is applied to both the threshold and epsilon param-
eters together. A grid search over all combinations of epsilons and thresholds are considered. The
combinations which lead to less than 5 on either side of the interval are not considered.

A fixed threshold and epsilon approach is acheived by setting a single scalar value to each in useq
and eseq respectively.

If the profile likelihood approach is used, then a grid search over all combinations of epsilon and
threshold are carried out. The combinations which lead to less than 5 in any any interval are not
considered.

Value

Log-likelihood is given by litmnormgpd and it’s wrappers for negative log-likelihood from nlitmnormgpd
and nluitmnormgpd. Profile likelihood for threshold and interval half-width given by profluitmnormgpd.
Fitting function fitmnormgpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedeu: fixed epsilon and threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold

fitmnormgpd 93

eseq: epsilon vector for profile likelihood or scalar for fixed epsilon
nllheuseq: profile negative log-likelihood at each combination in (eseq, useq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal shape
nsd: MLE of normal scale
epsilon: MLE of transition half-width
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• epsilon is MLE of normal standard deviation;

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

fnormgpd, dnorm, fgpd and gpd

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

94 fitmweibullgpd

y = dnorm(xx)

MLE for complete parameter set
fit = fitmnormgpd(x)
hist(x, breaks = seq(-6, 6, 0.1), freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, ditmnormgpd(xx, nmean, nsd, epsilon, u, sigmau, xi), col="red"))
abline(v = fit$u + fit$epsilon * seq(-1, 1), col = "red")

Profile likelihood for threshold which is then fixed
fitfix = fitmnormgpd(x, eseq = seq(0, 2, 0.1), useq = seq(0, 2.5, 0.1), fixedeu = TRUE)
with(fitfix, lines(xx, ditmnormgpd(xx, nmean, nsd, epsilon, u, sigmau, xi), col="blue"))
abline(v = fitfix$u + fitfix$epsilon * seq(-1, 1), col = "blue")
legend("topright", c("True Density", "normal-GPD ITM", "Profile likelihood"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

fitmweibullgpd MLE Fitting of Weibull Bulk and GPD Tail Interval Transition Mixture
Model

Description

Maximum likelihood estimation for fitting the extreme valeu mixture model with the Weibull bulk
and GPD tail interval transition mixture model. With options for profile likelihood estimation for
threshold and interval half-width, which can both be fixed.

Usage

fitmweibullgpd(x, eseq = NULL, useq = NULL, fixedeu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

litmweibullgpd(x, wshape = 1, wscale = 1, epsilon = sqrt(wscale^2 *
gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), u = qweibull(0.9,
wshape, wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale *
gamma(1 + 1/wshape))^2), xi = 0, log = TRUE)

nlitmweibullgpd(pvector, x, finitelik = FALSE)

profleuitmweibullgpd(eu, pvector, x, method = "BFGS", control = list(maxit =
10000), finitelik = TRUE, ...)

nleuitmweibullgpd(pvector, epsilon, u, x, finitelik = FALSE)

Arguments

x vector of sample data

eseq vector of epsilons (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fitmweibullgpd 95

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedeu logical, should threshold and epsilon be fixed (at either scalar value in useq
and eseq, or estimated from maximum of profile likelihood evaluated at grid of
thresholds and epsilons in useq and eseq)

pvector vector of initial values of parameters or NULL for default values, see below
std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

wshape scalar Weibull shape (positive)
wscale scalar Weibull scale (positive)
epsilon interval half-width
u scalar threshold value
sigmau scalar scale parameter (positive)
xi scalar shape parameter
log logical, if TRUE then log-likelihood rather than likelihood is output
eu vector of epsilon and threshold pair considered in profile likelihood

Details

The extreme value mixture model with the Weibull bulk and GPD tail with interval transition is fitted
to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See ditmweibullgpd for explanation of Weibull-GPD interval transition model, including mixing
functions.

See also help for fnormgpd for mixture model fitting details. Only the different features are outlined
below for brevity.

The full parameter vector is (wshape, wscale, epsilon, u, sigmau, xi) if threshold and interval
half-width are both estimated and (wshape, wscale, sigmau, xi) for profile likelihood or fixed
threshold and epsilon approach.

If the profile likelihood approach is used, then it is applied to both the threshold and epsilon param-
eters together. A grid search over all combinations of epsilons and thresholds are considered. The
combinations which lead to less than 5 on either side of the interval are not considered.

A fixed threshold and epsilon approach is acheived by setting a single scalar value to each in useq
and eseq respectively.

If the profile likelihood approach is used, then a grid search over all combinations of epsilon and
threshold are carried out. The combinations which lead to less than 5 in any any interval are not
considered.

Negative data are ignored.

Value

Log-likelihood is given by litmweibullgpd and it’s wrappers for negative log-likelihood from
nlitmweibullgpd and nluitmweibullgpd. Profile likelihood for threshold and interval half-width
given by profluitmweibullgpd. Fitting function fitmweibullgpd returns a simple list with the
following elements

96 fitmweibullgpd

call: optim call
x: data vector x
init: pvector
fixedeu: fixed epsilon and threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
eseq: epsilon vector for profile likelihood or scalar for fixed epsilon
nllheuseq: profile negative log-likelihood at each combination in (eseq, useq)
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
nllh: minimum negative log-likelihood
n: total sample size
wshape: MLE of Weibull shape
wscale: MLE of Weibull scale
epsilon: MLE of transition half-width
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of Weibull parameters assuming entire population is Weibull; and

• epsilon is MLE of Weibull standard deviation;

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

dweibull, fgpd and gpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

fkden 97

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rweibull(1000, shape = 1, scale = 2)
xx = seq(-0.2, 10, 0.01)
y = dweibull(xx, shape = 1, scale = 2)

MLE for complete parameter set
fit = fitmweibullgpd(x)
hist(x, breaks = seq(0, 20, 0.1), freq = FALSE, xlim = c(-0.2, 10))
lines(xx, y)
with(fit, lines(xx, ditmweibullgpd(xx, wshape, wscale, epsilon, u, sigmau, xi), col="red"))
abline(v = fit$u + fit$epsilon * seq(-1, 1), col = "red")

Profile likelihood for threshold which is then fixed
fitfix = fitmweibullgpd(x, eseq = seq(0, 2, 0.1), useq = seq(0.5, 4, 0.1), fixedeu = TRUE)
with(fitfix, lines(xx, ditmweibullgpd(xx, wshape, wscale, epsilon, u, sigmau, xi), col="blue"))
abline(v = fitfix$u + fitfix$epsilon * seq(-1, 1), col = "blue")
legend("topright", c("True Density", "Weibull-GPD ITM", "Profile likelihood"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

fkden Cross-validation MLE Fitting of Kernel Density Estimator, With Vari-
ety of Kernels

Description

Maximum (cross-validation) likelihood estimation for fitting kernel density estimator for a variety
of possible kernels, by treating it as a mixture model.

Usage

fkden(x, linit = NULL, bwinit = NULL, kernel = "gaussian",
extracentres = NULL, add.jitter = FALSE, factor = 0.1, amount = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lkden(x, lambda = NULL, bw = NULL, kernel = "gaussian",
extracentres = NULL, log = TRUE)

nlkden(lambda, x, bw = NULL, kernel = "gaussian", extracentres = NULL,
finitelik = FALSE)

Arguments

x vector of sample data

linit initial value for bandwidth (as kernel half-width) or NULL

98 fkden

bwinit initial value for bandwidth (as kernel standard deviations) or NULL
kernel kernel name (default = "gaussian")
extracentres extra kernel centres used in KDE, but likelihood contribution not evaluated, or

NULL

add.jitter logical, whether jitter is needed for rounded kernel centres
factor see jitter

amount see jitter

std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

lambda bandwidth for kernel (as half-width of kernel) or NULL
bw bandwidth for kernel (as standard deviations of kernel) or NULL
log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The kernel density estimator (KDE) with one of possible kernels is fitted to the entire dataset using
maximum (cross-validation) likelihood estimation. The estimated bandwidth, variance and standard
error are automatically output.

The alternate bandwidth definitions are discussed in the kernels, with the lambda used here but bw
also output. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels help documentation with the "gaussian" as the
default choice.

Missing values (NA and NaN) are assumed to be invalid data so are ignored.

Cross-validation likelihood is used for kernel density component, obtained by leaving each point
out in turn and evaluating the KDE at the point left out:

L(λ)

n∏
i=1

f̂−i(xi)

where

f̂−i(xi) =
1

(n− 1)λ

n∑
j=1:j 6=i

K(
xi − xj
λ

)

is the KDE obtained when the ith datapoint is dropped out and then evaluated at that dropped
datapoint at xi.

Normally for likelihood estimation of the bandwidth the kernel centres and the data where the like-
lihood is evaluated are the same. However, when using KDE for extreme value mixture modelling
the likelihood only those data in the bulk of the distribution should contribute to the likelihood, but
all the data (including those beyond the threshold) should contribute to the density estimate. The
extracentres option allows the use to specify extra kernel centres used in estimating the density,
but not evaluated in the likelihood. Suppose the first nb data are below the threshold, followed
by nu exceedances of the threshold, so i = 1, . . . , nb, nb + 1, . . . , nb + nu. The cross-validation
likelihood using the extra kernel centres is then:

L(λ)

nb∏
i=1

f̂−i(xi)

fkden 99

where

f̂−i(xi) =
1

(nb+ nu− 1)λ

nb+nu∑
j=1:j 6=i

K(
xi − xj
λ

)

which shows that the complete set of data is used in evaluating the KDE, but only those below the
threshold contribute to the cross-validation likelihood. The default is to use the existing data, so
extracentres=NULL.

The following functions are provided:

• fkden - maximum (cross-validation) likelihood fitting with all the above options;

• lkden - cross-validation log-likelihood;

• nlkden - negative cross-validation log-likelihood;

The log-likelihood functions are provided for wider usage, e.g. constructing profile likelihood func-
tions.

The log-likelihood and negative log-likelihood are also provided for wider usage, e.g. constructing
your own extreme value mixture models or profile likelihood functions. The parameter lambda
must be specified in the negative log-likelihood nlkden.

Log-likelihood calculations are carried out in lkden, which takes bandwidths as inputs in the same
form as distribution functions. The negative log-likelihood is a wrapper for lkden, designed towards
making it useable for optimisation (e.g. lambda given as first input).

Defaults values for the bandwidth linit and lambda are given in the fitting fkden and cross-
validation likelihood functions lkden. The bandwidth linit must be specified in the negative
log-likelihood function nlkden.

Missing values (NA and NaN) are assumed to be invalid data so are ignored, which is inconsistent
with the evd library which assumes the missing values are below the threshold.

The function lkden carries out the calculations for the log-likelihood directly, which can be expo-
nentiated to give actual likelihood using (log=FALSE).

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call or for
common indicators of lack of convergence (e.g. estimated bandwidth equal to initial value).

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Value

Log-likelihood is given by lkden and it’s wrappers for negative log-likelihood from nlkden. Fitting
function fkden returns a simple list with the following elements

call: optim call
x: (jittered) data vector x
kerncentres: actual kernel centres used x
init: linit for lambda
optim: complete optim output

100 fkden

mle: vector of MLE of bandwidth
cov: variance of MLE of bandwidth
se: standard error of MLE of bandwidth
nllh: minimum negative cross-validation log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
bw: MLE of bw (kernel standard deviations)
kernel: kernel name

Warning

Two important practical issues arise with MLE for the kernel bandwidth: 1) Cross-validation like-
lihood is needed for the KDE bandwidth parameter as the usual likelihood degenerates, so that
the MLE λ̂ → 0 as n → ∞, thus giving a negative bias towards a small bandwidth. Leave one
out cross-validation essentially ensures that some smoothing between the kernel centres is required
(i.e. a non-zero bandwidth), otherwise the resultant density estimates would always be zero if the
bandwidth was zero.

This problem occassionally rears its ugly head for data which has been heavily rounded, as even
when using cross-validation the density can be non-zero even if the bandwidth is zero. To overcome
this issue an option to add a small jitter should be added to the data (x only) has been included in the
fitting inputs, using the jitter function, to remove the ties. The default options red in the jitter
are specified above, but the user can override these. Notice the default scaling factor=0.1, which
is a tenth of the default value in the jitter function itself.

A warning message is given if the data appear to be rounded (i.e. more than 5 data rounding is the
likely culprit. Only use the jittering when the MLE of the bandwidth is far too small.

2) For heavy tailed populations the bandwidth is positively biased, giving oversmoothing (see ex-
ample). The bias is due to the distance between the upper (or lower) order statistics not necessarily
decaying to zero as the sample size tends to infinity. Essentially, as the distance between the two
largest (or smallest) sample datapoints does not decay to zero, some smoothing between them is
required (i.e. bandwidth cannot be zero). One solution to this problem is to trim the data at a
suitable threshold to remove the problematic tail from the inference for the bandwidth, using ei-
ther the fkdengpd function for a single heavy tail or the fgkg function if both tails are heavy. See
MacDonald et al (2013).

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

When linit=NULL then the initial value for the lambda bandwidth is calculated using bw.nrd0
function and transformed using klambda function.

The extra kernel centres extracentres can either be a vector of data or NULL.

Invalid parameter ranges will give 0 for likelihood, log(0)=-Inf for log-likelihood and -log(0)=Inf
for negative log-likelihood.

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

fkden 101

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

MacDonald, A., C. J. Scarrott, and D. S. Lee (2011). Boundary correction, consistency and ro-
bustness of kernel densities using extreme value theory. Submitted. Available from: http://www.
math.canterbury.ac.nz/~c.scarrott.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, jitter, density and bw.nrd0

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpdcon
fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, bckden, fbckden, kdengpdcon,
kdengpd, kden

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

nk=50
x = rnorm(nk)
xx = seq(-5, 5, 0.01)
fit = fkden(x)
hist(x, nk/5, freq = FALSE, xlim = c(-5, 5), ylim = c(0,0.6))
rug(x)
for (i in 1:nk) lines(xx, dnorm(xx, x[i], sd = fit$lambda)*0.05)
lines(xx,dnorm(xx), col = "black")
lines(xx, dkden(xx, x, lambda = fit$lambda), lwd = 2, col = "red")
lines(density(x), lty = 2, lwd = 2, col = "green")
lines(density(x, bw = fit$bw), lwd = 2, lty = 2, col = "blue")
legend("topright", c("True Density", "KDE fitted evmix",
"KDE Using density, default bandwidth", "KDE Using density, c-v likelihood bandwidth"),
lty = c(1, 1, 2, 2), lwd = c(1, 2, 2, 2), col = c("black", "red", "green", "blue"))

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.math.canterbury.ac.nz/~c.scarrott
http://www.math.canterbury.ac.nz/~c.scarrott

102 fkdengpd

par(mfrow = c(2, 1))

bandwidth is biased towards oversmoothing for heavy tails
nk=100
x = rt(nk, df = 2)
xx = seq(-8, 8, 0.01)
fit = fkden(x)
hist(x, seq(floor(min(x)), ceiling(max(x)), 0.5), freq = FALSE, xlim = c(-8, 10))
rug(x)
for (i in 1:nk) lines(xx, dnorm(xx, x[i], sd = fit$lambda)*0.05)
lines(xx,dt(xx , df = 2), col = "black")
lines(xx, dkden(xx, x, lambda = fit$lambda), lwd = 2, col = "red")
legend("topright", c("True Density", "KDE fitted evmix, c-v likelihood bandwidth"),
lty = c(1, 1), lwd = c(1, 2), col = c("black", "red"))

remove heavy tails from cv-likelihood evaluation, but still include them in KDE within likelihood
often gives better bandwidth (see MacDonald et al (2011) for justification)
nk=100
x = rt(nk, df = 2)
xx = seq(-8, 8, 0.01)
fit2 = fkden(x[(x > -4) & (x < 4)], extracentres = x[(x <= -4) | (x >= 4)])
hist(x, seq(floor(min(x)), ceiling(max(x)), 0.5), freq = FALSE, xlim = c(-8, 10))
rug(x)
for (i in 1:nk) lines(xx, dnorm(xx, x[i], sd = fit2$lambda)*0.05)
lines(xx,dt(xx , df = 2), col = "black")
lines(xx, dkden(xx, x, lambda = fit2$lambda), lwd = 2, col = "red")
lines(xx, dkden(xx, x, lambda = fit$lambda), lwd = 2, col = "blue")
legend("topright", c("True Density", "KDE fitted evmix, tails removed",
"KDE fitted evmix, tails included"),
lty = c(1, 1, 1), lwd = c(1, 2, 2), col = c("black", "red", "blue"))

End(Not run)

fkdengpd MLE Fitting of Kernel Density Estimate for Bulk and GPD Tail Ex-
treme Value Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with kernel density
estimate for bulk distribution upto the threshold and conditional GPD above threshold. With options
for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fkdengpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
kernel = "gaussian", add.jitter = FALSE, factor = 0.1, amount = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lkdengpd(x, lambda = NULL, u = 0, sigmau = 1, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", log = TRUE)

fkdengpd 103

nlkdengpd(pvector, x, phiu = TRUE, kernel = "gaussian", finitelik = FALSE)

proflukdengpd(u, pvector, x, phiu = TRUE, kernel = "gaussian",
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

nlukdengpd(pvector, u, x, phiu = TRUE, kernel = "gaussian",
finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

kernel kernel name (default = "gaussian")

add.jitter logical, whether jitter is needed for rounded kernel centres

factor see jitter

amount see jitter

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lambda scalar bandwidth for kernel (as half-width of kernel)

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

bw scalar bandwidth for kernel (as standard deviations of kernel)

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with kernel density estimate for bulk and GPD tail is fitted
to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (lambda, u, sigmau, xi) if threshold is also estimated and (lambda,
sigmau, xi) for profile likelihood or fixed threshold approach.

Cross-validation likelihood is used for KDE, but standard likelihood is used for GPD component.
See help for fkden for details, type help fkden.

104 fkdengpd

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Value

Log-likelihood is given by lkdengpd and it’s wrappers for negative log-likelihood from nlkdengpd
and nlukdengpd. Profile likelihood for single threshold given by proflukdengpd. Fitting function
fkdengpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

The data and kernel centres are both vectors. Infinite and missing sample values (and kernel centres)
are dropped.

When pvector=NULL then the initial values are:

• normal reference rule for bandwidth, using the bw.nrd0 function, which is consistent with the
density function. At least two kernel centres must be provided as the variance needs to be
estimated.

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

fkdengpd 105

• MLE of GPD parameters above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd kden bckden bckdengpd
bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fbckdengpdcon, fbckdengpd, fkdengpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Bulk model based tail fraction
fit = fkdengpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpd(xx, x, lambda, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fkdengpd(x, phiu = FALSE)
with(fit2, lines(xx, dkdengpd(xx, x, lambda, u, sigmau, xi, phiu), col="blue"))

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

106 fkdengpdcon

abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fkdengpd(x, useq = seq(0, 2, length = 20))
fitfix = fkdengpd(x, useq = seq(0, 2, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpd(xx, x, lambda, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dkdengpd(xx, x, lambda, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dkdengpd(xx, x, lambda, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fkdengpdcon MLE Fitting of Kernel Density Estimate for Bulk and GPD Tail Ex-
treme Value Mixture Model with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with kernel density
estimate for bulk distribution upto the threshold and conditional GPD above threshold with conti-
nuity at threshold. With options for profile likelihood estimation for threshold and fixed threshold
approach.

Usage

fkdengpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
kernel = "gaussian", add.jitter = FALSE, factor = 0.1, amount = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lkdengpdcon(x, lambda = NULL, u = 0, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian", log = TRUE)

nlkdengpdcon(pvector, x, phiu = TRUE, kernel = "gaussian",
finitelik = FALSE)

proflukdengpdcon(u, pvector, x, phiu = TRUE, kernel = "gaussian",
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

nlukdengpdcon(pvector, u, x, phiu = TRUE, kernel = "gaussian",
finitelik = FALSE)

fkdengpdcon 107

Arguments

x vector of sample data
phiu probability of being above threshold (0, 1) or logical, see Details in help for

fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below
kernel kernel name (default = "gaussian")
add.jitter logical, whether jitter is needed for rounded kernel centres
factor see jitter

amount see jitter

std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

lambda scalar bandwidth for kernel (as half-width of kernel)
u scalar threshold value
xi scalar shape parameter
bw scalar bandwidth for kernel (as standard deviations of kernel)
log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with kernel density estimate for bulk and GPD tail with continuity
at threshold is fitted to the entire dataset using maximum likelihood estimation. The estimated
parameters, variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dkdengpdcon
for details, type help kdengpdcon. Therefore, sigmau should not be included in the parameter vec-
tor if initial values are provided, making the full parameter vector (lambda, u, xi) if threshold is
also estimated and (lambda, xi) for profile likelihood or fixed threshold approach.

Cross-validation likelihood is used for KDE, but standard likelihood is used for GPD component.
See help for fkden for details, type help fkden.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default
used in the likelihood fitting. The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Value

Log-likelihood is given by lkdengpdcon and it’s wrappers for negative log-likelihood from nlkdengpdcon
and nlukdengpdcon. Profile likelihood for single threshold given by proflukdengpdcon. Fitting
function fkdengpdcon returns a simple list with the following elements

108 fkdengpdcon

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lambda: MLE of lambda (kernel half-width)
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
bw: MLE of bw (kernel standard deviations)
kernel: kernel name

Warning

See important warnings about cross-validation likelihood estimation in fkden, type help fkden.

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd. Based on code by Anna MacDonald
produced for MATLAB.

Note

The data and kernel centres are both vectors. Infinite and missing sample values (and kernel centres)
are dropped.

When pvector=NULL then the initial values are:

• normal reference rule for bandwidth, using the bw.nrd0 function, which is consistent with the
density function. At least two kernel centres must be provided as the variance needs to be
estimated.

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

fkdengpdcon 109

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package. fgpd and gpd.

Other kdengpd kdengpdcon fkdengpd fkdengpdcon normgpd fnormgpd kden bckden bckdengpd
bckdengpdcon fkden fbckden fbckdengpd fbckdengpdcon: fbckdengpdcon, fbckdengpd, fkdengpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Continuity constraint
fit = fkdengpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
fit2 = fkdengpdcon(x)
with(fit2, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fkdengpdcon(x, useq = seq(0, 2, length = 20))

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

110 flognormgpd

fitfix = fkdengpdcon(x, useq = seq(0, 2, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dkdengpdcon(xx, x, lambda, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

flognormgpd MLE Fitting of log-normal Bulk and GPD Tail Extreme Value Mixture
Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with log-normal for
bulk distribution upto the threshold and conditional GPD above threshold. With options for profile
likelihood estimation for threshold and fixed threshold approach.

Usage

flognormgpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

llognormgpd(x, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
sigmau = sqrt(lnmean) * lnsd, xi = 0, phiu = TRUE, log = TRUE)

nllognormgpd(pvector, x, phiu = TRUE, finitelik = FALSE)

proflulognormgpd(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlulognormgpd(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

flognormgpd 111

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lnmean scalar mean on log scale

lnsd scalar standard deviation on log scale (positive)

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with log-normal bulk and GPD tail is fitted to the entire dataset
using maximum likelihood estimation. The estimated parameters, variance-covariance matrix and
their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (lnmean, lnsd, u, sigmau, xi) if threshold is also estimated and
(lnmean, lnsd, sigmau, xi) for profile likelihood or fixed threshold approach.

Non-positive data are ignored.

Value

Log-likelihood is given by llognormgpd and it’s wrappers for negative log-likelihood from nllognormgpd
and nlulognormgpd. Profile likelihood for single threshold given by proflulognormgpd. Fitting
function flognormgpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lnmean: MLE of log-normal mean
lnsd: MLE of log-normal shape
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

112 flognormgpd

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of log-normal parameters assuming entire population is log-normal; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Lognormal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Solari, S. and Losada, M.A. (2004). A unified statistical model for hydrological variables including
the selection of threshold for the peak over threshold method. Water Resources Research. 48,
W10541.

See Also

dlnorm, fgpd and gpd

Other lognormgpd lognormgpdcon flognormgpd flognormgpdcon normgpd fnormgpd: flognormgpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rlnorm(1000)
xx = seq(-0.1, 10, 0.01)
y = dlnorm(xx)

Bulk model based tail fraction
fit = flognormgpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10), ylim = c(0, 0.8))
lines(xx, y)
with(fit, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Lognormal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

flognormgpdcon 113

Parameterised tail fraction
fit2 = flognormgpd(x, phiu = FALSE)
with(fit2, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = flognormgpd(x, useq = seq(1, 5, length = 20))
fitfix = flognormgpd(x, useq = seq(1, 5, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10), ylim = c(0, 0.8))
lines(xx, y)
with(fit, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

flognormgpdcon MLE Fitting of log-normal Bulk and GPD Tail Extreme Value Mixture
Model with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with log-normal for
bulk distribution upto the threshold and conditional GPD above threshold with continuity at thresh-
old. With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

flognormgpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

llognormgpdcon(x, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
xi = 0, phiu = TRUE, log = TRUE)

nllognormgpdcon(pvector, x, phiu = TRUE, finitelik = FALSE)

proflulognormgpdcon(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlulognormgpdcon(pvector, u, x, phiu = TRUE, finitelik = FALSE)

114 flognormgpdcon

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

lnmean scalar mean on log scale

lnsd scalar standard deviation on log scale (positive)

u scalar threshold value

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with log-normal bulk and GPD tail with continuity at threshold
is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dlognormgpdcon
for details, type help lognormgpdcon. Therefore, sigmau should not be included in the parame-
ter vector if initial values are provided, making the full parameter vector (lnmean, lnsd, u, xi) if
threshold is also estimated and (lnmean, lnsd, xi) for profile likelihood or fixed threshold approach.

Non-positive data are ignored.

Value

Log-likelihood is given by llognormgpdcon and it’s wrappers for negative log-likelihood from
nllognormgpdcon and nlulognormgpdcon. Profile likelihood for single threshold given by proflulognormgpdcon.
Fitting function flognormgpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters

flognormgpdcon 115

cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
lnmean: MLE of log-normal mean
lnsd: MLE of log-normal standard deviation
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of log-normal parameters assuming entire population is log-normal; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Lognormal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Solari, S. and Losada, M.A. (2004). A unified statistical model for hydrological variables including
the selection of threshold for the peak over threshold method. Water Resources Research. 48,
W10541.

See Also

dlnorm, fgpd and gpd

Other lognormgpd lognormgpdcon flognormgpd flognormgpdcon normgpd fnormgpd: flognormgpd

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Lognormal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

116 fmgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rlnorm(1000)
xx = seq(-0.1, 10, 0.01)
y = dlnorm(xx)

Continuity constraint
fit = flognormgpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10), ylim = c(0, 0.8))
lines(xx, y)
with(fit, lines(xx, dlognormgpdcon(xx, lnmean, lnsd, u, xi), col="red"))
abline(v = fit$u, col = "red")

No continuity constraint
fit2 = flognormgpd(x, phiu = FALSE)
with(fit2, lines(xx, dlognormgpd(xx, lnmean, lnsd, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = flognormgpdcon(x, useq = seq(1, 5, length = 20))
fitfix = flognormgpdcon(x, useq = seq(1, 5, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 10), ylim = c(0, 0.8))
lines(xx, y)
with(fit, lines(xx, dlognormgpdcon(xx, lnmean, lnsd, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dlognormgpdcon(xx, lnmean, lnsd, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dlognormgpdcon(xx, lnmean, lnsd, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fmgamma MLE Fitting of Mixture of Gammas Using EM Algorithm

Description

Maximum likelihood estimation for fitting the mixture of gammas distribution using the EM algo-
rithm.

Usage

fmgamma(x, M, pvector = NULL, std.err = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

fmgamma 117

lmgamma(x, mgshape, mgscale, mgweight, log = TRUE)

nlmgamma(pvector, x, M, finitelik = FALSE)

nlEMmgamma(pvector, tau, mgweight, x, M, finitelik = FALSE)

Arguments

x vector of sample data

M number of gamma components in mixture

pvector vector of initial values of GPD parameters (sigmau, xi) or NULL

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

mgshape mgamma shape (positive) as vector of length M

mgscale mgamma scale (positive) as vector of length M

mgweight mgamma weights (positive) as vector of length M

log logical, if TRUE then log-likelihood rather than likelihood is output

tau matrix of posterior probability of being in each component (nxM where n is
length(x))

Details

The weighted mixture of gammas distribution is fitted to the entire dataset by maximum likelihood
estimation using the EM algorithm. The estimated parameters, variance-covariance matrix and their
standard errors are automatically output.

The expectation step estimates the expected probability of being in each component conditional
on gamma component parameters. The maximisation step optimizes the negative log-likelihood
conditional on posterior probabilities of each observation being in each component.

The optimisation of the likelihood for these mixture models can be very sensitive to the initial
parameter vector, as often there are numerous local modes. This is an inherent feature of such
models and the EM algorithm. The EM algorithm is guaranteed to reach the maximum of the local
mode. Multiple initial values should be considered to find the global maximum. If the pvector is
input as NULL then random component probabilities are simulated as the initial values, so multiple
such runs should be run to check the sensitivity to initial values. Alternatives to black-box likelihood
optimisers (e.g. simulated annealing), or moving to computational Bayesian inference, are also
worth considering.

The log-likelihood functions are provided for wider usage, e.g. constructing profile likelihood func-
tions. The parameter vector pvector must be specified in the negative log-likelihood functions
nlmgamma and nlEMmgamma.

Log-likelihood calculations are carried out in lmgamma, which takes parameters as inputs in the same
form as the distribution functions. The negative log-likelihood function nlmgamma is a wrapper for
lmgamma designed towards making it useable for optimisation, i.e. nlmgamma has complete param-
eter vector as first input. Similarly, for the maximisation step negative log-likelihood nlEMmgamma,
which also has the second input as the component probability vector mgweight.

118 fmgamma

Missing values (NA and NaN) are assumed to be invalid data so are ignored.

The function lnormgpd carries out the calculations for the log-likelihood directly, which can be
exponentiated to give actual likelihood using (log=FALSE).

The default optimisation algorithm in the "maximisation step" is "BFGS", which requires a finite
negative log-likelihood function evaluation finitelik=TRUE. For invalid parameters, a zero like-
lihood is replaced with exp(-1e6). The "BFGS" optimisation algorithms require finite values for
likelihood, so any user input for finitelik will be overridden and set to finitelik=TRUE if either
of these optimisation methods is chosen.

It will display a warning for non-zero convergence result comes from optim function call or for
common indicators of lack of convergence (e.g. any estimated parameters same as initial values).

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Suppose there are M gamma components with (scalar) shape and scale parameters and weight
for each component. Only M − 1 are to be provided in the initial parameter vector, as the M th
components weight is uniquely determined from the others.

For the fitting function fmgamma and negative log-likelihood functions the parameter vector pvector
is a 3*M-1 length vector containing all M gamma component shape parameters first, followed by
the correspondingM gamma scale parameters, then all the correspondingM−1 probability weight
parameters. The full parameter vector is then c(mgshape, mgscale, mgweight[1:(M-1)]).

For the maximisation step negative log-likelihood functions the parameter vector pvector is a 2*M
length vector containing all M gamma component shape parameters first followed by the corre-
spondingM gamma scale parameters. The partial parameter vector is then c(mgshape, mgscale).

For identifiability purposes the mean of each gamma component must be in ascending in order. If
the initial parameter vector does not satisfy this constraint then an error is given.

Non-positive data are ignored as likelihood is infinite, except for gshape=1.

Value

Log-likelihood is given by lmgamma and it’s wrapper for negative log-likelihood from nlmgamma.
The conditional negative log-likelihood using the posterior probabilities is given by nlEMmgamma.
Fitting function fmgammagpd using EM algorithm returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
nllh: minimum negative log-likelihood
n: total sample size
M: number of gamma components
mgshape: MLE of gamma shapes
mgscale: MLE of gamma scales
mgweight: MLE of gamma weights
EMresults: EM results giving complete negative log-likelihood, estimated parameters and conditional "maximisation step" negative log-likelihood and convergence result
posterior: posterior probabilites

fmgamma 119

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

Note

In the fitting and profile likelihood functions, when pvector=NULL then the default initial values
are obtained under the following scheme:

• number of sample from each component is simulated from symmetric multinomial distribu-
tion;

• sample data is then sorted and split into groups of this size (works well when components have
modes which are well separated);

• for data within each component approximate MLE’s for the gamma shape and scale parame-
ters are estimated.

The lmgamma, nlmgamma and nlEMmgamma have no defaults.

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Invalid parameter ranges will give 0 for likelihood, log(0)=-Inf for log-likelihood and -log(0)=Inf
for negative log-likelihood.

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Mixture_model

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

See Also

dgamma and gammamixEM in mixtools package

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd, mgamma

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Mixture_model

120 fmgammagpd

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = c(rgamma(1000, shape = 1, scale = 1), rgamma(3000, shape = 6, scale = 2))
xx = seq(-1, 40, 0.01)
y = (dgamma(xx, shape = 1, scale = 1) + 3 * dgamma(xx, shape = 6, scale = 2))/4

Fit by EM algorithm
fit = fmgamma(x, M = 2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, y)
with(fit, lines(xx, dmgamma(xx, mgshape, mgscale, mgweight), col="red"))

End(Not run)

fmgammagpd MLE Fitting of Mixture of Gammas Bulk and GPD Tail Extreme Value
Mixture Model using the EM algorithm.

Description

Maximum likelihood estimation for fitting the extreme value mixture model with mixture of gam-
mas for bulk distribution upto the threshold and conditional GPD above threshold. With options for
profile likelihood estimation for threshold and fixed threshold approach.

Usage

fmgammagpd(x, M, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

lmgammagpd(x, mgshape, mgscale, mgweight, u, sigmau, xi, phiu = TRUE,
log = TRUE)

nlmgammagpd(pvector, x, M, phiu = TRUE, finitelik = FALSE)

nlumgammagpd(pvector, u, x, M, phiu = TRUE, finitelik = FALSE)

nlEMmgammagpd(pvector, tau, mgweight, x, M, phiu = TRUE, finitelik = FALSE)

proflumgammagpd(u, pvector, x, M, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nluEMmgammagpd(pvector, u, tau, mgweight, x, M, phiu = TRUE,
finitelik = FALSE)

fmgammagpd 121

Arguments

x vector of sample data

M number of gamma components in mixture

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

mgshape mgamma shape (positive) as vector of length M

mgscale mgamma scale (positive) as vector of length M

mgweight mgamma weights (positive) as vector of length M

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

tau matrix of posterior probability of being in each component (nxM where n is
length(x))

Details

The extreme value mixture model with weighted mixture of gammas bulk and GPD tail is fitted
to the entire dataset using maximum likelihood estimation using the EM algorithm. The estimated
parameters, variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The expectation step estimates the expected probability of being in each component conditional
on gamma component parameters. The maximisation step optimizes the negative log-likelihood
conditional on posterior probabilities of each observation being in each component.

The optimisation of the likelihood for these mixture models can be very sensitive to the initial
parameter vector, as often there are numerous local modes. This is an inherent feature of such
models and the EM algorithm. The EM algorithm is guaranteed to reach the maximum of the local
mode. Multiple initial values should be considered to find the global maximum. If the pvector is
input as NULL then random component probabilities are simulated as the initial values, so multiple
such runs should be run to check the sensitivity to initial values. Alternatives to black-box likelihood
optimisers (e.g. simulated annealing), or moving to computational Bayesian inference, are also
worth considering.

The log-likelihood functions are provided for wider usage, e.g. constructing profile likelihood func-
tions. The parameter vector pvector must be specified in the negative log-likelihood functions
nlmgammagpd and nlEMmgammagpd.

122 fmgammagpd

Log-likelihood calculations are carried out in lmgammagpd, which takes parameters as inputs in the
same form as the distribution functions. The negative log-likelihood function nlmgammagpd is a
wrapper for lmgammagpd designed towards making it useable for optimisation, i.e. nlmgammagpd
has complete parameter vector as first input. Though it is not directly used for optimisation here, as
the EM algorithm due to mixture of gammas for the bulk component of this model

The EM algorithm for the mixture of gammas utilises the negative log-likelihood function nlEMmgammagpd
which takes the posterior probabilities tau and component probabilities mgweight as secondary in-
puts.

The profile likelihood for the threshold proflumgammagpd also implements the EM algorithm for
the mixture of gammas, utilising the negative log-likelihood function nluEMmgammagpd which takes
the threshold, posterior probabilities tau and component probabilities mgweight as secondary in-
puts.

Missing values (NA and NaN) are assumed to be invalid data so are ignored.

Suppose there are M gamma components with (scalar) shape and scale parameters and weight
for each component. Only M − 1 are to be provided in the initial parameter vector, as the M th
components weight is uniquely determined from the others.

The initial parameter vector pvector always has the M gamma component shape parameters fol-
lowed by the corresponding M gamma scale parameters. However, subsets of the other parameters
are needed depending on which function is being used:

• fmgammagpd - c(mgshape, mgscale, mgweight[1:(M-1)], u, sigmau, xi)

• nlmgammagpd - c(mgshape, mgscale, mgweight[1:(M-1)], u, sigmau, xi)

• nlumgammagpd and proflumgammagpd - c(mgshape, mgscale, mgweight[1:(M-1)], sigmau, xi)

• nlEMmgammagpd - c(mgshape, mgscale, u, sigmau, xi)

• nluEMmgammagpd - c(mgshape, mgscale, sigmau, xi)

Notice that when the component probability weights are included only the firstM −1 are specified,
as the remaining one can be uniquely determined from these. Where some parameters are left out,
they are always taken as secondary inputs to the functions.

For identifiability purposes the mean of each gamma component must be in ascending in order. If
the initial parameter vector does not satisfy this constraint then an error is given.

Non-positive data are ignored as likelihood is infinite, except for gshape=1.

Value

Log-likelihood is given by lmgammagpd and it’s wrappers for negative log-likelihood from nlmgammagpd
and nlumgammagpd. The conditional negative log-likelihoods using the posterior probabilities are
nlEMmgammagpd and nluEMmgammagpd. Profile likelihood for single threshold given by proflumgammagpd
using EM algorithm. Fitting function fmgammagpd using EM algorithm returns a simple list with
the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters

fmgammagpd 123

se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
M: number of gamma components
mgshape: MLE of gamma shapes
mgscale: MLE of gamma scales
mgweight: MLE of gamma weights
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
EMresults: EM results giving complete negative log-likelihood, estimated parameters and conditional "maximisation step" negative log-likelihood and convergence result
posterior: posterior probabilites

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

In the fitting and profile likelihood functions, when pvector=NULL then the default initial values
are obtained under the following scheme:

• number of sample from each component is simulated from symmetric multinomial distribu-
tion;

• sample data is then sorted and split into groups of this size (works well when components have
modes which are well separated);

• for data within each component approximate MLE’s for the gamma shape and scale parame-
ters are estimated;

• threshold is specified as sample 90% quantile; and

• MLE of GPD parameters above threshold.

The other likelihood functions lmgammagpd, nlmgammagpd, nlumgammagpd and nlEMmgammagpd
and nluEMmgammagpd have no defaults.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Mixture_model

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Mixture_model
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

124 fmgammagpd

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

do Nascimento, F.F., Gamerman, D. and Lopes, H.F. (2011). A semiparametric Bayesian approach
to extreme value estimation. Statistical Computing, 22(2), 661-675.

See Also

dgamma, fgpd and gpd

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

n=1000
x = c(rgamma(n*0.25, shape = 1, scale = 1), rgamma(n*0.75, shape = 6, scale = 2))
xx = seq(-1, 40, 0.01)
y = (0.25*dgamma(xx, shape = 1, scale = 1) + 0.75 * dgamma(xx, shape = 6, scale = 2))

Bulk model based tail fraction
very sensitive to initial values, so best to provide sensible ones
fit.noinit = fmgammagpd(x, M = 2)
fit.withinit = fmgammagpd(x, M = 2, pvector = c(1, 6, 1, 2, 0.5, 15, 4, 0.1))
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, y)
with(fit.noinit, lines(xx, dmgammagpd(xx, mgshape, mgscale, mgweight, u, sigmau, xi),
col="red"))

abline(v = fit.noinit$u, col = "red")
with(fit.withinit, lines(xx, dmgammagpd(xx, mgshape, mgscale, mgweight, u, sigmau, xi),
col="green"))

abline(v = fit.withinit$u, col = "green")

Parameterised tail fraction
fit2 = fmgammagpd(x, M = 2, phiu = FALSE, pvector = c(1, 6, 1, 2, 0.5, 15, 4, 0.1))
with(fit2, lines(xx, dmgammagpd(xx, mgshape, mgscale, mgweight, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Default pvector", "Sensible pvector",
"Parameterised Tail Fraction"), col=c("black", "red", "green", "blue"), lty = 1)

Fixed threshold approach
fitfix = fmgammagpd(x, M = 2, useq = 15, fixedu = TRUE,

pvector = c(1, 6, 1, 2, 0.5, 4, 0.1))

hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, y)
with(fit.withinit, lines(xx, dmgammagpd(xx, mgshape, mgscale, mgweight, u, sigmau, xi), col="red"))
abline(v = fit.withinit$u, col = "red")

http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fmgammagpdcon 125

with(fitfix, lines(xx, dmgammagpd(xx,mgshape, mgscale, mgweight, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density", "Default initial value (90% quantile)",
"Fixed threshold approach"), col=c("black", "red", "darkgreen"), lty = 1)

End(Not run)

fmgammagpdcon MLE Fitting of Mixture of Gammas Bulk and GPD Tail Extreme Value
Mixture Model with Single Continuity Constraint using the EM algo-
rithm.

Description

Maximum likelihood estimation for fitting the extreme value mixture model with mixture of gam-
mas for bulk distribution upto the threshold and conditional GPD above threshold with continuity at
threshold. With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fmgammagpdcon(x, M, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

lmgammagpdcon(x, mgshape, mgscale, mgweight, u, xi, phiu = TRUE, log = TRUE)

nlmgammagpdcon(pvector, x, M, phiu = TRUE, finitelik = FALSE)

nlumgammagpdcon(pvector, u, x, M, phiu = TRUE, finitelik = FALSE)

nlEMmgammagpdcon(pvector, tau, mgweight, x, M, phiu = TRUE,
finitelik = FALSE)

proflumgammagpdcon(u, pvector, x, M, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nluEMmgammagpdcon(pvector, u, tau, mgweight, x, M, phiu = TRUE,
finitelik = FALSE)

Arguments

x vector of sample data

M number of gamma components in mixture

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

126 fmgammagpdcon

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

mgshape mgamma shape (positive) as vector of length M

mgscale mgamma scale (positive) as vector of length M

mgweight mgamma weights (positive) as vector of length M

u scalar threshold value

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

tau matrix of posterior probability of being in each component (nxM where n is
length(x))

Details

The extreme value mixture model with weighted mixture of gammas bulk and GPD tail with con-
tinuity at threshold is fitted to the entire dataset using maximum likelihood estimation using the
EM algorithm. The estimated parameters, variance-covariance matrix and their standard errors are
automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The expectation step estimates the expected probability of being in each component conditional
on gamma component parameters. The maximisation step optimizes the negative log-likelihood
conditional on posterior probabilities of each observation being in each component.

The optimisation of the likelihood for these mixture models can be very sensitive to the initial
parameter vector, as often there are numerous local modes. This is an inherent feature of such
models and the EM algorithm. The EM algorithm is guaranteed to reach the maximum of the local
mode. Multiple initial values should be considered to find the global maximum. If the pvector is
input as NULL then random component probabilities are simulated as the initial values, so multiple
such runs should be run to check the sensitivity to initial values. Alternatives to black-box likelihood
optimisers (e.g. simulated annealing), or moving to computational Bayesian inference, are also
worth considering.

The log-likelihood functions are provided for wider usage, e.g. constructing profile likelihood func-
tions. The parameter vector pvector must be specified in the negative log-likelihood functions
nlmgammagpdcon and nlEMmgammagpdcon.

Log-likelihood calculations are carried out in lmgammagpdcon, which takes parameters as inputs in
the same form as the distribution functions. The negative log-likelihood function nlmgammagpdcon
is a wrapper for lmgammagpdcon designed towards making it useable for optimisation, i.e. nlmgammagpdcon
has complete parameter vector as first input. Though it is not directly used for optimisation here, as
the EM algorithm due to mixture of gammas for the bulk component of this model

The EM algorithm for the mixture of gammas utilises the negative log-likelihood function nlEMmgammagpdcon
which takes the posterior probabilities tau and component probabilities mgweight as secondary in-
puts.

The profile likelihood for the threshold proflumgammagpdcon also implements the EM algorithm
for the mixture of gammas, utilising the negative log-likelihood function nluEMmgammagpdcon

fmgammagpdcon 127

which takes the threshold, posterior probabilities tau and component probabilities mgweight as
secondary inputs.

Missing values (NA and NaN) are assumed to be invalid data so are ignored.

Suppose there are M gamma components with (scalar) shape and scale parameters and weight
for each component. Only M − 1 are to be provided in the initial parameter vector, as the M th
components weight is uniquely determined from the others.

The initial parameter vector pvector always has the M gamma component shape parameters fol-
lowed by the corresponding M gamma scale parameters. However, subsets of the other parameters
are needed depending on which function is being used:

• fmgammagpdcon - c(mgshape, mgscale, mgweight[1:(M-1)], u, xi)

• nlmgammagpdcon - c(mgshape, mgscale, mgweight[1:(M-1)], u, xi)

• nlumgammagpdcon and proflumgammagpdcon - c(mgshape, mgscale, mgweight[1:(M-1)], xi)

• nlEMmgammagpdcon - c(mgshape, mgscale, u, xi)

• nluEMmgammagpdcon - c(mgshape, mgscale, xi)

Notice that when the component probability weights are included only the firstM −1 are specified,
as the remaining one can be uniquely determined from these. Where some parameters are left out,
they are always taken as secondary inputs to the functions.

For identifiability purposes the mean of each gamma component must be in ascending in order. If
the initial parameter vector does not satisfy this constraint then an error is given.

Non-positive data are ignored as likelihood is infinite, except for gshape=1.

Value

Log-likelihood is given by lmgammagpdcon and it’s wrappers for negative log-likelihood from
nlmgammagpdcon and nlumgammagpdcon. The conditional negative log-likelihoods using the pos-
terior probabilities are nlEMmgammagpdcon and nluEMmgammagpdcon. Profile likelihood for single
threshold given by proflumgammagpdcon using EM algorithm. Fitting function fmgammagpdcon
using EM algorithm returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
M: number of gamma components
mgshape: MLE of gamma shapes
mgscale: MLE of gamma scales
mgweight: MLE of gamma weights
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape

128 fmgammagpdcon

phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction
EMresults: EM results giving complete negative log-likelihood, estimated parameters and conditional "maximisation step" negative log-likelihood and convergence result
posterior: posterior probabilites

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

In the fitting and profile likelihood functions, when pvector=NULL then the default initial values
are obtained under the following scheme:

• number of sample from each component is simulated from symmetric multinomial distribu-
tion;

• sample data is then sorted and split into groups of this size (works well when components have
modes which are well separated);

• for data within each component approximate MLE’s for the gamma shape and scale parame-
ters are estimated;

• threshold is specified as sample 90% quantile; and

• MLE of GPD shape parameter above threshold.

The other likelihood functions lmgammagpdcon, nlmgammagpdcon, nlumgammagpdcon and nlEMmgammagpdcon
and nluEMmgammagpdcon have no defaults.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Mixture_model

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

do Nascimento, F.F., Gamerman, D. and Lopes, H.F. (2011). A semiparametric Bayesian approach
to extreme value estimation. Statistical Computing, 22(2), 661-675.

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Mixture_model
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fnormgpd 129

See Also

dgamma, fgpd and gpd

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

n=1000
x = c(rgamma(n*0.25, shape = 1, scale = 1), rgamma(n*0.75, shape = 6, scale = 2))
xx = seq(-1, 40, 0.01)
y = (0.25*dgamma(xx, shape = 1, scale = 1) + 0.75 * dgamma(xx, shape = 6, scale = 2))

Bulk model based tail fraction
very sensitive to initial values, so best to provide sensible ones
fit.noinit = fmgammagpdcon(x, M = 2)
fit.withinit = fmgammagpdcon(x, M = 2, pvector = c(1, 6, 1, 2, 0.5, 15, 0.1))
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, y)
with(fit.noinit, lines(xx, dmgammagpdcon(xx, mgshape, mgscale, mgweight, u, xi), col="red"))
abline(v = fit.noinit$u, col = "red")
with(fit.withinit, lines(xx, dmgammagpdcon(xx, mgshape, mgscale, mgweight, u, xi), col="green"))
abline(v = fit.withinit$u, col = "green")

Parameterised tail fraction
fit2 = fmgammagpdcon(x, M = 2, phiu = FALSE, pvector = c(1, 6, 1, 2, 0.5, 15, 0.1))
with(fit2, lines(xx, dmgammagpdcon(xx, mgshape, mgscale, mgweight, u, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Default pvector", "Sensible pvector",
"Parameterised Tail Fraction"), col=c("black", "red", "green", "blue"), lty = 1)

Fixed threshold approach
fitfix = fmgammagpdcon(x, M = 2, useq = 15, fixedu = TRUE,

pvector = c(1, 6, 1, 2, 0.5, 0.1))

hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, y)
with(fit.withinit, lines(xx, dmgammagpdcon(xx, mgshape, mgscale, mgweight, u, xi), col="red"))
abline(v = fit.withinit$u, col = "red")
with(fitfix, lines(xx, dmgammagpdcon(xx,mgshape, mgscale, mgweight, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density", "Default initial value (90% quantile)",
"Fixed threshold approach"), col=c("black", "red", "darkgreen"), lty = 1)

End(Not run)

fnormgpd MLE Fitting of Normal Bulk and GPD Tail Extreme Value Mixture
Model

130 fnormgpd

Description

Maximum likelihood estimation for fitting the extreme value mixture model with normal for bulk
distribution upto the threshold and conditional GPD above threshold. With options for profile like-
lihood estimation for threshold and fixed threshold approach.

Usage

fnormgpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lnormgpd(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, log = TRUE)

nlnormgpd(pvector, x, phiu = TRUE, finitelik = FALSE)

proflunormgpd(u, pvector = NULL, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlunormgpd(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

fnormgpd 131

Details

The extreme value mixture model with normal bulk and GPD tail is fitted to the entire dataset using
maximum likelihood estimation. The estimated parameters, variance-covariance matrix and their
standard errors are automatically output.

The optimisation of the likelihood for these mixture models can be very sensitive to the initial pa-
rameter vector (particularly the threshold), as often there are numerous local modes where multiple
thresholds give similar fits. This is an inherent feature of such models. Options are provided by the
arguments pvector, useq and fixedu to implement various commonly used likelihood inference
approaches for such models:

1. (default) pvector=NULL, useq=NULL and fixedu=FALSE - to set initial value for threshold
at 90% quantile along with usual defaults for other parameters as defined in Notes below.
Standard likelihood optimisation is used;

2. pvector=c(nmean, nsd, u, sigmau, xi) - where initial values of all 5 parameters are
manually set. Standard likelihood optimisation is used;

3. useq as vector - to specify a sequence of thresholds at which to evaluate profile likelihood and
extract threshold which gives maximum profile likelihood; or

4. useq as scalar - to specify a single value for threshold to be considered.

In options (3) and (4) the threshold can be treated as:

• initial value for maximum likelihood estimation when fixedu=FALSE, using either profile
likelihood estimate (3) or pre-chosen threshold (4); or

• a fixed threshold with MLE for other parameters when fixedu=TRUE, using either profile
likelihood estimate (3) or pre-chosen threshold (4).

The latter approach can be used to implement the traditional fixed threshold modelling approach
with threshold pre-chosen using, for example, graphical diagnostics. Further, in either such case (3)
or (4) the pvector could be:

• NULL for usual defaults for other four parameters, defined in Notes below; or

• vector of initial values for remaining 4 parameters (nmean, nsd, sigmau, xi).

If the threshold is treated as fixed, then the likelihood is separable between the bulk and tail com-
ponents. However, in practice we have found black-box optimisation of the combined likelihood
works sufficiently well, so is used herein.

The following functions are provided:

• fnormgpd - maximum likelihood fitting with all the above options;

• lnormgpd - log-likelihood;

• nlnormgpd - negative log-likelihood;

• proflunormgpd - profile likelihood for given threshold; and

• nlunormgpd - negative log-likelihood (threshold specified separately).

The log-likelihood functions are provided for wider usage, e.g. constructing profile likelihood func-
tions.

Defaults values for the parameter vector pvector are given in the fitting fnormgpd and profile like-
lihood functions proflunormgpd. The parameter vector pvector must be specified in the negative
log-likelihood functions nlnormgpd and nlunormgpd. The threshold u must also be specified in the
profile likelihood function proflunormgpd and nlunormgpd.

132 fnormgpd

Log-likelihood calculations are carried out in lnormgpd, which takes parameters as inputs in the
same form as distribution functions. The negative log-likelihood functions nlnormgpd and nlunormgpd
are wrappers for likelihood function lnormgpd designed towards optimisation, i.e. nlnormgpd has
vector of all 5 parameters as first input and nlunormgpd has threshold as second input and vector of
remaining 4 parameters as first input. The profile likelihood function proflunormgpd has threshold
u as the first input, to permit use of sapply function to evaluate profile likelihood over vector of
potential thresholds.

The tail fraction phiu is treated separately to the other parameters, to allow for all it’s representa-
tions. In the fitting fnormgpd and profile likelihood function proflunormgpd it is logical:

• default value phiu=TRUE - tail fraction specified by normal survivor function phiu = 1 - pnorm(u, nmean, nsd)
and standard error is output as NA; and

• phiu=FALSE - treated as extra parameter estimated using the MLE which is the sample pro-
portion above the threshold and standard error is output.

In the likelihood functions lnormgpd, nlnormgpd and nlunormgpd it can be logical or numeric:

• logical - same as for fitting functions with default value phiu=TRUE.

• numeric - any value over range (0, 1). Notice that the tail fraction probability cannot be 0 or 1
otherwise there would be no contribution from either tail or bulk components respectively.

Missing values (NA and NaN) are assumed to be invalid data so are ignored, which is inconsistent
with the evd library which assumes the missing values are below the threshold.

The function lnormgpd carries out the calculations for the log-likelihood directly, which can be
exponentiated to give actual likelihood using (log=FALSE).

The default optimisation algorithm is "BFGS", which requires a finite negative log-likelihood func-
tion evaluation finitelik=TRUE. For invalid parameters, a zero likelihood is replaced with exp(-1e6).
The "BFGS" optimisation algorithms require finite values for likelihood, so any user input for
finitelik will be overridden and set to finitelik=TRUE if either of these optimisation methods
is chosen.

It will display a warning for non-zero convergence result comes from optim function call or for
common indicators of lack of convergence (e.g. any estimated parameters same as initial values).

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Value

Log-likelihood is given by lnormgpd and it’s wrappers for negative log-likelihood from nlnormgpd
and nlunormgpd. Profile likelihood for single threshold given by proflunormgpd. Fitting function
fnormgpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters

fnormgpd 133

se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

The output list has some duplicate entries and repeats some of the inputs to both provide similar
items to those from fpot and increase usability.

Acknowledgments

These functions are deliberately similar in syntax and functionality to the commonly used functions
in the ismev and evd packages for which their author’s contributions are gratefully acknowledged.

Anna MacDonald and Xin Zhao laid some of the groundwork with programs they wrote for MAT-
LAB.

Clement Lee and Emma Eastoe suggested providing inbuilt profile likelihood estimation for thresh-
old and fixed threshold approach.

Note

Unlike most of the distribution functions for the extreme value mixture models, the MLE fitting
only permits single scalar values for each parameter and phiu.

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• threshold 90% quantile (not relevant for profile likelihood or fixed threshold approaches);

• MLE of GPD parameters above threshold.

Avoid setting the starting value for the shape parameter to xi=0 as depending on the optimisation
method it may be get stuck.

A default value for the tail fraction phiu=TRUE is given. The lnormgpd also has the usual defaults
for the other parameters, but nlnormgpd and nlunormgpd has no defaults.

If the hessian is of reduced rank then the variance covariance (from inverse hessian) and standard
error of parameters cannot be calculated, then by default std.err=TRUE and the function will stop.
If you want the parameter estimates even if the hessian is of reduced rank (e.g. in a simulation
study) then set std.err=FALSE.

Invalid parameter ranges will give 0 for likelihood, log(0)=-Inf for log-likelihood and -log(0)=Inf
for negative log-likelihood.

Due to symmetry, the lower tail can be described by GPD by negating the data/quantiles.

Infinite and missing sample values are dropped.

Error checking of the inputs is carried out and will either stop or give warning message as appro-
priate.

134 fnormgpd

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dnorm, fgpd and gpd

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, gngcon, gng, itmgng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Bulk model based tail fraction
fit = fnormgpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fnormgpd(x, phiu = FALSE)
with(fit2, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topleft", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fnormgpd(x, useq = seq(0, 3, length = 20))

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fnormgpdcon 135

fitfix = fnormgpd(x, useq = seq(0, 3, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topleft", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fnormgpdcon MLE Fitting of Normal Bulk and GPD Tail Extreme Value Mixture
Model with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with normal for bulk
distribution upto the threshold and conditional GPD above threshold with continuity at threshold.
With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fnormgpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lnormgpdcon(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
phiu = TRUE, log = TRUE)

nlnormgpdcon(pvector, x, phiu = TRUE, finitelik = FALSE)

proflunormgpdcon(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nlunormgpdcon(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

136 fnormgpdcon

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

nmean scalar normal mean

nsd scalar normal standard deviation (positive)

u scalar threshold value

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with normal bulk and GPD tail with continuity at threshold is fit-
ted to the entire dataset using maximum likelihood estimation. The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See help for fnormgpd for full details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dnormgpdcon
for details, type help normgpdcon. Therefore, sigmau should not be included in the parameter vec-
tor if initial values are provided, making the full parameter vector (nmean, nsd, u, xi) if threshold
is also estimated and (nmean, nsd, xi) for profile likelihood or fixed threshold approach.

Value

Log-likelihood is given by lnormgpdcon and it’s wrappers for negative log-likelihood from nlnormgpdcon
and nlunormgpdcon. Profile likelihood for single threshold given by proflunormgpdcon. Fitting
function fnormgpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
nmean: MLE of normal mean
nsd: MLE of normal standard deviation
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

fnormgpdcon 137

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of normal parameters assuming entire population is normal; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dnorm, fgpd and gpd

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpd, gngcon, gng, itmgng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Continuity constraint
fit = fnormgpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="red"))
abline(v = fit$u, col = "red")

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

138 fpsden

No continuity constraint
fit2 = fnormgpd(x)
with(fit2, lines(xx, dnormgpd(xx, nmean, nsd, u, sigmau, xi), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topleft", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fnormgpdcon(x, useq = seq(0, 3, length = 20))
fitfix = fnormgpdcon(x, useq = seq(0, 3, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 4))
lines(xx, y)
with(fit, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dnormgpdcon(xx, nmean, nsd, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topleft", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fpsden MLE Fitting of P-splines Density Estimator

Description

Maximum likelihood estimation for P-splines density estimation. Histogram binning produces fre-
quency counts, which are modelled by constrained B-splines in a Poisson regression. A penalty
based on differences in the sequences B-spline coefficients is used to smooth/interpolate the counts.
Iterated weighted least squares (IWLS) for a mixed model representation of the P-splines regres-
sion, conditional on a particular penalty coefficient, is used for estimating the B-spline coefficients.
Leave-one-out cross-validation deviances are available for estimation of the penalty coefficient.

Usage

fpsden(x, lambdaseq = NULL, breaks = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL, ord = 2)

lpsden(x, beta = NULL, bsplines = NULL, nbinwidth = 1, log = TRUE)

nlpsden(pvector, x, bsplines = NULL, nbinwidth = 1, finitelik = FALSE)

cvpsden(lambda = 1, counts, bsplines, ord = 2)

iwlspsden(counts, bsplines, ord = 2, lambda = 10)

fpsden 139

Arguments

x quantiles

lambdaseq vector of λ’s (or scalar) to be considered in profile likelihood. Required.

breaks histogram breaks (as in hist function)

xrange vector of minimum and maximum of B-spline (support of density)

nseg number of segments between knots

degree degree of B-splines (0 is constant, 1 is linear, etc.)

design.knots spline knots for splineDesign function

ord order of difference used in the penalty term

beta vector of B-spline coefficients (required)

bsplines matrix of B-splines

nbinwidth scaling to convert count frequency into proper density

log logical, if TRUE then log density

pvector vector of initial values of GPD parameters (sigmau, xi) or NULL

finitelik logical, should log-likelihood return finite value for invalid parameters

lambda penalty coefficient

counts counts from histogram binning

Details

The P-splines density estimator is fitted using maximum likelihood estimation, following the ap-
proach of Eilers and Marx (1996). Histogram binning produces frequency counts, which are mod-
elled by constrained B-splines in a Poisson regression. A penalty based on differences in the se-
quences B-spline coefficients is used to smooth/interpolate the counts.

The B-splines are defined as in Eiler and Marx (1996), so that those are meet the boundary are
simply shifted and truncated version of the internal B-splines. No renormalisation is carried out.
They are not "natural" B-spline which are also commonly in use. Note that atural B-splines can
be obtained by suitable linear combinations of these B-splines. Hence, in practice there is little
difference in the fit obtained from either B-spline definition, even with the penalty constraining the
coefficients. If the user desires they can force the use of natural B-splines, by prior specification of
the design.knots with appropriate replication of the boundaries, see dpsden.

Iterated weighted least squares (IWLS) for a mixed model representation of the P-splines regres-
sion, conditional on a particular penalty coefficient, is used for estimating the B-spline coefficients
which is equivalent to maximum likelihood estimation. Leave-one-out cross-validation deviances
are available for estimation of the penalty coefficient.

The parameter vector is the B-spline coefficients beta, no matter whether the penalty coefficient is
fixed or estimated. The penalty coefficient lambda is treated separately.

The log-likelihood functions lpsden and nlpsden evaluate the likelihood for the original dataset,
using the fitted P-splines density estimator. The log-likelihood is output as nllh from the fitting
function fpsden. They do not provide the likelihood for the Poisson regression of the histogram
counts, which is usually evaluated using the deviance. The deviance (via CVMSE for Poisson
counts) is also output as cvlambda from the fitting function fpsden.

The iwlspsden function performs the IWLS. The cvpsden function calculates the leave-one-out
cross-validation sum of the squared errors. They are not designed to be used directly by users. No
checks of the inputs are carried out.

140 fpsden

Value

Log-likelihood for original data is given by lpsden and it’s wrappers for negative log-likelihood
from nlpsden. Cross-validation sum of square of errors is provided by cvpsden. Poisson regression
fitting by IWLS is carried out in iwlspsden. Fitting function fpsden returns a simple list with the
following elements

call: optim call
x: data vector x
xrange: range of support of B-splines
degree: degree of B-splines
nseg: number of internal segments
design.knots: knots used in splineDesign
ord: order of penalty term
binned: histogram results
breaks: histogram breaks
mids: histogram mid-bins
counts: histogram counts
nbinwidth: scaling factor to convert counts to density
bsplines: B-splines matrix used for binned counts
databsplines: B-splines matrix used for data
counts: histogram counts
lambdaseq: λ vector for profile likelihood or scalar for fixed λ
cvlambda: CV MSE for each λ
mle and beta: vector of MLE of coefficients
nllh: negative log-likelihood for original data
n: total original sample size
lambda: Estimated or fixed λ

Acknowledgments

The Poisson regression and leave-one-out cross-validation functions are based on the code of Eil-
ers and Marx (1996) available from Brian Marx’s website http://statweb.lsu.edu/faculty/
marx/, which is gratefully acknowledged.

Note

The data are both vectors. Infinite and missing sample values are dropped.

No initial values for the coefficients are needed.

It is advised to specify the range of support xrange, using finite end-points. This is especially
important when the support is bounded. By default xrange is simply the range of the input data
range(x).

Further, it is advised to always set the histogram bin breaks, expecially if the support is bounded.
By default 10*ln(n) equi-spaced bins are defined between xrange.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://statweb.lsu.edu/faculty/marx/
http://statweb.lsu.edu/faculty/marx/
http://www.math.canterbury.ac.nz/~c.scarrott/evmix

fpsden 141

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/B-spline

http://statweb.lsu.edu/faculty/marx/

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical
Science 11(2), 89-121.

See Also

kden.

Other psden fpsden: psden

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Plenty of histogram bins (100)
breaks = seq(-4, 4, length.out=101)

P-spline fitting with cubic B-splines, 2nd order penalty and 10 internal segments
CV search for penalty coefficient.
fit = fpsden(x, lambdaseq = 10^seq(-5, 5, 0.25), breaks = breaks,

xrange = c(-4, 4), nseg = 10, degree = 3, ord = 2)
psdensity = exp(fit$bsplines %*% fit$mle)

hist(x, freq = FALSE, breaks = seq(-4, 4, length.out=101), xlim = c(-6, 6))
lines(xx, y, col = "black") # true density

lines(fit$mids, psdensity/fit$nbinwidth, lwd = 2, col = "blue") # P-splines density

check density against dpsden function
with(fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots),

lwd = 2, col = "red", lty = 2))

vertical lines for all knots
with(fit, abline(v = design.knots, col = "red"))

internal knots
with(fit, abline(v = design.knots[(degree + 2):(length(design.knots) - degree - 1)], col = "blue"))

boundary knots (support of B-splines)
with(fit, abline(v = design.knots[c(degree + 1, length(design.knots) - degree)], col = "green"))

legend("topright", c("True Density","P-spline density","Using dpsdens function"),
col=c("black", "blue", "red"), lty = c(1, 1, 2))

legend("topleft", c("Internal Knots", "Boundaries", "Extra Knots"),
col=c("blue", "green", "red"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/B-spline
http://statweb.lsu.edu/faculty/marx/

142 fpsdengpd

fpsdengpd MLE Fitting of P-splines Density Estimate for Bulk and GPD Tail Ex-
treme Value Mixture Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with P-splines density
estimate for bulk distribution upto the threshold and conditional GPD above threshold. With options
for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fpsdengpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
lambdaseq = NULL, breaks = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL, ord = 2, std.err = TRUE,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

lpsdengpd(x, psdenx, u = NULL, sigmau = NULL, xi = 0, phiu = TRUE,
bsplinefit = NULL, phib = NULL, log = TRUE)

nlpsdengpd(pvector, x, psdenx, phiu = TRUE, bsplinefit, phib = NULL,
finitelik = FALSE)

proflupsdengpd(u, pvector, x, psdenx, phiu = TRUE, bsplinefit,
method = "BFGS", control = list(maxit = 10000), finitelik = TRUE, ...)

nlupsdengpd(pvector, u, x, psdenx, phiu = TRUE, bsplinefit = bsplinefit,
phib = NULL, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

lambdaseq vector of λ’s (or scalar) to be considered in profile likelihood. Required.

breaks histogram breaks (as in hist function)

xrange vector of minimum and maximum of B-spline (support of density)

nseg number of segments between knots

degree degree of B-splines (0 is constant, 1 is linear, etc.)

design.knots spline knots for splineDesign function

ord order of difference used in the penalty term

std.err logical, should standard errors be calculated

fpsdengpd 143

method optimisation method (see optim)

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

psdenx P-splines based density estimate for each datapoint in x

u scalar threshold value

sigmau scalar scale parameter (positive)

xi scalar shape parameter

bsplinefit list output from P-splines density fitting fpsden function

phib renormalisation constant for bulk model density (1 − φu)/H(u), to make it
integrate to 1-phiu

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with P-splines density estimate for bulk and GPD tail is fitted to
the entire dataset. A two-stage maximum likelihood inference approach is taken. The first stage
consists fitting of the P-spline density estimator, which is acheived by MLE using the fpsden func-
tion. The second stage, conditions on the B-spline coefficients, using MLE for the extreme value
mixture model (GPD parameters and threshold, if requested). The estimated parameters, variance-
covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details of extreme value mixture models, type help fnormgpd. Only the
different features are outlined below for brevity.

As the second stage conditions on the Bs-pline coefficients, the full parameter vector is (u, sigmau,
xi) if threshold is also estimated and (sigmau, xi) for profile likelihood or fixed threshold approach.

(Penalized) MLE estimation of the B-Spline coefficients is carried out using Poisson regression
based on histogram bin counts. See help for fpsden for details, type help fpsden.

Value

Log-likelihood is given by lpsdengpd and it’s wrappers for negative log-likelihood from nlpsdengpd
and nlupsdengpd. Profile likelihood for single threshold given by proflupsdengpd. Fitting func-
tion fpsdengpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
bsplinefit: complete fpsden output
psdenx: P-splines based density estimate for each datapoint in x
xrange: range of support of B-splines
degree: degree of B-splines
nseg: number of internal segments
design.knots: knots used in splineDesign
nbinwidth: scaling factor to convert counts to density
optim: complete optim output
conv: indicator for "possible" convergence

144 fpsdengpd

mle: vector of MLE of (GPD and threshold, if relevant) parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
beta: vector of MLE of B-spline coefficients
lambda: Estimated or fixed λ
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

The Poisson regression and leave-one-out cross-validation functions are based on the code of Eil-
ers and Marx (1996) available from Brian Marx’s website http://statweb.lsu.edu/faculty/
marx/, which is gratefully acknowledged.

Note

The data are both vectors. Infinite and missing sample values are dropped.

No initial values for the coefficients are needed.

It is advised to specify the range of support xrange, using finite end-points. This is especially
important when the support is bounded. By default xrange is simply the range of the input data
range(x).

Further, it is advised to always set the histogram bin breaks, expecially if the support is bounded.
By default 10*ln(n) equi-spaced bins are defined between xrange.

When pvector=NULL then the initial values are:

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

http://en.wikipedia.org/wiki/B-spline

http://statweb.lsu.edu/faculty/marx/

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical
Science 11(2), 89-121.

http://statweb.lsu.edu/faculty/marx/
http://statweb.lsu.edu/faculty/marx/
http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://en.wikipedia.org/wiki/B-spline
http://statweb.lsu.edu/faculty/marx/

fpsdengpd 145

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

See Also

fpsden, fnormgpd, fgpd and gpd

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-4, 4, 0.01)
y = dnorm(xx)

Plenty of histogram bins (100)
breaks = seq(-4, 4, length.out=101)

P-spline fitting with cubic B-splines, 2nd order penalty and 10 internal segments
CV search for penalty coefficient.
fit = fpsdengpd(x, useq = seq(0, 3, 0.1), fixedu = TRUE,

lambdaseq = 10^seq(-5, 5, 0.25), breaks = breaks,
xrange = c(-4, 4), nseg = 10, degree = 3, ord = 2)

hist(x, freq = FALSE, breaks = breaks, xlim = c(-6, 6))
lines(xx, y, col = "black") # true density

P-splines+GPD
with(fit, lines(xx, dpsdengpd(xx, beta, nbinwidth,

u = u, sigmau = sigmau, xi = xi, design = design.knots),
lwd = 2, col = "red"))

abline(v = fit$u, col = "red", lwd = 2, lty = 3)

P-splines density estimate
with(fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots),

lwd = 2, col = "blue", lty = 2))

vertical lines for all knots
with(fit, abline(v = design.knots, col = "red"))

internal knots
with(fit, abline(v = design.knots[(degree + 2):(length(design.knots) - degree - 1)], col = "blue"))

boundary knots (support of B-splines)
with(fit, abline(v = design.knots[c(degree + 1, length(design.knots) - degree)], col = "green"))

legend("topright", c("True Density","P-spline density","P-spline+GPD"),
col=c("black", "blue", "red"), lty = c(1, 2, 1))

legend("topleft", c("Internal Knots", "Boundaries", "Extra Knots", "Threshold"),
col=c("blue", "green", "red", "red"), lty = c(1, 1, 1, 2))

End(Not run)

http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

146 fweibullgpd

fweibullgpd MLE Fitting of Weibull Bulk and GPD Tail Extreme Value Mixture
Model

Description

Maximum likelihood estimation for fitting the extreme value mixture model with Weibull for bulk
distribution upto the threshold and conditional GPD above threshold. With options for profile like-
lihood estimation for threshold and fixed threshold approach.

Usage

fweibullgpd(x, phiu = TRUE, useq = NULL, fixedu = FALSE, pvector = NULL,
std.err = TRUE, method = "BFGS", control = list(maxit = 10000),
finitelik = TRUE, ...)

lweibullgpd(x, wshape = 1, wscale = 1, u = qweibull(0.9, wshape, wscale),
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, phiu = TRUE, log = TRUE)

nlweibullgpd(pvector, x, phiu = TRUE, finitelik = FALSE)

profluweibullgpd(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nluweibullgpd(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data
phiu probability of being above threshold (0, 1) or logical, see Details in help for

fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below
std.err logical, should standard errors be calculated
method optimisation method (see optim)
control optimisation control list (see optim)
finitelik logical, should log-likelihood return finite value for invalid parameters
... optional inputs passed to optim

wshape scalar Weibull shape (positive)
wscale scalar Weibull scale (positive)
u scalar threshold value
sigmau scalar scale parameter (positive)
xi scalar shape parameter
log logical, if TRUE then log-likelihood rather than likelihood is output

fweibullgpd 147

Details

The extreme value mixture model with Weibull bulk and GPD tail is fitted to the entire dataset using
maximum likelihood estimation. The estimated parameters, variance-covariance matrix and their
standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The full parameter vector is (wshape, wscale, u, sigmau, xi) if threshold is also estimated and
(wshape, wscale, sigmau, xi) for profile likelihood or fixed threshold approach.

Non-positive data are ignored (f(0) is infinite for wshape<1).

Value

Log-likelihood is given by lweibullgpd and it’s wrappers for negative log-likelihood from nlweibullgpd
and nluweibullgpd. Profile likelihood for single threshold given by profluweibullgpd. Fitting
function fweibullgpd returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
wshape: MLE of Weibull shape
wscale: MLE of Weibull scale
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of Weibull parameters assuming entire population is Weibull; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD parameters above threshold.

148 fweibullgpd

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dweibull, fgpd and gpd

Other weibullgpd weibullgpdcon fweibullgpd fweibullgpdcon normgpd fnormgpd: fweibullgpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rweibull(1000, shape = 2)
xx = seq(-0.1, 4, 0.01)
y = dweibull(xx, shape = 2)

Bulk model based tail fraction
fit = fweibullgpd(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 4))
lines(xx, y)
with(fit, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi), col="red"))
abline(v = fit$u, col = "red")

Parameterised tail fraction
fit2 = fweibullgpd(x, phiu = FALSE)
with(fit2, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","Bulk Tail Fraction","Parameterised Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fweibullgpd(x, useq = seq(0.5, 2, length = 20))
fitfix = fweibullgpd(x, useq = seq(0.5, 2, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 4))
lines(xx, y)
with(fit, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi), col="red"))

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

fweibullgpdcon 149

abline(v = fit$u, col = "red")
with(fitu, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

fweibullgpdcon MLE Fitting of Weibull Bulk and GPD Tail Extreme Value Mixture
Model with Single Continuity Constraint

Description

Maximum likelihood estimation for fitting the extreme value mixture model with Weibull for bulk
distribution upto the threshold and conditional GPD above threshold with continuity at threshold.
With options for profile likelihood estimation for threshold and fixed threshold approach.

Usage

fweibullgpdcon(x, phiu = TRUE, useq = NULL, fixedu = FALSE,
pvector = NULL, std.err = TRUE, method = "BFGS", control = list(maxit
= 10000), finitelik = TRUE, ...)

lweibullgpdcon(x, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), xi = 0, phiu = TRUE, log = TRUE)

nlweibullgpdcon(pvector, x, phiu = TRUE, finitelik = FALSE)

profluweibullgpdcon(u, pvector, x, phiu = TRUE, method = "BFGS",
control = list(maxit = 10000), finitelik = TRUE, ...)

nluweibullgpdcon(pvector, u, x, phiu = TRUE, finitelik = FALSE)

Arguments

x vector of sample data

phiu probability of being above threshold (0, 1) or logical, see Details in help for
fnormgpd

useq vector of thresholds (or scalar) to be considered in profile likelihood or NULL for
no profile likelihood

fixedu logical, should threshold be fixed (at either scalar value in useq, or estimated
from maximum of profile likelihood evaluated at sequence of thresholds in useq)

pvector vector of initial values of parameters or NULL for default values, see below

std.err logical, should standard errors be calculated

method optimisation method (see optim)

150 fweibullgpdcon

control optimisation control list (see optim)

finitelik logical, should log-likelihood return finite value for invalid parameters

... optional inputs passed to optim

wshape scalar Weibull shape (positive)

wscale scalar Weibull scale (positive)

u scalar threshold value

xi scalar shape parameter

log logical, if TRUE then log-likelihood rather than likelihood is output

Details

The extreme value mixture model with Weibull bulk and GPD tail with continuity at threshold
is fitted to the entire dataset using maximum likelihood estimation. The estimated parameters,
variance-covariance matrix and their standard errors are automatically output.

See help for fnormgpd for details, type help fnormgpd. Only the different features are outlined
below for brevity.

The GPD sigmau parameter is now specified as function of other parameters, see help for dweibullgpdcon
for details, type help weibullgpdcon. Therefore, sigmau should not be included in the parame-
ter vector if initial values are provided, making the full parameter vector (wshape, wscale, u, xi)
if threshold is also estimated and (wshape, wscale, xi) for profile likelihood or fixed threshold
approach.

Negative data are ignored.

Value

Log-likelihood is given by lweibullgpdcon and it’s wrappers for negative log-likelihood from
nlweibullgpdcon and nluweibullgpdcon. Profile likelihood for single threshold given by profluweibullgpdcon.
Fitting function fweibullgpdcon returns a simple list with the following elements

call: optim call
x: data vector x
init: pvector
fixedu: fixed threshold, logical
useq: threshold vector for profile likelihood or scalar for fixed threshold
nllhuseq: profile negative log-likelihood at each threshold in useq
optim: complete optim output
mle: vector of MLE of parameters
cov: variance-covariance matrix of MLE of parameters
se: vector of standard errors of MLE of parameters
rate: phiu to be consistent with evd
nllh: minimum negative log-likelihood
n: total sample size
wshape: MLE of Weibull shape
wscale: MLE of Weibull scale
u: threshold (fixed or MLE)
sigmau: MLE of GPD scale (estimated from other parameters)
xi: MLE of GPD shape
phiu: MLE of tail fraction (bulk model or parameterised approach)
se.phiu: standard error of MLE of tail fraction

fweibullgpdcon 151

Acknowledgments

See Acknowledgments in fnormgpd, type help fnormgpd.

Note

When pvector=NULL then the initial values are:

• MLE of Weibull parameters assuming entire population is Weibull; and

• threshold 90% quantile (not relevant for profile likelihood for threshold or fixed threshold
approaches);

• MLE of GPD shape parameter above threshold.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu, Y. (2013). Extreme value mixture modelling: An R package and simulation study. MSc (Hons)
thesis, University of Canterbury, New Zealand. http://ir.canterbury.ac.nz/simple-search?
query=extreme&submit=Go

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

dweibull, fgpd and gpd

Other weibullgpd weibullgpdcon fweibullgpd fweibullgpdcon normgpd fnormgpd: fweibullgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

x = rweibull(1000, shape = 2)
xx = seq(-0.1, 4, 0.01)
y = dweibull(xx, shape = 2)

Continuity constraint
fit = fweibullgpdcon(x)
hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 4))
lines(xx, y)
with(fit, lines(xx, dweibullgpdcon(xx, wshape, wscale, u, xi), col="red"))
abline(v = fit$u, col = "red")

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go
http://ir.canterbury.ac.nz/simple-search?query=extreme&submit=Go

152 gammagpd

No continuity constraint
fit2 = fweibullgpd(x, phiu = FALSE)
with(fit2, lines(xx, dweibullgpd(xx, wshape, wscale, u, sigmau, xi, phiu), col="blue"))
abline(v = fit2$u, col = "blue")
legend("topright", c("True Density","No continuity constraint","With continuty constraint"),

col=c("black", "blue", "red"), lty = 1)

Profile likelihood for initial value of threshold and fixed threshold approach
fitu = fweibullgpdcon(x, useq = seq(0.5, 2, length = 20))
fitfix = fweibullgpdcon(x, useq = seq(0.5, 2, length = 20), fixedu = TRUE)

hist(x, breaks = 100, freq = FALSE, xlim = c(-0.1, 4))
lines(xx, y)
with(fit, lines(xx, dweibullgpdcon(xx, wshape, wscale, u, xi), col="red"))
abline(v = fit$u, col = "red")
with(fitu, lines(xx, dweibullgpdcon(xx, wshape, wscale, u, xi), col="purple"))
abline(v = fitu$u, col = "purple")
with(fitfix, lines(xx, dweibullgpdcon(xx, wshape, wscale, u, xi), col="darkgreen"))
abline(v = fitfix$u, col = "darkgreen")
legend("topright", c("True Density","Default initial value (90% quantile)",
"Prof. lik. for initial value", "Prof. lik. for fixed threshold"),
col=c("black", "red", "purple", "darkgreen"), lty = 1)

End(Not run)

gammagpd Gamma Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with gamma for bulk distribution upto the threshold and conditional
GPD above threshold. The parameters are the gamma shape gshape and scale gscale, threshold u
GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dgammagpd(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE, log = FALSE)

pgammagpd(q, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE,
lower.tail = TRUE)

qgammagpd(p, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE,
lower.tail = TRUE)

rgammagpd(n = 1, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), sigmau = sqrt(gshape) * gscale, xi = 0, phiu = TRUE)

gammagpd 153

Arguments

x quantiles

gshape gamma shape (positive)

gscale gamma scale (positive)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining gamma distribution for the bulk below the threshold and
GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the gamma bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
gamma bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the gamma and conditional GPD cumulative distribution functions (i.e.
pgamma(x, gshape, 1/gscale) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The gamma is defined on the non-negative reals, so the threshold must be positive. Though be-
haviour at zero depends on the shape (α):

• f(0+) =∞ for 0 < α < 1;

• f(0+) = 1/β for α = 1 (exponential);

• f(0+) = 0 for α > 1;

where β is the scale parameter.

See gpd for details of GPD upper tail component and dgamma for details of gamma bulk component.

154 gammagpd

Value

dgammagpd gives the density, pgammagpd gives the cumulative distribution function, qgammagpd
gives the quantile function and rgammagpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rgammagpd any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rgammagpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dgamma

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, fmgamma, gammagpdcon, mgammagpdcon, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rgammagpd(1000, gshape = 2)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpd(xx, gshape = 2))

three tail behaviours
plot(xx, pgammagpd(xx, gshape = 2), type = "l")
lines(xx, pgammagpd(xx, gshape = 2, xi = 0.3), col = "red")

http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

gammagpdcon 155

lines(xx, pgammagpd(xx, gshape = 2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rgammagpd(1000, gshape = 2, u = 3, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpd(xx, gshape = 2, u = 3, phiu = 0.2))

plot(xx, dgammagpd(xx, gshape = 2, u = 3, xi=0, phiu = 0.2), type = "l")
lines(xx, dgammagpd(xx, gshape = 2, u = 3, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dgammagpd(xx, gshape = 2, u = 3, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

gammagpdcon Gamma Bulk and GPD Tail Extreme Value Mixture Model with Single
Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with gamma for bulk distribution upto the threshold and conditional
GPD above threshold with continuity at threshold. The parameters are the gamma shape gshape
and scale gscale, threshold u GPD shape xi and tail fraction phiu.

Usage

dgammagpdcon(x, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, log = FALSE)

pgammagpdcon(q, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, lower.tail = TRUE)

qgammagpdcon(p, gshape = 1, gscale = 1, u = qgamma(0.9, gshape, 1/gscale),
xi = 0, phiu = TRUE, lower.tail = TRUE)

rgammagpdcon(n = 1, gshape = 1, gscale = 1, u = qgamma(0.9, gshape,
1/gscale), xi = 0, phiu = TRUE)

Arguments

x quantiles

gshape gamma shape (positive)

gscale gamma scale (positive)

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

156 gammagpdcon

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining gamma distribution for the bulk below the threshold and
GPD for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the gamma bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
gamma bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the gamma and conditional GPD cumulative distribution functions (i.e.
pgamma(x, gshape, 1/gscale) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are
the gamma and conditional GPD density functions (i.e. dgammma(x, gshape, gscale) and
dgpd(x, u, sigmau, xi)) respectively. The resulting GPD scale parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

The gamma is defined on the non-negative reals, so the threshold must be positive. Though be-
haviour at zero depends on the shape (α):

• f(0+) =∞ for 0 < α < 1;

• f(0+) = 1/β for α = 1 (exponential);

• f(0+) = 0 for α > 1;

where β is the scale parameter.

See gpd for details of GPD upper tail component and dgamma for details of gamma bulk component.

gammagpdcon 157

Value

dgammagpdcon gives the density, pgammagpdcon gives the cumulative distribution function, qgammagpdcon
gives the quantile function and rgammagpdcon gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rgammagpdcon any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rgammagpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dgamma

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, fmgamma, gammagpd, mgammagpdcon, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rgammagpdcon(1000, gshape = 2)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2))

three tail behaviours
plot(xx, pgammagpdcon(xx, gshape = 2), type = "l")
lines(xx, pgammagpdcon(xx, gshape = 2, xi = 0.3), col = "red")

http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

158 gkg

lines(xx, pgammagpdcon(xx, gshape = 2, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rgammagpdcon(1000, gshape = 2, u = 3, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, phiu = 0.2))

plot(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0, phiu = 0.2), type = "l")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dgammagpdcon(xx, gshape = 2, u = 3, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

gkg Kernel Density Estimate and GPD Both Upper and Lower Tails Ex-
treme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with kernel density estimate for bulk distribution between thresh-
olds and conditional GPD beyond thresholds. The parameters are the kernel bandwidth lambda,
lower tail (threshold ul, GPD scale sigmaul and shape xil and tail fraction phiul) and upper tail
(threshold ur, GPD scale sigmaur and shape xiR and tail fraction phiur).

Usage

dgkg(x, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), sigmaul = sqrt(6 * var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", log = FALSE)

pgkg(q, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), sigmaul = sqrt(6 * var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", lower.tail = TRUE)

qgkg(p, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), sigmaul = sqrt(6 * var(kerncentres))/pi, xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian", lower.tail = TRUE)

rgkg(n = 1, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), sigmaul = sqrt(6 *
var(kerncentres))/pi, xil = 0, phiul = TRUE,

gkg 159

ur = as.vector(quantile(kerncentres, 0.9)), sigmaur = sqrt(6 *
var(kerncentres))/pi, xir = 0, phiur = TRUE, bw = NULL,
kernel = "gaussian")

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

ul lower tail threshold

sigmaul lower tail GPD scale parameter (positive)

xil lower tail GPD shape parameter

phiul probability of being below lower threshold [0, 1] or TRUE

ur upper tail threshold

sigmaur upper tail GPD scale parameter (positive)

xir upper tail GPD shape parameter

phiur probability of being above upper threshold [0, 1] or TRUE

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining kernel density estimate (KDE) for the bulk between
thresholds and GPD beyond thresholds.

The user can pre-specify phiul and phiur permitting a parameterised value for the tail fractions
φul and φur. Alternatively, when phiul=TRUE and phiur=TRUE the tail fractions are estimated as
the tail fractions from the KDE bulk model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Notice that the tail fraction cannot be 0 or 1, and the sum of upper and lower tail fractions phiul + phiur < 1,
so the lower threshold must be less than the upper, ul < ur.

The cumulative distribution function has three components. The lower tail with tail fraction φul
defined by the KDE bulk model (phiul=TRUE) upto the lower threshold x < ul:

F (x) = H(ul)[1−Gl(x)].

whereH(x) is the kernel density estimator cumulative distribution function (i.e. mean(pnorm(x, kerncentres, bw))
andGl(X) is the conditional GPD cumulative distribution function with negated x value and thresh-
old, i.e. pgpd(-x, -ul, sigmaul, xil, phiul). The KDE bulk model between the thresholds
ul ≤ x ≤ ur given by:

F (x) = H(x).

160 gkg

Above the threshold x > ur the usual conditional GPD:

F (x) = H(ur) + [1−H(ur)]Gr(x)

whereGr(X) is the GPD cumulative distribution function, i.e. pgpd(x, ur, sigmaur, xir, phiur).

The cumulative distribution function for the pre-specified tail fractions φul and φur is more com-
plicated. The unconditional GPD is used for the lower tail x < ul:

F (x) = φul[1−Gl(x)].

The KDE bulk model between the thresholds ul ≤ x ≤ ur given by:

F (x) = φul + (1− φul − φur)(H(x)−H(ul))/(H(ur)−H(ul)).

Above the threshold x > ur the usual conditional GPD:

F (x) = (1− φur) + φurG(x)

Notice that these definitions are equivalent when φul = H(ul) and φur = 1−H(ur).

If no bandwidth is provided lambda=NULL and bw=NULL then the normal reference rule is used, using
the bw.nrd0 function, which is consistent with the density function. At least two kernel centres
must be provided as the variance needs to be estimated.

See gpd for details of GPD upper tail component and dkden for details of KDE bulk component.

Value

dgkg gives the density, pgkg gives the cumulative distribution function, qgkg gives the quantile
function and rgkg gives a random sample.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the gkg functions have not been
vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vector,
which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rgkg is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

gkg 161

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon gkg gkgcon bckden bckdengpd bckdengpdcon fkden fkdengpd
fkdengpdcon fgkg fgkgcon fbckden fbckdengpd fbckdengpdcon: gkgcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rnorm(1000,0,1)
x = rgkg(1000, kerncentres, phiul = 0.15, phiur = 0.15)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkg(xx, kerncentres, phiul = 0.15, phiur = 0.15))

three tail behaviours
plot(xx, pgkg(xx, kerncentres), type = "l")
lines(xx, pgkg(xx, kerncentres,xil = 0.3, xir = 0.3), col = "red")
lines(xx, pgkg(xx, kerncentres,xil = -0.3, xir = -0.3), col = "blue")
legend("topleft", paste("Symmetric xil=xir=",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

asymmetric tail behaviours
x = rgkg(1000, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1))

plot(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2),
type = "l", ylim = c(0, 0.4))

lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = 0.3, xir = 0.3, phiur = 0.3),
col = "red")

lines(xx, dgkg(xx, kerncentres, xil = -0.3, phiul = TRUE, xir = 0.3, phiur = TRUE),
col = "blue")

legend("topleft", c("phiul = phiur = 0.2", "phiul = phiur = 0.3", "Bulk Tail Fraction"),
col=c("black", "red", "blue"), lty = 1)

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

162 gkgcon

End(Not run)

gkgcon Kernel Density Estimate and GPD Both Upper and Lower Tails Ex-
treme Value Mixture Model With Single Continuity Constraint at Both

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with kernel density estimate for bulk distribution between thresholds
and conditional GPD beyond thresholds and continuity at both of them. The parameters are the
kernel bandwidth lambda, lower tail (threshold ul, GPD shape xil and tail fraction phiul) and
upper tail (threshold ur, GPD shape xiR and tail fraction phiur).

Usage

dgkgcon(x, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), xil = 0, phiul = TRUE, ur = as.vector(quantile(kerncentres,
0.9)), xir = 0, phiur = TRUE, bw = NULL, kernel = "gaussian",
log = FALSE)

pgkgcon(q, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), xil = 0, phiul = TRUE, ur = as.vector(quantile(kerncentres,
0.9)), xir = 0, phiur = TRUE, bw = NULL, kernel = "gaussian",
lower.tail = TRUE)

qgkgcon(p, kerncentres, lambda = NULL, ul = as.vector(quantile(kerncentres,
0.1)), xil = 0, phiul = TRUE, ur = as.vector(quantile(kerncentres,
0.9)), xir = 0, phiur = TRUE, bw = NULL, kernel = "gaussian",
lower.tail = TRUE)

rgkgcon(n = 1, kerncentres, lambda = NULL,
ul = as.vector(quantile(kerncentres, 0.1)), xil = 0, phiul = TRUE,
ur = as.vector(quantile(kerncentres, 0.9)), xir = 0, phiur = TRUE,
bw = NULL, kernel = "gaussian")

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

ul lower tail threshold

xil lower tail GPD shape parameter

phiul probability of being below lower threshold [0, 1] or TRUE

ur upper tail threshold

xir upper tail GPD shape parameter

phiur probability of being above upper threshold [0, 1] or TRUE

gkgcon 163

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining kernel density estimate (KDE) for the bulk between
thresholds and GPD beyond thresholds and continuity at both of them.

The user can pre-specify phiul and phiur permitting a parameterised value for the tail fractions
φul and φur. Alternatively, when phiul=TRUE and phiur=TRUE the tail fractions are estimated as
the tail fractions from the KDE bulk model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

Notice that the tail fraction cannot be 0 or 1, and the sum of upper and lower tail fractions phiul + phiur < 1,
so the lower threshold must be less than the upper, ul < ur.

The cumulative distribution function has three components. The lower tail with tail fraction φul
defined by the KDE bulk model (phiul=TRUE) upto the lower threshold x < ul:

F (x) = H(ul)[1−Gl(x)].

whereH(x) is the kernel density estimator cumulative distribution function (i.e. mean(pnorm(x, kerncentres, bw))
andGl(X) is the conditional GPD cumulative distribution function with negated x value and thresh-
old, i.e. pgpd(-x, -ul, sigmaul, xil, phiul). The KDE bulk model between the thresholds
ul ≤ x ≤ ur given by:

F (x) = H(x).

Above the threshold x > ur the usual conditional GPD:

F (x) = H(ur) + [1−H(ur)]Gr(x)

whereGr(X) is the GPD cumulative distribution function, i.e. pgpd(x, ur, sigmaur, xir, phiur).

The cumulative distribution function for the pre-specified tail fractions φul and φur is more com-
plicated. The unconditional GPD is used for the lower tail x < ul:

F (x) = φul[1−Gl(x)].

The KDE bulk model between the thresholds ul ≤ x ≤ ur given by:

F (x) = φul + (1− φul − φur)(H(x)−H(ul))/(H(ur)−H(ul)).

Above the threshold x > ur the usual conditional GPD:

F (x) = (1− φur) + φurG(x)

Notice that these definitions are equivalent when φul = H(ul) and φur = 1−H(ur).

164 gkgcon

The continuity constraint at ur means that:

φurgr(x) = (1− φul − φur)h(ur)/(H(ur)−H(ul)).

By rearrangement, the GPD scale parameter sigmaur is then:

σur = φur(H(ur)−H(ul))/h(ur)(1− φul − φur).

where h(x), gl(x) and gr(x) are the KDE and conditional GPD density functions for lower and
upper tail respectively. In the special case of where the tail fraction is defined by the bulk model
this reduces to

σur = [1−H(ur)]/h(ur)

.

The continuity constraint at ul means that:

φulgl(x) = (1− φul − φur)h(ul)/(H(ur)−H(ul)).

The GPD scale parameter sigmaul is replaced by:

σul = φul(H(ur)−H(ul))/h(ul)(1− φul − φur).

In the special case of where the tail fraction is defined by the bulk model this reduces to

σul = H(ul)/h(ul)

.

If no bandwidth is provided lambda=NULL and bw=NULL then the normal reference rule is used, using
the bw.nrd0 function, which is consistent with the density function. At least two kernel centres
must be provided as the variance needs to be estimated.

See gpd for details of GPD upper tail component and dkden for details of KDE bulk component.

Value

dgkgcon gives the density, pgkgcon gives the cumulative distribution function, qgkgcon gives the
quantile function and rgkgcon gives a random sample.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the gkgcon functions have not been
vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vector,
which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rgkgcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

gkgcon 165

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon gkg gkgcon bckden bckdengpd bckdengpdcon fkden fkdengpd
fkdengpdcon fgkg fgkgcon fbckden fbckdengpd fbckdengpdcon: gkg

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rnorm(1000,0,1)
x = rgkgcon(1000, kerncentres, phiul = 0.15, phiur = 0.15)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkgcon(xx, kerncentres, phiul = 0.15, phiur = 0.15))

three tail behaviours
plot(xx, pgkgcon(xx, kerncentres), type = "l")
lines(xx, pgkgcon(xx, kerncentres,xil = 0.3, xir = 0.3), col = "red")
lines(xx, pgkgcon(xx, kerncentres,xil = -0.3, xir = -0.3), col = "blue")
legend("topleft", paste("Symmetric xil=xir=",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

asymmetric tail behaviours
x = rgkgcon(1000, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgkgcon(xx, kerncentres, xil = -0.3, phiul = 0.1, xir = 0.3, phiur = 0.1))

plot(xx, dgkgcon(xx, kerncentres, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2),
type = "l", ylim = c(0, 0.4))

lines(xx, dgkgcon(xx, kerncentres, xil = -0.3, phiul = 0.3, xir = 0.3, phiur = 0.3),
col = "red")

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

166 gng

lines(xx, dgkgcon(xx, kerncentres, xil = -0.3, phiul = TRUE, xir = 0.3, phiur = TRUE),
col = "blue")

legend("topleft", c("phiul = phiur = 0.2", "phiul = phiur = 0.3", "Bulk Tail Fraction"),
col=c("black", "red", "blue"), lty = 1)

End(Not run)

gng Normal Bulk with GPD Upper and Lower Tails Extreme Value Mixture
Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with normal for bulk distribution between the upper and lower thresh-
olds with conditional GPD’s for the two tails. The parameters are the normal mean nmean and stan-
dard deviation nsd, lower tail (threshold ul, GPD scale sigmaul and shape xil and tail fraction
phiul) and upper tail (threshold ur, GPD scale sigmaur and shape xiR and tail fraction phiuR).

Usage

dgng(x, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), sigmaul = nsd,
xil = 0, phiul = TRUE, ur = qnorm(0.9, nmean, nsd), sigmaur = nsd,
xir = 0, phiur = TRUE, log = FALSE)

pgng(q, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), sigmaul = nsd,
xil = 0, phiul = TRUE, ur = qnorm(0.9, nmean, nsd), sigmaur = nsd,
xir = 0, phiur = TRUE, lower.tail = TRUE)

qgng(p, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), sigmaul = nsd,
xil = 0, phiul = TRUE, ur = qnorm(0.9, nmean, nsd), sigmaur = nsd,
xir = 0, phiur = TRUE, lower.tail = TRUE)

rgng(n = 1, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd),
sigmaul = nsd, xil = 0, phiul = TRUE, ur = qnorm(0.9, nmean, nsd),
sigmaur = nsd, xir = 0, phiur = TRUE)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

ul lower tail threshold

sigmaul lower tail GPD scale parameter (positive)

xil lower tail GPD shape parameter

phiul probability of being below lower threshold [0, 1] or TRUE

ur upper tail threshold

sigmaur upper tail GPD scale parameter (positive)

gng 167

xir upper tail GPD shape parameter

phiur probability of being above upper threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining normal distribution for the bulk between the lower and
upper thresholds and GPD for upper and lower tails. The user can pre-specify phiul and phiur
permitting a parameterised value for the lower and upper tail fraction respectively. Alternatively,
when phiul=TRUE or phiur=TRUE the corresponding tail fraction is estimated as from the normal
bulk model.

Notice that the tail fraction cannot be 0 or 1, and the sum of upper and lower tail fractions phiul+phiur<1,
so the lower threshold must be less than the upper, ul<ur.

The cumulative distribution function now has three components. The lower tail with tail fraction
φul defined by the normal bulk model (phiul=TRUE) upto the lower threshold x < ul:

F (x) = H(ul)Gl(x).

where H(x) is the normal cumulative distribution function (i.e. pnorm(ur, nmean, nsd)). The
Gl(X) is the conditional GPD cumulative distribution function with negated data and threshold,
i.e. dgpd(-x, -ul, sigmaul, xil, phiul). The normal bulk model between the thresholds
ul ≤ x ≤ ur given by:

F (x) = H(x).

Above the threshold x > ur the usual conditional GPD:

F (x) = H(ur) + [1−H(ur)]G(x)

where G(X).

The cumulative distribution function for the pre-specified tail fractions φul and φur is more com-
plicated. The unconditional GPD is used for the lower tail x < ul:

F (x) = φulGl(x).

The normal bulk model between the thresholds ul ≤ x ≤ ur given by:

F (x) = φul + (1− φul − φur)(H(x)−H(ul))/(H(ur)−H(ul)).

Above the threshold x > ur the usual conditional GPD:

F (x) = (1− φur) + φurG(x)

Notice that these definitions are equivalent when φul = H(ul) and φur = 1−H(ur).

See gpd for details of GPD upper tail component, dnorm for details of normal bulk component and
dnormgpd for normal with GPD extreme value mixture model.

Value

dgng gives the density, pgng gives the cumulative distribution function, qgng gives the quantile
function and rgng gives a random sample.

168 gng

Note

All inputs are vectorised except log and lower.tail. The main input (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rgng any input vector must
be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rgng is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Zhao, X., Scarrott, C.J. Reale, M. and Oxley, L. (2010). Extreme value modelling for forecasting
the market crisis. Applied Financial Econometrics 20(1), 63-72.

See Also

gpd and dnorm

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, fnormgpd, gngcon, itmgng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rgng(1000, phiul = 0.15, phiur = 0.15)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgng(xx, phiul = 0.15, phiur = 0.15))

three tail behaviours
plot(xx, pgng(xx), type = "l")
lines(xx, pgng(xx, xil = 0.3, xir = 0.3), col = "red")
lines(xx, pgng(xx, xil = -0.3, xir = -0.3), col = "blue")
legend("topleft", paste("Symmetric xil=xir=",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rgng(1000, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2)
xx = seq(-6, 6, 0.01)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

gngcon 169

hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgng(xx, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2))

plot(xx, dgng(xx, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2), type = "l", ylim = c(0, 0.4))
lines(xx, dgng(xx, xil = -0.3, phiul = 0.3, xir = 0.3, phiur = 0.3), col = "red")
lines(xx, dgng(xx, xil = -0.3, phiul = TRUE, xir = 0.3, phiur = TRUE), col = "blue")
legend("topleft", c("phiul = phiur = 0.2", "phiul = phiur = 0.3", "Bulk Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

gngcon Normal Bulk with GPD Upper and Lower Tails Extreme Value Mixture
Model with Single Continuity Constraint at Thresholds

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with normal for bulk distribution between the upper and lower thresh-
olds with conditional GPD’s for the two tails with continuity at the lower and upper thresholds. The
parameters are the normal mean nmean and standard deviation nsd, lower tail (threshold ul, GPD
shape xil and tail fraction phiul) and upper tail (threshold ur, GPD shape xiR and tail fraction
phiuR).

Usage

dgngcon(x, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), xil = 0,
phiul = TRUE, ur = qnorm(0.9, nmean, nsd), xir = 0, phiur = TRUE,
log = FALSE)

pgngcon(q, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), xil = 0,
phiul = TRUE, ur = qnorm(0.9, nmean, nsd), xir = 0, phiur = TRUE,
lower.tail = TRUE)

qgngcon(p, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd), xil = 0,
phiul = TRUE, ur = qnorm(0.9, nmean, nsd), xir = 0, phiur = TRUE,
lower.tail = TRUE)

rgngcon(n = 1, nmean = 0, nsd = 1, ul = qnorm(0.1, nmean, nsd),
xil = 0, phiul = TRUE, ur = qnorm(0.9, nmean, nsd), xir = 0,
phiur = TRUE)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

ul lower tail threshold

xil lower tail GPD shape parameter

phiul probability of being below lower threshold [0, 1] or TRUE

170 gngcon

ur upper tail threshold

xir upper tail GPD shape parameter

phiur probability of being above upper threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining normal distribution for the bulk between the lower and
upper thresholds and GPD for upper and lower tails with Continuity Constraints at the lower and
upper threshold. The user can pre-specify phiul and phiur permitting a parameterised value for
the lower and upper tail fraction respectively. Alternatively, when phiul=TRUE or phiur=TRUE the
corresponding tail fraction is estimated as from the normal bulk model.

Notice that the tail fraction cannot be 0 or 1, and the sum of upper and lower tail fractions phiul+phiur<1,
so the lower threshold must be less than the upper, ul<ur.

The cumulative distribution function now has three components. The lower tail with tail fraction
φul defined by the normal bulk model (phiul=TRUE) upto the lower threshold x < ul:

F (x) = H(ul)Gl(x).

where H(x) is the normal cumulative distribution function (i.e. pnorm(ur, nmean, nsd)). The
Gl(X) is the conditional GPD cumulative distribution function with negated data and threshold,
i.e. dgpd(-x, -ul, sigmaul, xil, phiul). The normal bulk model between the thresholds
ul ≤ x ≤ ur given by:

F (x) = H(x).

Above the threshold x > ur the usual conditional GPD:

F (x) = H(ur) + [1−H(ur)]G(x)

where G(X).

The cumulative distribution function for the pre-specified tail fractions φul and φur is more com-
plicated. The unconditional GPD is used for the lower tail x < ul:

F (x) = φulGl(x).

The normal bulk model between the thresholds ul ≤ x ≤ ur given by:

F (x) = φul + (1− φul − φur)(H(x)−H(ul))/(H(ur)−H(ul)).

Above the threshold x > ur the usual conditional GPD:

F (x) = (1− φur) + φurG(x)

Notice that these definitions are equivalent when φul = H(ul) and φur = 1−H(ur).

The continuity constraint at ur means that:

φurgr(x) = (1− φul − φur)h(ur)/(H(ur)−H(ul)).

gngcon 171

By rearrangement, the GPD scale parameter sigmaur is then:

σur = φur(H(ur)−H(ul))/h(ur)(1− φul − φur).

where h(x), gl(x) and gr(x) are the normal and conditional GPD density functions for lower and
upper tail respectively. In the special case of where the tail fraction is defined by the bulk model
this reduces to

σur = [1−H(ur)]/h(ur)

.

The continuity constraint at ul means that:

φulgl(x) = (1− φul − φur)h(ul)/(H(ur)−H(ul)).

The GPD scale parameter sigmaul is replaced by:

σul = φul(H(ur)−H(ul))/h(ul)(1− φul − φur).

In the special case of where the tail fraction is defined by the bulk model this reduces to

σul = H(ul)/h(ul)

.

See gpd for details of GPD upper tail component, dnorm for details of normal bulk component,
dnormgpd for normal with GPD extreme value mixture model and dgng for normal bulk with GPD
upper and lower tails extreme value mixture model.

Value

dgngcon gives the density, pgngcon gives the cumulative distribution function, qgngcon gives the
quantile function and rgngcon gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rgngcon any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rgngcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

172 gpd

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Zhao, X., Scarrott, C.J. Reale, M. and Oxley, L. (2010). Extreme value modelling for forecasting
the market crisis. Applied Financial Econometrics 20(1), 63-72.

See Also

gpd and dnorm

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, fnormgpd, gng, itmgng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rgngcon(1000, phiul = 0.15, phiur = 0.15)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgngcon(xx, phiul = 0.15, phiur = 0.15))

three tail behaviours
plot(xx, pgngcon(xx), type = "l")
lines(xx, pgngcon(xx, xil = 0.3, xir = 0.3), col = "red")
lines(xx, pgngcon(xx, xil = -0.3, xir = -0.3), col = "blue")
legend("topleft", paste("Symmetric xil=xir=",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rgngcon(1000, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2)
xx = seq(-6, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-6, 6))
lines(xx, dgngcon(xx, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2))

plot(xx, dgngcon(xx, xil = -0.3, phiul = 0.2, xir = 0.3, phiur = 0.2), type = "l", ylim = c(0, 0.4))
lines(xx, dgngcon(xx, xil = -0.3, phiul = 0.3, xir = 0.3, phiur = 0.3), col = "red")
lines(xx, dgngcon(xx, xil = -0.3, phiul = TRUE, xir = 0.3, phiur = TRUE), col = "blue")
legend("topleft", c("phiul = phiur = 0.2", "phiul = phiur = 0.3", "Bulk Tail Fraction"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

gpd Generalised Pareto Distribution (GPD)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

gpd 173

Description

Density, cumulative distribution function, quantile function and random number generation for the
generalised Pareto distribution, either as a conditional on being above the threshold u or uncondi-
tional.

Usage

dgpd(x, u = 0, sigmau = 1, xi = 0, phiu = 1, log = FALSE)

pgpd(q, u = 0, sigmau = 1, xi = 0, phiu = 1, lower.tail = TRUE)

qgpd(p, u = 0, sigmau = 1, xi = 0, phiu = 1, lower.tail = TRUE)

rgpd(n = 1, u = 0, sigmau = 1, xi = 0, phiu = 1)

Arguments

x quantiles

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1]

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

The GPD with parameters scale σu and shape ξ has conditional density of being above the threshold
u given by

f(x|X > u) = 1/σu[1 + ξ(x− u)/σu]−1/ξ−1

for non-zero ξ, x > u and σu > 0. Further, [1 + ξ(x − u)/σu] > 0 which for ξ < 0 implies
u < x ≤ u − σu/ξ. In the special case of ξ = 0 considered in the limit ξ → 0, which is treated
here as |ξ| < 1e− 6, it reduces to the exponential:

f(x|X > u) = 1/σuexp(−(x− u)/σu).

The unconditional density is obtained by mutltiplying this by the survival probability (or tail frac-
tion) φu = P (X > u) giving f(x) = φuf(x|X > u).

The syntax of these functions are similar to those of the evd package, so most code using these func-
tions can be reused. The key difference is the introduction of phiu to permit output of unconditional
quantities.

174 gpd

Value

dgpd gives the density, pgpd gives the cumulative distribution function, qgpd gives the quantile
function and rgpd gives a random sample.

Acknowledgments

Based on the gpd functions in the evd package for which their author’s contributions are gratefully
acknowledged. They are designed to have similar syntax and functionality to simplify the transition
for users of these packages.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rgpd any input vector must
be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
threshold u=0 and tail fraction phiu=1 which essentially assumes the user provide excesses above u
by default, rather than exceedances. The default sample size for rgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Some key differences arise for phiu=1 and phiu<1 (see examples below):

1. For phiu=1 the dgpd evaluates as zero for quantiles below the threshold u and pgpd evaluates
over [0, 1].

2. For phiu=1 then pgpd evaluates as zero below the threshold u. For phiu<1 it evaluates as
1− φu at the threshold and NA below the threshold.

3. For phiu=1 the quantiles from qgpd are above threshold and equal to threshold for phiu=0.
For phiu<1 then within upper tail, p > 1 - phiu, it will give conditional quantiles above
threshold, but when below the threshold, p <= 1 - phiu, these are set to NA.

4. When simulating GPD variates using rgpd if phiu=1 then all values are above the threshold.
For phiu<1 then a standard uniform U is simulated and the variate will be classified as above
the threshold if u < φ, and below the threshold otherwise. This is equivalent to a binomial
random variable for simulated number of exceedances. Those above the threshold are then
simulated from the conditional GPD and those below the threshold and set to NA.

These conditions are intuitive and consistent with evd, which assumes missing data are below
threshold.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

hillplot 175

Coles, S.G. (2001). An Introduction to Statistical Modelling of Extreme Values. Springer Series in
Statistics. Springer-Verlag: London.

See Also

evd package and fpot

Other gpd fgpd: fgpd

Examples

set.seed(1)
par(mfrow = c(2, 2))

x = rgpd(1000) # simulate sample from GPD
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgpd(xx))

three tail behaviours
plot(xx, pgpd(xx), type = "l")
lines(xx, pgpd(xx, xi = 0.3), col = "red")
lines(xx, pgpd(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

GPD when xi=0 is exponential, and demonstrating phiu
x = rexp(1000)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dgpd(xx, u = 0, sigmau = 1, xi = 0), lwd = 2)
lines(xx, dgpd(xx, u = 0.5, phiu = 1 - pexp(0.5)), col = "red", lwd = 2)
lines(xx, dgpd(xx, u = 1.5, phiu = 1 - pexp(1.5)), col = "blue", lwd = 2)
legend("topright", paste("u =",c(0, 0.5, 1.5)),

col=c("black", "red", "blue"), lty = 1, lwd = 2)

Quantile function and phiu
p = pgpd(xx)
plot(qgpd(p), p, type = "l")
lines(xx, pgpd(xx, u = 2), col = "red")
lines(xx, pgpd(xx, u = 5, phiu = 0.2), col = "blue")
legend("bottomright", c("u = 0 phiu = 1","u = 2 phiu = 1","u = 5 phiu = 0.2"),

col=c("black", "red", "blue"), lty = 1)

hillplot Hill Plot

Description

Plots the Hill plot and some its variants.

176 hillplot

Usage

hillplot(data, orderlim = NULL, tlim = NULL, hill.type = "Hill", r = 2,
x.theta = FALSE, y.alpha = FALSE, alpha = 0.05, ylim = NULL,
legend.loc = "topright", try.thresh = quantile(data[data > 0], 0.9, na.rm
= TRUE), main = paste(ifelse(x.theta, "Alt", ""), hill.type, " Plot", sep =
""), xlab = ifelse(x.theta, "theta", "order"),
ylab = paste(ifelse(x.theta, "Alt", ""), hill.type, ifelse(y.alpha,
" alpha", " xi"), ">0", sep = ""), ...)

Arguments

data vector of sample data

orderlim vector of (lower, upper) limits of order statistics to plot estimator, or NULL to use
default values

tlim vector of (lower, upper) limits of range of threshold to plot estimator, or NULL to
use default values

hill.type "Hill" or "SmooHill"

r smoothing factor for "SmooHill" (integer > 1)

x.theta logical, should order (FALSE) or theta (TRUE) be given on x-axis

y.alpha logical, should shape xi (FALSE) or tail index alpha (TRUE) be given on y-axis

alpha significance level over range (0, 1), or NULL for no CI

ylim y-axis limits or NULL

legend.loc location of legend (see legend) or NULL for no legend

try.thresh vector of thresholds to consider

main title of plot

xlab x-axis label

ylab y-axis label

... further arguments to be passed to the plotting functions

Details

Produces the Hill, AltHill, SmooHill and AltSmooHill plots, including confidence intervals.

For an ordered iid sequenceX(1) ≥ X(2) ≥ · · · ≥ X(n) > 0 the Hill (1975) estimator using k order
statistics is given by

Hk,n =
1

k

k∑
i=1

log(
X(i)

X(k+1)
)

which is the pseudo-likelihood estimator of reciprocal of the tail index ξ = /α > 0 for regularly
varying tails (e.g. Pareto distribution). The Hill estimator is defined on orders k > 2, as whenk = 1
the

H1,n = 0

. The function will calculate the Hill estimator for k ≥ 1. The simple Hill plot is shown for
hill.type="Hill".

Once a sufficiently low order statistic is reached the Hill estimator will be constant, upto sample
uncertainty, for regularly varying tails. The Hill plot is a plot of

Hk,n

hillplot 177

against the k. Symmetric asymptotic normal confidence intervals assuming Pareto tails are pro-
vided.

These so called Hill’s horror plots can be difficult to interpret. A smooth form of the Hill estimator
was suggested by Resnick and Starica (1997):

smooHk,n =
1

(r − 1)k

rk∑
j=k+1

Hj,n

giving the smooHill plot which is shown for hill.type="SmooHill". The smoothing factor is r=2
by default.

It has also been suggested to plot the order on a log scale, by plotting the points (θ,Hdnθe,n) for
0 ≤ θ ≤ 1. This gives the so called AltHill and AltSmooHill plots. The alternative x-axis scale is
chosen by x.theta=TRUE.

The Hill estimator is for the GPD shape ξ > 0, or the reciprocal of the tail index α = 1/ξ > 0. The
shape is plotted by default using y.alpha=FALSE and the tail index is plotted when y.alpha=TRUE.

A pre-chosen threshold (or more than one) can be given in try.thresh. The estimated parameter
(ξ or α) at each threshold are plot by a horizontal solid line for all higher thresholds. The threshold
should be set as low as possible, so a dashed line is shown below the pre-chosen threshold. If the
Hill estimator is similar to the dashed line then a lower threshold may be chosen.

If no order statistic (or threshold) limits are provided orderlim = tlim = NULL then the
lowest order statistic is set to X(3) and highest possible value X(n−1). However, the Hill estimator
is always output for all k = 1, . . . , n− 1 and k = 1, . . . , f loor(n/k) for smooHill estimator.

The missing (NA and NaN) and non-finite values are ignored. Non-positive data are ignored.

The lower x-axis is the order k or θ, chosen by the option x.theta=FALSE and x.theta=TRUE
respectively. The upper axis is for the corresponding threshold.

Value

hillplot gives the Hill plot. It also returns a dataframe containing columns of the order statistics,
order, Hill estimator, it’s standard devation and 100(1−α)% confidence interval (when requested).
When the SmooHill plot is selected, then the corresponding SmooHill estimates are appended.

Acknowledgments

Thanks to Younes Mouatasim, Risk Dynamics, Brussels for reporting various bugs in these func-
tions.

Note

Warning: Hill plots are not location invariant.

Asymptotic Wald type CI’s are estimated for non-NULL signficance level alpha for the shape param-
eter, assuming exactly Pareto tails. When plotting on the tail index scale, then a simple reciprocal
transform of the CI is applied which may be sub-optimal.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

178 hpd

References

Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Annals
of Statistics 13, 331-341.

Resnick, S. and Starica, C. (1997). Smoothing the Hill estimator. Advances in Applied Probability
29, 271-293.

Resnick, S. (1997). Discussion of the Danish Data of Large Fire Insurance Losses. Astin Bulletin
27, 139-151.

See Also

hill

Examples

Not run:
Reproduce graphs from Figure 2.4 of Resnick (1997)
data(danish, package="evir")
par(mfrow = c(2, 2))

Hill plot
hillplot(danish, y.alpha=TRUE, ylim=c(1.1, 2))

AltHill plot
hillplot(danish, y.alpha=TRUE, x.theta=TRUE, ylim=c(1.1, 2))

AltSmooHill plot
hillplot(danish, hill.type="SmooHill", r=3, y.alpha=TRUE, x.theta=TRUE, ylim=c(1.35, 1.85))

AltHill and AltSmooHill plot (no CI's or legend)
hillout = hillplot(danish, hill.type="SmooHill", r=3, y.alpha=TRUE,
x.theta=TRUE, try.thresh = c(), alpha=NULL, ylim=c(1.1, 2), legend.loc=NULL, lty=2)

n = length(danish)
with(hillout[3:n,], lines(log(ks)/log(n), 1/H, type="s"))

End(Not run)

hpd Hybrid Pareto Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
hybrid Pareto extreme value mixture model. The parameters are the normal mean nmean and stan-
dard deviation nsd and GPD shape xi.

Usage

dhpd(x, nmean = 0, nsd = 1, xi = 0, log = FALSE)

phpd(q, nmean = 0, nsd = 1, xi = 0, lower.tail = TRUE)

qhpd(p, nmean = 0, nsd = 1, xi = 0, lower.tail = TRUE)

hpd 179

rhpd(n = 1, nmean = 0, nsd = 1, xi = 0)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

xi shape parameter

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining normal distribution for the bulk below the threshold and
GPD for upper tail which is continuous in its zeroth and first derivative at the threshold.

But it has one important difference to all the other mixture models. The hybrid Pareto does not
include the usual tail fraction phiu scaling, i.e. so the GPD is not treated as a conditional model for
the exceedances. The unscaled GPD is simply spliced with the normal truncated at the threshold,
with no rescaling to account for the proportion above the threshold being applied. The parameters
have to adjust for the lack of tail fraction scaling.

The cumulative distribution function defined upto the threshold x ≤ u, given by:

F (x) = H(x)/r

and above the threshold x > u:

F (x) = (H(u) +G(x))/r

where H(x) and G(X) are the normal and conditional GPD cumulative distribution functions. The
normalisation constant r ensures a proper density and is given byr = 1 + pnorm(u, mean = nmean, sd = nsd),
i.e. the 1 comes from integration of the unscaled GPD and the second term is from the usual normal
component.

The two continuity constraints leads to the threshold u and GPD scale sigmau being replaced by
a function of the normal mean, standard deviation and GPD shape parameters. Determined from
setting h(u) = g(u) where h(x) and g(x) are the normal and unscaled GPD density functions (i.e.
dnorm(u, nmean, nsd) and dgpd(u, u, sigmau, xi)). The continuity constraint on its first
derivative at the threshold means that h′(u) = g′(u). Then the Lambert-W function is used for
replacing the threshold u and GPD scale sigmau in terms of the normal mean, standard deviation
and GPD shape xi.

See gpd for details of GPD upper tail component and dnorm for details of normal bulk component.

Value

dhpd gives the density, phpd gives the cumulative distribution function, qhpd gives the quantile
function and rhpd gives a random sample.

180 hpd

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rhpd any input vector must
be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rhpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Carreau, J. and Y. Bengio (2008). A hybrid Pareto model for asymmetric fat-tailed data: the uni-
variate case. Extremes 12 (1), 53-76.

See Also

gpd and dnorm.

The condmixt package written by one of the original authors of the hybrid Pareto model (Carreau
and Bengio, 2008) also has similar functions for the hybrid Pareto hpareto and mixture of hybrid
Paretos hparetomixt, which are more flexible as they also permit the model to be truncated at zero.

Other hpd hpdcon fhpd fhpdcon normgpd normgpdcon fnormgpd fnormgpdcon: hpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(-5, 20, 0.01)
f1 = dhpd(xx, nmean = 0, nsd = 1, xi = 0.4)
plot(xx, f1, type = "l")
abline(v = 0.4942921)

three tail behaviours
plot(xx, phpd(xx), type = "l")
lines(xx, phpd(xx, xi = 0.3), col = "red")
lines(xx, phpd(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

hpdcon 181

sim = rhpd(10000, nmean = 0, nsd = 1.5, xi = 0.2)
hist(sim, freq = FALSE, 100, xlim = c(-5, 20), ylim = c(0, 0.2))
lines(xx, dhpd(xx, nmean = 0, nsd = 1.5, xi = 0.2), col = "blue")

plot(xx, dhpd(xx, nmean = 0, nsd = 1.5, xi = 0), type = "l")
lines(xx, dhpd(xx, nmean = 0, nsd = 1.5, xi = 0.2), col = "red")
lines(xx, dhpd(xx, nmean = 0, nsd = 1.5, xi = -0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

hpdcon Hybrid Pareto Extreme Value Mixture Model with Single Continuity
Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
hybrid Pareto extreme value mixture model, but only continuity at threshold and not necessarily
continuous in first derivative. The parameters are the normal mean nmean and standard deviation
nsd and GPD shape xi.

Usage

dhpdcon(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
log = FALSE)

phpdcon(q, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
lower.tail = TRUE)

qhpdcon(p, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
lower.tail = TRUE)

rhpdcon(n = 1, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

u threshold

xi shape parameter

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

182 hpdcon

Details

Extreme value mixture model combining normal distribution for the bulk below the threshold and
GPD for upper tail which is continuous at threshold and not necessarily continuous in first deriva-
tive.

But it has one important difference to all the other mixture models. The hybrid Pareto does not
include the usual tail fraction phiu scaling, i.e. so the GPD is not treated as a conditional model for
the exceedances. The unscaled GPD is simply spliced with the normal truncated at the threshold,
with no rescaling to account for the proportion above the threshold being applied. The parameters
have to adjust for the lack of tail fraction scaling.

The cumulative distribution function defined upto the threshold x ≤ u, given by:

F (x) = H(x)/r

and above the threshold x > u:

F (x) = (H(u) +G(x))/r

where H(x) and G(X) are the normal and conditional GPD cumulative distribution functions. The
normalisation constant r ensures a proper density and is given byr = 1 + pnorm(u, mean = nmean, sd = nsd),
i.e. the 1 comes from integration of the unscaled GPD and the second term is from the usual normal
component.

The continuity constraint leads to the GPD scale sigmau being replaced by a function of the
normal mean, standard deviation, threshold and GPD shape parameters. Determined from set-
ting h(u) = g(u) where h(x) and g(x) are the normal and unscaled GPD density functions (i.e.
dnorm(u, nmean, nsd) and dgpd(u, u, sigmau, xi)).

See gpd for details of GPD upper tail component and dnorm for details of normal bulk component.

Value

dhpdcon gives the density, phpdcon gives the cumulative distribution function, qhpdcon gives the
quantile function and rhpdcon gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rhpdcon any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rhpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

hpdcon 183

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Carreau, J. and Y. Bengio (2008). A hybrid Pareto model for asymmetric fat-tailed data: the uni-
variate case. Extremes 12 (1), 53-76.

See Also

gpd and dnorm.

The condmixt package written by one of the original authors of the hybrid Pareto model (Carreau
and Bengio, 2008) also has similar functions for the hybrid Pareto hpareto and mixture of hybrid
Paretos hparetomixt, which are more flexible as they also permit the model to be truncated at zero.

Other hpd hpdcon fhpd fhpdcon normgpd normgpdcon fnormgpd fnormgpdcon: hpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(-5, 20, 0.01)
f1 = dhpdcon(xx, nmean = 0, nsd = 1.5, u = 1, xi = 0.4)
plot(xx, f1, type = "l")
abline(v = 4)

three tail behaviours
plot(xx, phpdcon(xx), type = "l")
lines(xx, phpdcon(xx, xi = 0.3), col = "red")
lines(xx, phpdcon(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

sim = rhpdcon(10000, nmean = 0, nsd = 1.5, u = 1, xi = 0.2)
hist(sim, freq = FALSE, 100, xlim = c(-5, 20), ylim = c(0, 0.2))
lines(xx, dhpdcon(xx, nmean = 0, nsd = 1.5, u = 1, xi = 0.2), col = "blue")

plot(xx, dhpdcon(xx, nmean = 0, nsd = 1.5, u = 1, xi = 0), type = "l")
lines(xx, dhpdcon(xx, nmean = 0, nsd = 1.5, u = 1, xi = 0.2), col = "red")
lines(xx, dhpdcon(xx, nmean = 0, nsd = 1.5, u = 1, xi = -0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "u = 1, xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

184 internal

internal Internal Functions

Description

Internal functions not designed to be used directly, but are all exported to make them visible to
users.

Usage

kdenx(x, kerncentres, lambda, kernel = "gaussian")

pkdenx(x, kerncentres, lambda, kernel = "gaussian")

bckdenxsimple(x, kerncentres, lambda, kernel = "gaussian")

pbckdenxsimple(x, kerncentres, lambda, kernel = "gaussian")

bckdenxcutnorm(x, kerncentres, lambda, kernel = "gaussian")

pbckdenxcutnorm(x, kerncentres, lambda, kernel = "gaussian")

bckdenxrenorm(x, kerncentres, lambda, kernel = "gaussian")

pbckdenxrenorm(x, kerncentres, lambda, kernel = "gaussian")

bckdenxreflect(x, kerncentres, lambda, kernel = "gaussian")

pbckdenxreflect(x, kerncentres, lambda, kernel = "gaussian")

pxb(x, lambda)

bckdenxbeta1(x, kerncentres, lambda, xmax)

pbckdenxbeta1(x, kerncentres, lambda, xmax)

bckdenxbeta2(x, kerncentres, lambda, xmax)

pbckdenxbeta2(x, kerncentres, lambda, xmax)

bckdenxgamma1(x, kerncentres, lambda)

pbckdenxgamma1(x, kerncentres, lambda)

bckdenxgamma2(x, kerncentres, lambda)

pbckdenxgamma2(x, kerncentres, lambda)

bckdenxcopula(x, kerncentres, lambda, xmax)

pbckdenxcopula(x, kerncentres, lambda, xmax)

internal 185

pbckdenxlog(x, kerncentres, lambda, offset, kernel = "gaussian")

pbckdenxnn(x, kerncentres, lambda, kernel = "gaussian", nn)

qmix(x, u, epsilon)

qmixprime(x, u, epsilon)

qgbgmix(x, ul, ur, epsilon)

qgbgmixprime(x, ul, ur, epsilon)

pscounts(x, beta, design.knots, degree)

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

kernel kernel name (default = "gaussian")

xmax upper bound on support (copula and beta kernels only) or NULL

offset offset added to kernel centres (logtrans only) or NULL

nn non-negativity correction method (simple boundary correction only)

u threshold

epsilon interval half-width

ul lower tail threshold

ur upper tail threshold

beta vector of B-spline coefficients (required)

design.knots spline knots for splineDesign function

degree degree of B-splines (0 is constant, 1 is linear, etc.)

Details

Internal functions not designed to be used directly. No error checking of the inputs is carried out, so
user must be know what they are doing. They are undocumented, but are made visible to the user.

Mostly, these are used in the kernel density estimation functions.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

See Also

density, kden and bckden.

186 itmgng

itmgng Normal Bulk with GPD Upper and Lower Tails Interval Transition
Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with normal for bulk distribution between the upper and lower thresh-
olds with conditional GPD’s for the two tails and interval transition. The parameters are the normal
mean nmean and standard deviation nsd, interval half-width espilon, lower tail (threshold ul,
GPD scale sigmaul and shape xil and tail fraction phiul) and upper tail (threshold ur, GPD scale
sigmaur and shape xiR and tail fraction phiuR).

Usage

ditmgng(x, nmean = 0, nsd = 1, epsilon = nsd, ul = qnorm(0.1, nmean,
nsd), sigmaul = nsd, xil = 0, ur = qnorm(0.9, nmean, nsd),
sigmaur = nsd, xir = 0, log = FALSE)

pitmgng(q, nmean = 0, nsd = 1, epsilon = nsd, ul = qnorm(0.1, nmean,
nsd), sigmaul = nsd, xil = 0, ur = qnorm(0.9, nmean, nsd),
sigmaur = nsd, xir = 0, lower.tail = TRUE)

qitmgng(p, nmean = 0, nsd = 1, epsilon, ul = qnorm(0.1, nmean, nsd),
sigmaul = nsd, xil = 0, ur = qnorm(0.9, nmean, nsd), sigmaur = nsd,
xir = 0, lower.tail = TRUE)

ritmgng(n = 1, nmean = 0, nsd = 1, epsilon = sd, ul = qnorm(0.1,
nmean, nsd), sigmaul = nsd, xil = 0, ur = qnorm(0.9, nmean, nsd),
sigmaur = nsd, xir = 0)

Arguments

x quantiles
nmean normal mean
nsd normal standard deviation (positive)
epsilon interval half-width
ul lower tail threshold
sigmaul lower tail GPD scale parameter (positive)
xil lower tail GPD shape parameter
ur upper tail threshold
sigmaur upper tail GPD scale parameter (positive)
xir upper tail GPD shape parameter
log logical, if TRUE then log density
q quantiles
lower.tail logical, if FALSE then upper tail probabilities
p cumulative probabilities
n sample size (positive integer)

itmgng 187

Details

The interval transition extreme value mixture model combines a normal distribution for the bulk
between the lower and upper thresholds and GPD for upper and lower tails, with a smooth transition
over the interval (u − epsilon, u + epsilon) (where u can be exchanged for the lower and upper
thresholds). The mixing function warps the normal to map from (u−epsilon, u) to (u−epsilon, u+
epsilon) and warps the GPD from (u, u+ epsilon) to (u− epsilon, u+ epsilon).

The cumulative distribution function is defined by

F (x) = κ(Gl(q(x)) +Ht(r(x)) +Gu(p(x)))

where Ht(x) is the truncated normal cdf, i.e. pnorm(x, nmean, nsd). The conditional GPD for
the upper tail has cdf Gu(x), i.e. pgpd(x, ur, sigmaur, xir) and lower tail cdf Gl(x) is for the
negated support, i.e. 1 - pgpd(-x, -ul, sigmaul, xil). The truncated normal is not renor-
malised to be proper, so Ht(x) contributes pnorm(ur, nmean, nsd) - pnorm(ul, nmean, nsd)
to the cdf for all x ≥ (ur + ε) and zero below x ≤ (ul − ε). The normalisation constant κ ensures
a proper density, given by 1/(2 + pnorm(ur, nmean, nsd) - pnorm(ul, nmean, nsd) where
the 2 is from two GPD components and latter is contribution from normal component.

The mixing functions q(x), r(x) and p(x) are reformulated from the qi(x) suggested by Holden and
Haug (2013). These are symmetric about each threshold, which for convenience will be referred
to a simply u. So for computational convenience only a single q(x;u) has been implemented for
the lower and upper GPD components called qmix for a given u, with the complementary mixing
function then defined as p(x;u) = −q(−x;−u). The bulk model mixing function r(x) utilises the
equivalent of the q(x) for the lower threshold and p(x) for the upper threshold, so these are reused
in the bulk mixing function qgbgmix.

A minor adaptation of the mixing function has been applied following a similar approach to that
explained in ditmnormgpd. For the bulk model mixing function r(x), we need r(x) <= ul for all
x ≤ ul− epsilon and r(x) >= ur for all x ≥ ur+ epsilon, as then the bulk model will contribute
zero below the lower interval and the constant Ht(ur) = H(ur)−H(ul) for all x above the upper
interval. Holden and Haug (2013) define r(x) = x − ε for all x ≥ ur and r(x) = x + ε for
all x ≤ ul. For more straightforward and interpretable computational implementation the mixing
function has been set to the lower threshold r(x) = ul for all x ≤ ul − ε and to the upper threshold
r(x) = ur for all x ≤ ur + ε, so the cdf/pdf of the normal model can be used directly. We do
not have to define cdf/pdf for the non-proper truncated normal seperately. As such r′(x) = 0 for
all x ≤ ul − ε and x ≥ ur + ε in qmixxprime, which also makes it clearer that normal does not
contribute to either tails beyond the intervals and vice-versa.

The quantile function within the transition interval is not available in closed form, so has to be
solved numerically. Outside of the interval, the quantile are obtained from the normal and GPD
components directly.

Value

ditmgng gives the density, pitmgng gives the cumulative distribution function, qitmgng gives the
quantile function and ritmgng gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main input (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of ritmgng any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for ritmgng is 1.

188 itmgng

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

gng, normgpd, gpd and dnorm

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, fnormgpd, gngcon, gng, normgpdcon, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(-5, 5, 0.01)
ul = -1.5;ur = 2
epsilon = 0.8
kappa = 1/(2 + pnorm(ur, 0, 1) - pnorm(ul, 0, 1))

f = ditmgng(xx, nmean = 0, nsd = 1, epsilon, ul, sigmaul = 1, xil = 0.5, ur, sigmaur = 1, xir = 0.5)
plot(xx, f, ylim = c(0, 0.5), xlim = c(-5, 5), type = 'l', lwd = 2, xlab = "x", ylab = "density")
lines(xx, kappa * dgpd(-xx, -ul, sigmau = 1, xi = 0.5), col = "blue", lty = 2, lwd = 2)
lines(xx, kappa * dnorm(xx, 0, 1), col = "red", lty = 2, lwd = 2)
lines(xx, kappa * dgpd(xx, ur, sigmau = 1, xi = 0.5), col = "green", lty = 2, lwd = 2)
abline(v = ul + epsilon * seq(-1, 1), lty = c(2, 1, 2), col = "blue")
abline(v = ur + epsilon * seq(-1, 1), lty = c(2, 1, 2), col = "green")
legend('topright', c('Normal-GPD ITM', 'kappa*GPD Lower', 'kappa*Normal', 'kappa*GPD Upper'),

col = c("black", "blue", "red", "green"), lty = c(1, 2, 2, 2), lwd = 2)

cdf contributions
F = pitmgng(xx, nmean = 0, nsd = 1, epsilon, ul, sigmaul = 1, xil = 0.5, ur, sigmaur = 1, xir = 0.5)
plot(xx, F, ylim = c(0, 1), xlim = c(-5, 5), type = 'l', lwd = 2, xlab = "x", ylab = "cdf")
lines(xx[xx < ul], kappa * (1 - pgpd(-xx[xx < ul], -ul, 1, 0.5)), col = "blue", lty = 2, lwd = 2)
lines(xx[(xx >= ul) & (xx <= ur)], kappa * (1 + pnorm(xx[(xx >= ul) & (xx <= ur)], 0, 1) -

pnorm(ul, 0, 1)), col = "red", lty = 2, lwd = 2)
lines(xx[xx > ur], kappa * (1 + (pnorm(ur, 0, 1) - pnorm(ul, 0, 1)) +

pgpd(xx[xx > ur], ur, sigmau = 1, xi = 0.5)), col = "green", lty = 2, lwd = 2)
abline(v = ul + epsilon * seq(-1, 1), lty = c(2, 1, 2), col = "blue")

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

itmnormgpd 189

abline(v = ur + epsilon * seq(-1, 1), lty = c(2, 1, 2), col = "green")
legend('topleft', c('Normal-GPD ITM', 'kappa*GPD Lower', 'kappa*Normal', 'kappa*GPD Upper'),

col = c("black", "blue", "red", "green"), lty = c(1, 2, 2, 2), lwd = 2)

simulated data density histogram and overlay true density
x = ritmgng(10000, nmean = 0, nsd = 1, epsilon, ul, sigmaul = 1, xil = 0.5,

ur, sigmaur = 1, xir = 0.5)
hist(x, freq = FALSE, breaks = seq(-1000, 1000, 0.1), xlim = c(-5, 5))
lines(xx, ditmgng(xx, nmean = 0, nsd = 1, epsilon, ul, sigmaul = 1, xil = 0.5,

ur, sigmaur = 1, xir = 0.5), lwd = 2, col = 'black')

End(Not run)

itmnormgpd Normal Bulk and GPD Tail Interval Transition Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
normal bulk and GPD tail interval transition mixture model. The parameters are the normal mean
nmean and standard deviation nsd, threshold u, interval half-width epsilon, GPD scale sigmau and
shape xi.

Usage

ditmnormgpd(x, nmean = 0, nsd = 1, epsilon = nsd, u = qnorm(0.9, nmean,
nsd), sigmau = nsd, xi = 0, log = FALSE)

pitmnormgpd(q, nmean = 0, nsd = 1, epsilon = nsd, u = qnorm(0.9, nmean,
nsd), sigmau = nsd, xi = 0, lower.tail = TRUE)

qitmnormgpd(p, nmean = 0, nsd = 1, epsilon = nsd, u = qnorm(0.9, nmean,
nsd), sigmau = nsd, xi = 0, lower.tail = TRUE)

ritmnormgpd(n = 1, nmean = 0, nsd = 1, epsilon = nsd, u = qnorm(0.9,
nmean, nsd), sigmau = nsd, xi = 0)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

epsilon interval half-width

u threshold

sigmau scale parameter (positive)

xi shape parameter

log logical, if TRUE then log density

q quantiles

190 itmnormgpd

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

The interval transition mixture model combines a normal for the bulk model with GPD for the tail
model, with a smooth transition over the interval (u− epsilon, u+ epsilon). The mixing function
warps the normal to map from (u− epsilon, u) to (u− epsilon, u+ epsilon) and warps the GPD
from (u, u+ epsilon) to (u− epsilon, u+ epsilon).

The cumulative distribution function is defined by

F (x) = κ(Ht(q(x)) +G(p(x)))

whereHt(x) andG(x) are the truncated normal and conditional GPD cumulative distribution func-
tions (i.e. pnorm(x, nmean, nsd) and pgpd(x, u, sigmau, xi)) respectively. The trun-
cated normal is not renormalised to be proper, so Ht(x) contrubutes pnorm(u, nmean, nsd) to
the cdf for all x ≥ (u + ε). The normalisation constant κ ensures a proper density, given by
1/(1+pnorm(u, nmean, nsd)) where 1 is from GPD component and latter is contribution from
normal component.

The mixing functions q(x) and p(x) suggested by Holden and Haug (2013) have been implemented.
These are symmetric about the threshold u. So for computational convenience only q(x;u) has
been implemented as qmix for a given u, with the complementary mixing function is then defined
as p(x;u) = −q(−x;−u).
A minor adaptation of the mixing function has been applied. For the mixture model to function
correctly q(x) >= u for all x ≥ u+ ε, as then the bulk model will contribute the constant Ht(u) =
H(u) for all x above the interval. Holden and Haug (2013) define q(x) = x − ε for all x ≥ u.
For more straightforward and interpretable computational implementation the mixing function has
been set to the threshold q(x) = u for all x ≥ u, so the cdf/pdf of the normal model can be used
directly. We do not have to define cdf/pdf for the non-proper truncated normal seperately. As such
q′(x) = 0 for all x ≥ u in qmixxprime, which also makes it clearer that normal does not contribute
to the tail above the interval and vice-versa.

The quantile function within the transition interval is not available in closed form, so has to be
solved numerically. Outside of the interval, the quantile are obtained from the normal and GPD
components directly.

Value

ditmnormgpd gives the density, pitmnormgpd gives the cumulative distribution function, qitmnormgpd
gives the quantile function and ritmnormgpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of ritmnormgpd any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for ritmnormgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

itmnormgpd 191

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

normgpd, gpd and dnorm

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(-4, 5, 0.01)
u = 1.5
epsilon = 0.4
kappa = 1/(1 + pnorm(u, 0, 1))

f = ditmnormgpd(xx, nmean = 0, nsd = 1, epsilon, u, sigmau = 1, xi = 0.5)
plot(xx, f, ylim = c(0, 1), xlim = c(-4, 5), type = 'l', lwd = 2, xlab = "x", ylab = "density")
lines(xx, kappa * dgpd(xx, u, sigmau = 1, xi = 0.5), col = "red", lty = 2, lwd = 2)
lines(xx, kappa * dnorm(xx, 0, 1), col = "blue", lty = 2, lwd = 2)
abline(v = u + epsilon * seq(-1, 1), lty = c(2, 1, 2))
legend('topright', c('Normal-GPD ITM', 'kappa*Normal', 'kappa*GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

cdf contributions
F = pitmnormgpd(xx, nmean = 0, nsd = 1, epsilon, u, sigmau = 1, xi = 0.5)
plot(xx, F, ylim = c(0, 1), xlim = c(-4, 5), type = 'l', lwd = 2, xlab = "x", ylab = "cdf")
lines(xx[xx > u], kappa * (pnorm(u, 0, 1) + pgpd(xx[xx > u], u, sigmau = 1, xi = 0.5)),

col = "red", lty = 2, lwd = 2)
lines(xx[xx <= u], kappa * pnorm(xx[xx <= u], 0, 1), col = "blue", lty = 2, lwd = 2)
abline(v = u + epsilon * seq(-1, 1), lty = c(2, 1, 2))
legend('topleft', c('Normal-GPD ITM', 'kappa*Normal', 'kappa*GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

simulated data density histogram and overlay true density
x = ritmnormgpd(10000, nmean = 0, nsd = 1, epsilon, u, sigmau = 1, xi = 0.5)
hist(x, freq = FALSE, breaks = seq(-4, 1000, 0.1), xlim = c(-4, 5))
lines(xx, ditmnormgpd(xx, nmean = 0, nsd = 1, epsilon, u, sigmau = 1, xi = 0.5),

lwd = 2, col = 'black')

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

192 itmweibullgpd

End(Not run)

itmweibullgpd Weibull Bulk and GPD Tail Interval Transition Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
Weibull bulk and GPD tail interval transition mixture model. The parameters are the Weibull shape
wshape and scale wscale, threshold u, interval half-width epsilon, GPD scale sigmau and shape
xi.

Usage

ditmweibullgpd(x, wshape = 1, wscale = 1, epsilon = sqrt(wscale^2 *
gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), u = qweibull(0.9,
wshape, wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale *
gamma(1 + 1/wshape))^2), xi = 0, log = FALSE)

pitmweibullgpd(q, wshape = 1, wscale = 1, epsilon = sqrt(wscale^2 *
gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), u = qweibull(0.9,
wshape, wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale *
gamma(1 + 1/wshape))^2), xi = 0, lower.tail = TRUE)

qitmweibullgpd(p, wshape = 1, wscale = 1, epsilon = sqrt(wscale^2 *
gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), u = qweibull(0.9,
wshape, wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale *
gamma(1 + 1/wshape))^2), xi = 0, lower.tail = TRUE)

ritmweibullgpd(n = 1, wshape = 1, wscale = 1, epsilon = sqrt(wscale^2 *
gamma(1 + 2/wshape) - (wscale * gamma(1 + 1/wshape))^2), u = qweibull(0.9,
wshape, wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale *
gamma(1 + 1/wshape))^2), xi = 0)

Arguments

x quantiles

wshape Weibull shape (positive)

wscale Weibull scale (positive)

epsilon interval half-width

u threshold

sigmau scale parameter (positive)

xi shape parameter

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

itmweibullgpd 193

Details

The interval transition mixture model combines a Weibull for the bulk model with GPD for the tail
model, with a smooth transition over the interval (u− epsilon, u+ epsilon). The mixing function
warps the Weibull to map from (u− epsilon, u) to (u− epsilon, u+ epsilon) and warps the GPD
from (u, u+ epsilon) to (u− epsilon, u+ epsilon).

The cumulative distribution function is defined by

F (x) = κ(Ht(q(x)) +G(p(x)))

where Ht(x) and G(X) are the truncated Weibull and conditional GPD cumulative distribution
functions (i.e. pweibull(x, wshape, wscale) and pgpd(x, u, sigmau, xi)) respectively. The
truncated Weibull is not renormalised to be proper, soHt(x) contrubutes pweibull(u, wshape, wscale)
to the cdf for all x ≥ (u + ε). The normalisation constant κ ensures a proper density, given by
1/(1+pweibull(u, wshape, wscale)) where 1 is from GPD component and latter is contribu-
tion from Weibull component.

The mixing functions q(x) and p(x) suggested by Holden and Haug (2013) have been implemented.
These are symmetric about the threshold u. So for computational convenience only q(x;u) has
been implemented as qmix for a given u, with the complementary mixing function is then defined
as p(x;u) = −q(−x;−u).
A minor adaptation of the mixing function has been applied. For the mixture model to function
correctly q(x) >= u for all x ≥ u+ ε, as then the bulk model will contribute the constant Ht(u) =
H(u) for all x above the interval. Holden and Haug (2013) define q(x) = x − ε for all x ≥ u.
For more straightforward and interpretable computational implementation the mixing function has
been set to the threshold q(x) = u for all x ≥ u, so the cdf/pdf of the Weibull model can be used
directly. We do not have to define cdf/pdf for the non-proper truncated Weibull seperately. As such
q′(x) = 0 for all x ≥ u in qmixxprime, which also it makes clearer that Weibull does not contribute
to the tail above the interval and vice-versa.

The quantile function within the transition interval is not available in closed form, so has to be
solved numerically. Outside of the interval, the quantile are obtained from the Weibull and GPD
components directly.

Value

ditmweibullgpd gives the density, pitmweibullgpd gives the cumulative distribution function,
qitmweibullgpd gives the quantile function and ritmweibullgpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of ritmweibullgpd any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for ritmweibullgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

194 itmweibullgpd

References

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Holden, L. and Haug, O. (2013). A mixture model for unsupervised tail estimation. arxiv:0902.4137

See Also

weibullgpd, gpd and dweibull

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

xx = seq(0.001, 5, 0.01)
u = 1.5
epsilon = 0.4
kappa = 1/(1 + pweibull(u, 2, 1))

f = ditmweibullgpd(xx, wshape = 2, wscale = 1, epsilon, u, sigmau = 1, xi = 0.5)
plot(xx, f, ylim = c(0, 1), xlim = c(0, 5), type = 'l', lwd = 2, xlab = "x", ylab = "density")
lines(xx, kappa * dgpd(xx, u, sigmau = 1, xi = 0.5), col = "red", lty = 2, lwd = 2)
lines(xx, kappa * dweibull(xx, 2, 1), col = "blue", lty = 2, lwd = 2)
abline(v = u + epsilon * seq(-1, 1), lty = c(2, 1, 2))
legend('topright', c('Weibull-GPD ITM', 'kappa*Weibull', 'kappa*GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

cdf contributions
F = pitmweibullgpd(xx, wshape = 2, wscale = 1, epsilon, u, sigmau = 1, xi = 0.5)
plot(xx, F, ylim = c(0, 1), xlim = c(0, 5), type = 'l', lwd = 2, xlab = "x", ylab = "cdf")
lines(xx[xx > u], kappa * (pweibull(u, 2, 1) + pgpd(xx[xx > u], u, sigmau = 1, xi = 0.5)),

col = "red", lty = 2, lwd = 2)
lines(xx[xx <= u], kappa * pweibull(xx[xx <= u], 2, 1), col = "blue", lty = 2, lwd = 2)
abline(v = u + epsilon * seq(-1, 1), lty = c(2, 1, 2))
legend('topright', c('Weibull-GPD ITM', 'kappa*Weibull', 'kappa*GPD'),

col = c("black", "blue", "red"), lty = c(1, 2, 2), lwd = 2)

simulated data density histogram and overlay true density
x = ritmweibullgpd(10000, wshape = 2, wscale = 1, epsilon, u, sigmau = 1, xi = 0.5)
hist(x, freq = FALSE, breaks = seq(0, 1000, 0.1), xlim = c(0, 5))
lines(xx, ditmweibullgpd(xx, wshape = 2, wscale = 1, epsilon, u, sigmau = 1, xi = 0.5),

lwd = 2, col = 'black')

End(Not run)

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

kden 195

kden Kernel Density Estimation, With Variety of Kernels

Description

Density, cumulative distribution function, quantile function and random number generation for the
kernel density estimation using the kernel specified by kernel, with a constant bandwidth specified
by either lambda or bw.

Usage

dkden(x, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
log = FALSE)

pkden(q, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
lower.tail = TRUE)

qkden(p, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian",
lower.tail = TRUE)

rkden(n = 1, kerncentres, lambda = NULL, bw = NULL, kernel = "gaussian")

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Kernel density estimation using one of many possible kernels with a constant bandwidth.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels help documentation with the "gaussian" as the
default choice.

The density function dkden produces exactly the same density estimate as density when a se-
quence of x values are provided, see examples. The latter function is far more efficient in this
situation as it takes advantage of the computational savings from doing the kernel smoothing in the
spectral domain (using the FFT), where the convolution becomes a multiplication. So even after
accounting for applying the (Fast) Fourier Transform (FFT) and its inverse it is much more efficient
especially for a large sample size or large number of evaluation points.

196 kden

However, this KDE function applies the less efficient convolution using the standard definition:

f̂(x) =
1

n

n∑
j=1

K(
x− xj
λ

)

where K(.) is the density function for the standard kernel. Thus are no restriction on the values x
can take. For example, in the "gaussian" kernel case for a particular x the density is evaluated as
mean(dnorm(x, kerncentres, lambda)) for the density and mean(pnorm(x, kerncentres, lambda))
for cumulative distribution function which is slower than the FFT but is more adaptable.

An inversion sampler is used for random number generation which also rather inefficient, as it can
be carried out more efficiently using a mixture representation.

The quantile function is rather complicated as there is no closed form solution, so is obtained by
numerical approximation of the inverse cumulative distribution function P (X ≤ q) = p to find q.
The quantile function qkden evaluates the KDE cumulative distribution function over the range from
c(max(kerncentre) - lambda, max(kerncentre) + lambda), or c(max(kerncentre) - 5*lambda, max(kerncentre) + 5*lambda)
for normal kernel. Outside of this range the quantiles are set to -Inf for lower tail and Inf for upper
tail. A sequence of values of length fifty times the number of kernels (with minimum of 1000) is
first calculated. Spline based interpolation using splinefun, with default monoH.FC method, is then
used to approximate the quantile function. This is a similar approach to that taken by Matt Wand in
the qkde in the ks package.

If no bandwidth is provided lambda=NULL and bw=NULL then the normal reference rule is used, using
the bw.nrd0 function, which is consistent with the density function. At least two kernel centres
must be provided as the variance needs to be estimated.

Value

dkden gives the density, pkden gives the cumulative distribution function, qkden gives the quantile
function and rkden gives a random sample.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the kden functions have not been
vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vector,
which also define the output length.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rkden is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

kden 197

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpd-
con fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, bckden, fbckden, fkden,
kdengpdcon, kdengpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

nk=50
x = rnorm(nk)
xx = seq(-5, 5, 0.01)
plot(xx, dnorm(xx))
rug(x)
for (i in 1:nk) lines(xx, dnorm(xx, x[i], sd = bw.nrd0(x))*0.05)
lines(xx, dkden(xx, x), lwd = 2, col = "red")
lines(density(x), lty = 2, lwd = 2, col = "green")
legend("topright", c("True Density", "KDE Using evmix", "KDE Using density function"),
lty = c(1, 1, 2), lwd = c(1, 2, 2), col = c("black", "red", "green"))

Estimate bandwidth using cross-validation likelihood
x = rnorm(nk)
fit = fkden(x)
hist(x, nk/5, freq = FALSE, xlim = c(-5, 5), ylim = c(0, 0.6))
rug(x)
for (i in 1:nk) lines(xx, dnorm(xx, x[i], sd = fit$bw)*0.05)
lines(xx,dnorm(xx), col = "black")
lines(xx, dkden(xx, x, lambda = fit$lambda), lwd = 2, col = "red")
lines(density(x), lty = 2, lwd = 2, col = "green")
lines(density(x, bw = fit$bw), lwd = 2, lty = 2, col = "blue")
legend("topright", c("True Density", "KDE fitted evmix",

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Cross-validation_(statistics)
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

198 kdengpd

"KDE Using density, default bandwidth", "KDE Using density, c-v likelihood bandwidth"),
lty = c(1, 1, 2, 2), lwd = c(1, 2, 2, 2), col = c("black", "red", "green", "blue"))

plot(xx, pnorm(xx), type = "l")
rug(x)
lines(xx, pkden(xx, x), lwd = 2, col = "red")
lines(xx, pkden(xx, x, lambda = fit$lambda), lwd = 2, col = "green")
green and blue (quantile) function should be same
p = seq(0, 1, 0.001)
lines(qkden(p, x, lambda = fit$lambda), p, lwd = 2, lty = 2, col = "blue")
legend("topleft", c("True Density", "KDE using evmix, normal reference rule",
"KDE using evmix, c-v likelihood","KDE quantile function, c-v likelihood"),
lty = c(1, 1, 1, 2), lwd = c(1, 2, 2, 2), col = c("black", "red", "green", "blue"))

xnew = rkden(10000, x, lambda = fit$lambda)
hist(xnew, breaks = 100, freq = FALSE, xlim = c(-5, 5))
rug(xnew)
lines(xx,dnorm(xx), col = "black")
lines(xx, dkden(xx, x), lwd = 2, col = "red")
legend("topright", c("True Density", "KDE Using evmix"),
lty = c(1, 2), lwd = c(1, 2), col = c("black", "red"))

End(Not run)

kdengpd Kernel Density Estimate and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with kernel density estimate for bulk distribution upto the threshold
and conditional GPD above threshold. The parameters are the bandwidth lambda, threshold u GPD
scale sigmau and shape xi and tail fraction phiu.

Usage

dkdengpd(x, kerncentres, lambda = NULL, u = as.vector(quantile(kerncentres,
0.9)), sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", log = FALSE)

pkdengpd(q, kerncentres, lambda = NULL, u = as.vector(quantile(kerncentres,
0.9)), sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", lower.tail = TRUE)

qkdengpd(p, kerncentres, lambda = NULL, u = as.vector(quantile(kerncentres,
0.9)), sigmau = sqrt(6 * var(kerncentres))/pi, xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", lower.tail = TRUE)

rkdengpd(n = 1, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), sigmau = sqrt(6 *
var(kerncentres))/pi, xi = 0, phiu = TRUE, bw = NULL,
kernel = "gaussian")

kdengpd 199

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining kernel density estimate (KDE) for the bulk below the
threshold and GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the KDE bulk model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
kernel density estimate (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

whereH(x) andG(X) are the KDE and conditional GPD cumulative distribution functions respec-
tively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

If no bandwidth is provided lambda=NULL and bw=NULL then the normal reference rule is used, using
the bw.nrd0 function, which is consistent with the density function. At least two kernel centres
must be provided as the variance needs to be estimated.

See gpd for details of GPD upper tail component and dkden for details of KDE bulk component.

200 kdengpd

Value

dkdengpd gives the density, pkdengpd gives the cumulative distribution function, qkdengpd gives
the quantile function and rkdengpd gives a random sample.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the kdengpd functions have not
been vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a
vector, which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rkdengpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpd-
con fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, bckden, fbckden, fkden,
kdengpdcon, kden

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

kdengpdcon 201

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rnorm(500, 0, 1)
xx = seq(-4, 4, 0.01)
hist(kerncentres, breaks = 100, freq = FALSE)
lines(xx, dkdengpd(xx, kerncentres, u = 1.2, sigmau = 0.56, xi = 0.1))

plot(xx, pkdengpd(xx, kerncentres), type = "l")
lines(xx, pkdengpd(xx, kerncentres, xi = 0.3), col = "red")
lines(xx, pkdengpd(xx, kerncentres, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1, cex = 0.5)

x = rkdengpd(1000, kerncentres, phiu = 0.1, u = 1.2, sigmau = 0.56, xi = 0.1)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dkdengpd(xx, kerncentres, phiu = 0.1, u = 1.2, sigmau = 0.56, xi = 0.1))

plot(xx, dkdengpd(xx, kerncentres, xi=0, phiu = 0.1), type = "l")
lines(xx, dkdengpd(xx, kerncentres, xi=0.2, phiu = 0.1), col = "red")
lines(xx, dkdengpd(xx, kerncentres, xi=-0.2, phiu = 0.1), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

kdengpdcon Kernel Density Estimate and GPD Tail Extreme Value Mixture Model
With Single Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with kernel density estimate for bulk distribution upto the threshold
and conditional GPD above threshold with continuity at threshold. The parameters are the band-
width lambda, threshold u GPD shape xi and tail fraction phiu.

Usage

dkdengpdcon(x, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", log = FALSE)

pkdengpdcon(q, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian", lower.tail = TRUE)

qkdengpdcon(p, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,

202 kdengpdcon

bw = NULL, kernel = "gaussian", lower.tail = TRUE)

rkdengpdcon(n = 1, kerncentres, lambda = NULL,
u = as.vector(quantile(kerncentres, 0.9)), xi = 0, phiu = TRUE,
bw = NULL, kernel = "gaussian")

Arguments

x quantiles

kerncentres kernel centres (typically sample data vector or scalar)

lambda bandwidth for kernel (as half-width of kernel) or NULL

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kernel kernel name (default = "gaussian")

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining kernel density estimate (KDE) for the bulk below the
threshold and GPD for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the KDE bulk model.

The alternate bandwidth definitions are discussed in the kernels, with the lambda as the default.
The bw specification is the same as used in the density function.

The possible kernels are also defined in kernels with the "gaussian" as the default choice.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
kernel density estimate (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

whereH(x) andG(X) are the KDE and conditional GPD cumulative distribution functions respec-
tively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

kdengpdcon 203

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are the
KDE and conditional GPD density functions respectively. The resulting GPD scale parameter is
then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

If no bandwidth is provided lambda=NULL and bw=NULL then the normal reference rule is used, using
the bw.nrd0 function, which is consistent with the density function. At least two kernel centres
must be provided as the variance needs to be estimated.

See gpd for details of GPD upper tail component and dkden for details of KDE bulk component.

Value

dkdengpdcon gives the density, pkdengpdcon gives the cumulative distribution function, qkdengpdcon
gives the quantile function and rkdengpdcon gives a random sample.

Acknowledgments

Based on code by Anna MacDonald produced for MATLAB.

Note

Unlike most of the other extreme value mixture model functions the kdengpdcon functions have
not been vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or
a vector, which also define the output length. The kerncentres can also be a scalar or vector.

The kernel centres kerncentres can either be a single datapoint or a vector of data. The kernel
centres (kerncentres) and locations to evaluate density (x) and cumulative distribution function
(q) would usually be different.

Default values are provided for all inputs, except for the fundamentals kerncentres, x, q and p.
The default sample size for rkdengpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters or kernel centres.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

204 kernels

Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density
estimates. Biometrika 71(2), 353-360.

Duin, R.P.W. (1976). On the choice of smoothing parameters for Parzen estimators of probability
density functions. IEEE Transactions on Computers C25(11), 1175-1179.

MacDonald, A., Scarrott, C.J., Lee, D., Darlow, B., Reale, M. and Russell, G. (2011). A flexible
extreme value mixture model. Computational Statistics and Data Analysis 55(6), 2137-2157.

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

kernels, kfun, density, bw.nrd0 and dkde in ks package.

Other kden kdengpd kdengpdcon bckden bckdengpd bckdengpdcon fkden fkdengpd fkdengpd-
con fbckden fbckdengpd fbckdengpdcon: bckdengpdcon, bckdengpd, bckden, fbckden, fkden,
kdengpd, kden

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

kerncentres=rnorm(500, 0, 1)
xx = seq(-4, 4, 0.01)
hist(kerncentres, breaks = 100, freq = FALSE)
lines(xx, dkdengpdcon(xx, kerncentres, u = 1.2, xi = 0.1))

plot(xx, pkdengpdcon(xx, kerncentres), type = "l")
lines(xx, pkdengpdcon(xx, kerncentres, xi = 0.3), col = "red")
lines(xx, pkdengpdcon(xx, kerncentres, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1, cex = 0.5)

x = rkdengpdcon(1000, kerncentres, phiu = 0.2, u = 1, xi = 0.2)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dkdengpdcon(xx, kerncentres, phiu = 0.2, u = 1, xi = -0.1))

plot(xx, dkdengpdcon(xx, kerncentres, xi=0, u = 1, phiu = 0.2), type = "l")
lines(xx, dkdengpdcon(xx, kerncentres, xi=0.2, u = 1, phiu = 0.2), col = "red")
lines(xx, dkdengpdcon(xx, kerncentres, xi=-0.2, u = 1, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

kernels Kernel functions

Description

Functions for commonly used kernels for kernel density estimation. The density and cumulative
distribution functions are provided.

kernels 205

Usage

kdgaussian(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kduniform(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdtriangular(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdepanechnikov(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdbiweight(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdtriweight(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdtricube(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdparzen(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdcosine(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdoptcosine(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpgaussian(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpuniform(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kptriangular(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpepanechnikov(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpbiweight(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kptriweight(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kptricube(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpparzen(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpcosine(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kpoptcosine(x = 0, lambda = NULL, bw = NULL, kerncentres = 0)

kdz(z, kernel = "gaussian")

kpz(z, kernel = "gaussian")

Arguments

x location to evaluate KDE (single scalar or vector)

lambda bandwidth for kernel (as half-width of kernel) or NULL

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kerncentres kernel centres (typically sample data vector or scalar)

206 kernels

z standardised location put into kernel z = (x-kerncentres)/lambda

kernel kernel name (default = "gaussian")

Details

Functions for the commonly used kernels for kernel density estimation. The density and cumulative
distribution functions are provided. Each function can accept the bandwidth specified as either:

1. bw - in terms of number of standard deviations of the kernel, consistent with the defined values
in the density function in the R base libraries

2. lambda - in terms of half-width of kernel

If both bandwidths are given as NULL then the default bandwidth is lambda=1. If either one is
specified then this will be used. If both are specified then lambda will be used.

All the kernels have bounded support [−λ, λ], except the normal ("gaussian") which is unbounded.
In the latter, both bandwidths are the same bw=lambda and equal to the standard deviation.

Typically,a single location x at which to evaluate kernel is given along with vector of kernel cen-
tres. As such, they are designed to be used with sapply to loop over vector of locations at which
to evaluate KDE. Alternatively, a vector of locations x can be given with a single scalar kernel centre
kerncentres, which is commonly used when locations are pre-standardised by (x-kerncentres)/lambda
and kerncentre=0. A warnings is given if both the evaluation locations and kernel centres are vec-
tors as this is not often needed so is likely to be a user error.

If no kernel centres are provided then by default it is set to zero (i.e. x is at middle of kernel).

The following kernels are implemented, with relevant ones having definitions consistent with those
of the density function, except where specified:

• gaussian or normal

• uniform or rectangular - same as "rectangular" in density function

• triangular

• epanechnikov

• biweight

• triweight

• tricube

• parzen

• cosine

• optcosine

The kernel densities are all normalised to unity. See Wikipedia reference below for their definitions.

Each kernel’s functions can be called individually, or the global functions kdz and kpz for the den-
sity and cumulative distribution function can apply any particular kernel which is specified by the
kernel input. These global functions take the standardised locations z = (x - kerncentres)/lambda.

Value

codekd* and kp* give the density and cumulative distribution functions for each kernel respectively,
where * is the kernel name. kdz and kpz are the equivalent global functions for all of the kernels.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

kfun 207

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Kernel_(statistics)

Wand, M. and Jones, M.C. (1995). Kernel Smoothing. Chapman && Hall.

See Also

density, kden and bckden.

Other kernels: kfun

Examples

xx = seq(-2, 2, 0.01)
plot(xx, kdgaussian(xx), type = "l", col = "black",ylim = c(0, 1.2))
lines(xx, kduniform(xx), col = "grey")
lines(xx, kdtriangular(xx), col = "blue")
lines(xx, kdepanechnikov(xx), col = "darkgreen")
lines(xx, kdbiweight(xx), col = "red")
lines(xx, kdtriweight(xx), col = "purple")
lines(xx, kdtricube(xx), col = "orange")
lines(xx, kdparzen(xx), col = "salmon")
lines(xx, kdcosine(xx), col = "cyan")
lines(xx, kdoptcosine(xx), col = "goldenrod")
legend("topright", c("Gaussian", "uniform", "triangular", "Epanechnikov",
"biweight", "triweight", "tricube", "Parzen", "cosine", "optcosine"), lty = 1,
col = c("black", "grey", "blue", "darkgreen", "red", "purple", "orange",

"salmon", "cyan", "goldenrod"))

kfun Various subsidiary kernel function, conversion of bandwidths and
evaluating certain kernel integrals.

Description

Functions for checking the inputs to the kernel functions, evaluating integrals
∫
ulK ∗ (u)du for

l = 0, 1, 2 and conversion between the two bandwidth definitions.

Usage

check.kinputs(x, lambda, bw, kerncentres, allownull = FALSE)

check.kernel(kernel)

check.kbw(lambda, bw, allownull = FALSE)

klambda(bw = NULL, kernel = "gaussian", lambda = NULL)

kbw(lambda = NULL, kernel = "gaussian", bw = NULL)

ka0(truncpoint, kernel = "gaussian")

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Kernel_(statistics)

208 kfun

ka1(truncpoint, kernel = "gaussian")

ka2(truncpoint, kernel = "gaussian")

Arguments

x location to evaluate KDE (single scalar or vector)

lambda bandwidth for kernel (as half-width of kernel) or NULL

bw bandwidth for kernel (as standard deviations of kernel) or NULL

kerncentres kernel centres (typically sample data vector or scalar)

allownull logical, where TRUE permits NULL values

kernel kernel name (default = "gaussian")

truncpoint upper endpoint as standardised location x/lambda

Details

Various boundary correction methods require integral of (partial moments of) kernel within the
range of support, over the range [−1, p] where p is the truncpoint determined by the standardised
distance of location xwhere KDE is being evaluated to the lower bound of zero, i.e. truncpoint = x/lambda.
The exception is the normal kernel which has unbounded support so the [−5 ∗ λ, p] where lambda
is the standard deviation bandwidth. There is a function for each partial moment of degree (0, 1, 2):

• ka0 -
∫ p
−1K ∗ (z)dz

• ka1 -
∫ p
−1 uK ∗ (z)dz

• ka2 -
∫ p
−1 u

2K ∗ (z)dz

Notice that when evaluated at the upper endpoint on the support p = 1 (or p =∞ for normal) these
are the zeroth, first and second moments. In the normal distribution case the lower bound on the
region of integration is∞ but implemented here as−5∗λ. These integrals are all specified in closed
form, there is no need for numerical integration (except normal which uses the pnorm function).

See kpu for list of kernels and discussion of bandwidth definitions (and their default values):

1. bw - in terms of number of standard deviations of the kernel, consistent with the defined values
in the density function in the R base libraries

2. lambda - in terms of half-width of kernel

The klambda function converts the bw to the lambda equivalent, and kbw applies converse. These
conversions are kernel specific as they depend on the kernel standard deviations. If both bw and
lambda are provided then the latter is used by default. If neither are provided (bw=NULL and
lambda=NULL) then default is lambda=1.

check.kinputs checks all the kernel function inputs, check.klambda checks the pair of inputted
bandwidths and check.kernel checks the kernel names.

Value

klambda and kbw return the lambda and bw bandwidths respectively.

The checking functions check.kinputs, check.klambda and check.kernel will stop on errors
and return no value.

ka0, ka1 and ka2 return the partial moment integrals specified above.

lognormgpd 209

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/Kernel_density_estimation

http://en.wikipedia.org/wiki/Kernel_(statistics)

Wand and Jones (1995). Kernel Smoothing. Chapman & Hall.

See Also

kernels, density, kden and bckden.

Other kernels: kernels

Examples

xx = seq(-2, 2, 0.01)
plot(xx, kdgaussian(xx), type = "l", col = "black",ylim = c(0, 1.2))
lines(xx, kduniform(xx), col = "grey")
lines(xx, kdtriangular(xx), col = "blue")
lines(xx, kdepanechnikov(xx), col = "darkgreen")
lines(xx, kdbiweight(xx), col = "red")
lines(xx, kdtriweight(xx), col = "purple")
lines(xx, kdtricube(xx), col = "orange")
lines(xx, kdparzen(xx), col = "salmon")
lines(xx, kdcosine(xx), col = "cyan")
lines(xx, kdoptcosine(xx), col = "goldenrod")
legend("topright", c("Gaussian", "uniform", "triangular", "Epanechnikov",
"biweight", "triweight", "tricube", "Parzen", "cosine", "optcosine"), lty = 1,
col = c("black", "grey", "blue", "darkgreen", "red", "purple",

"salmon", "orange", "cyan", "goldenrod"))

lognormgpd Log-Normal Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with log-normal for bulk distribution upto the threshold and condi-
tional GPD above threshold. The parameters are the log-normal mean lnmean and standard devia-
tion lnsd, threshold u GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dlognormgpd(x, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
sigmau = lnsd, xi = 0, phiu = TRUE, log = FALSE)

plognormgpd(q, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
sigmau = lnsd, xi = 0, phiu = TRUE, lower.tail = TRUE)

http://en.wikipedia.org/wiki/Kernel_density_estimation
http://en.wikipedia.org/wiki/Kernel_(statistics)

210 lognormgpd

qlognormgpd(p, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
sigmau = lnsd, xi = 0, phiu = TRUE, lower.tail = TRUE)

rlognormgpd(n = 1, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
sigmau = lnsd, xi = 0, phiu = TRUE)

Arguments

x quantiles

lnmean mean on log scale

lnsd standard deviation on log scale (positive)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining log-normal distribution for the bulk below the threshold
and GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the log-normal bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
log-normal bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the log-normal and conditional GPD cumulative distribution functions
(i.e. plnorm(x, lnmean, lnsd) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The log-normal is defined on the positive reals, so the threshold must be positive.

See gpd for details of GPD upper tail component and dlnorm for details of log-normal bulk com-
ponent.

lognormgpd 211

Value

dlognormgpd gives the density, plognormgpd gives the cumulative distribution function, qlognormgpd
gives the quantile function and rlognormgpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rlognormgpd any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rlognormgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Log-normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Solari, S. and Losada, M.A. (2004). A unified statistical model for hydrological variables including
the selection of threshold for the peak over threshold method. Water Resources Research. 48,
W10541.

See Also

gpd and dlnorm

Other lognormgpd lognormgpdcon normgpd normgpdcon flognormgpd flognormgpdcon fnormgpd
fnormgpdcon: lognormgpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rlognormgpd(1000)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dlognormgpd(xx))

three tail behaviours
plot(xx, plognormgpd(xx), type = "l")
lines(xx, plognormgpd(xx, xi = 0.3), col = "red")

http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

212 lognormgpdcon

lines(xx, plognormgpd(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rlognormgpd(1000, u = 2, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dlognormgpd(xx, u = 2, phiu = 0.2))

plot(xx, dlognormgpd(xx, u = 2, xi=0, phiu = 0.2), type = "l")
lines(xx, dlognormgpd(xx, u = 2, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dlognormgpd(xx, u = 2, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

lognormgpdcon Log-Normal Bulk and GPD Tail Extreme Value Mixture Model with
Single Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with log-normal for bulk distribution upto the threshold and condi-
tional GPD above threshold with continuity at threshold. The parameters are the log-normal mean
lnmean and standard deviation lnsd, threshold u GPD shape xi and tail fraction phiu.

Usage

dlognormgpdcon(x, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
xi = 0, phiu = TRUE, log = FALSE)

plognormgpdcon(q, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
xi = 0, phiu = TRUE, lower.tail = TRUE)

qlognormgpdcon(p, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean, lnsd),
xi = 0, phiu = TRUE, lower.tail = TRUE)

rlognormgpdcon(n = 1, lnmean = 0, lnsd = 1, u = qlnorm(0.9, lnmean,
lnsd), xi = 0, phiu = TRUE)

Arguments

x quantiles

lnmean mean on log scale

lnsd standard deviation on log scale (positive)

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

lognormgpdcon 213

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining log-normal distribution for the bulk below the threshold
and GPD for upper tailwith continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the log-normal bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
log-normal bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the log-normal and conditional GPD cumulative distribution functions
(i.e. plnorm(x, lnmean, lnsd) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The log-normal is defined on the positive reals, so the threshold must be positive.

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are
the log-normal and conditional GPD density functions (i.e. dlnorm(x, lnmean, lnsd) and
dgpd(x, u, sigmau, xi)) respectively. The resulting GPD scale parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

See gpd for details of GPD upper tail component and dlnorm for details of log-normal bulk com-
ponent.

Value

dlognormgpdcon gives the density, plognormgpdcon gives the cumulative distribution function,
qlognormgpdcon gives the quantile function and rlognormgpdcon gives a random sample.

214 lognormgpdcon

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rlognormgpdcon any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rlognormgpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Log-normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Solari, S. and Losada, M.A. (2004). A unified statistical model for hydrological variables including
the selection of threshold for the peak over threshold method. Water Resources Research. 48,
W10541.

See Also

gpd and dlnorm

Other lognormgpd lognormgpdcon normgpd normgpdcon flognormgpd flognormgpdcon fnormgpd
fnormgpdcon: lognormgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rlognormgpdcon(1000)
xx = seq(-1, 10, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dlognormgpdcon(xx))

three tail behaviours
plot(xx, plognormgpdcon(xx), type = "l")
lines(xx, plognormgpdcon(xx, xi = 0.3), col = "red")
lines(xx, plognormgpdcon(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rlognormgpdcon(1000, u = 2, phiu = 0.2)

http://en.wikipedia.org/wiki/Log-normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

mgamma 215

hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 10))
lines(xx, dlognormgpdcon(xx, u = 2, phiu = 0.2))

plot(xx, dlognormgpdcon(xx, u = 2, xi=0, phiu = 0.2), type = "l")
lines(xx, dlognormgpdcon(xx, u = 2, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dlognormgpdcon(xx, u = 2, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

mgamma Mixture of Gammas Distribution

Description

Density, cumulative distribution function, quantile function and random number generation for the
mixture of gammas distribution. The parameters are the multiple gamma shapes mgshape scales
mgscale and weights mgweights.

Usage

dmgamma(x, mgshape = 1, mgscale = 1, mgweight = NULL, log = FALSE)

pmgamma(q, mgshape = 1, mgscale = 1, mgweight = NULL, lower.tail = TRUE)

qmgamma(p, mgshape = 1, mgscale = 1, mgweight = NULL, lower.tail = TRUE)

rmgamma(n = 1, mgshape = 1, mgscale = 1, mgweight = NULL)

Arguments

x quantiles

mgshape mgamma shape (positive) as list or vector

mgscale mgamma scale (positive) as list or vector

mgweight mgamma weights (positive) as list or vector (NULL for equi-weighted)

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Distribution functions for weighted mixture of gammas.

Suppose there are M >= 1 gamma components in the mixture model. If you wish to have a single
(scalar) value for each parameter within each of the M components then these can be input as a
vector of length M . If you wish to input a vector of values for each parameter within each of the M

216 mgamma

components, then they are input as a list with each entry the parameter object for each component
(which can either be a scalar or vector as usual). No matter whether they are input as a vector or
list there must be M elements in mgshape and mgscale, one for each gamma mixture component.
Further, any vectors in the list of parameters must of the same length of the x, q, p or equal to the
sample size n, where relevant.

If mgweight=NULL then equal weights for each component are assumed. Otherwise, mgweight must
be a list of the same length as mgshape and mgscale, filled with positive values. In the latter case,
the weights are rescaled to sum to unity.

The gamma is defined on the non-negative reals. Though behaviour at zero depends on the shape
(α):

• f(0+) =∞ for 0 < α < 1;

• f(0+) = 1/β for α = 1 (exponential);

• f(0+) = 0 for α > 1;

where β is the scale parameter.

Value

dmgamma gives the density, pmgamma gives the cumulative distribution function, qmgamma gives the
quantile function and rmgamma gives a random sample.

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

Note

All inputs are vectorised except log and lower.tail, and the gamma mixture parameters can be
vectorised within the list. The main inputs (x, p or q) and parameters must be either a scalar or a
vector. If vectors are provided they must all be of the same length, and the function will be evaluated
for each element of vector. In the case of rmgamma any input vector must be of length n. The only
exception is when the parameters are single scalar values, input as vector of length M .

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rmgamma is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Mixture_model

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Mixture_model

mgammagpd 217

See Also

gammagpd, gpd and dgamma

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgammagpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 1))

n = 1000
x = rmgamma(n, mgshape = c(1, 6), mgscale = c(1,2), mgweight = c(1, 2))
xx = seq(-1, 40, 0.01)

hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, dmgamma(xx, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2)))

By direct simulation
n1 = rbinom(1, n, 1/3) # sample size from population 1
x = c(rgamma(n1, shape = 1, scale = 1), rgamma(n - n1, shape = 6, scale = 2))

hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, dmgamma(xx, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2)))

End(Not run)

mgammagpd Mixture of Gammas Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with mixture of gammas for bulk distribution upto the threshold and
conditional GPD above threshold. The parameters are the multiple gamma shapes mgshape, scales
mgscale and mgweights, threshold u GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dmgammagpd(x, mgshape = 1, mgscale = 1, mgweight = NULL, u = qgamma(0.9,
mgshape[[1]], 1/mgscale[[1]]), sigmau = sqrt(mgshape[[1]]) * mgscale[[1]],
xi = 0, phiu = TRUE, log = FALSE)

pmgammagpd(q, mgshape = 1, mgscale = 1, mgweight = NULL, u = qgamma(0.9,
mgshape[[1]], 1/mgscale[[1]]), sigmau = sqrt(mgshape[[1]]) * mgscale[[1]],
xi = 0, phiu = TRUE, lower.tail = TRUE)

qmgammagpd(p, mgshape = 1, mgscale = 1, mgweight = NULL, u = qgamma(0.9,
mgshape[[1]], 1/mgscale[[1]]), sigmau = sqrt(mgshape[[1]]) * mgscale[[1]],
xi = 0, phiu = TRUE, lower.tail = TRUE)

218 mgammagpd

rmgammagpd(n = 1, mgshape = 1, mgscale = 1, mgweight = NULL,
u = qgamma(0.9, mgshape[[1]], 1/mgscale[[1]]), sigmau = sqrt(mgshape[[1]])
* mgscale[[1]], xi = 0, phiu = TRUE)

Arguments

x quantiles

mgshape mgamma shape (positive) as list or vector

mgscale mgamma scale (positive) as list or vector

mgweight mgamma weights (positive) as list or vector (NULL for equi-weighted)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining mixture of gammas for the bulk below the threshold and
GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the mixture of gammas
bulk model.

Suppose there are M >= 1 gamma components in the mixture model. If you wish to have a single
(scalar) value for each parameter within each of the M components then these can be input as a
vector of length M . If you wish to input a vector of values for each parameter within each of the M
components, then they are input as a list with each entry the parameter object for each component
(which can either be a scalar or vector as usual). No matter whether they are input as a vector or
list there must be M elements in mgshape and mgscale, one for each gamma mixture component.
Further, any vectors in the list of parameters must of the same length of the x, q, p or equal to the
sample size n, where relevant.

If mgweight=NULL then equal weights for each component are assumed. Otherwise, mgweight must
be a list of the same length as mgshape and mgscale, filled with positive values. In the latter case,
the weights are rescaled to sum to unity.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
mixture of gammas bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

mgammagpd 219

where H(x) and G(X) are the mixture of gammas and conditional GPD cumulative distribution
functions.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The gamma is defined on the non-negative reals, so the threshold must be positive. Though be-
haviour at zero depends on the shape (α):

• f(0+) =∞ for 0 < α < 1;

• f(0+) = 1/β for α = 1 (exponential);

• f(0+) = 0 for α > 1;

where β is the scale parameter.

See gammagpd for details of simpler parametric mixture model with single gamma for bulk compo-
nent and GPD for upper tail.

Value

dmgammagpd gives the density, pmgammagpd gives the cumulative distribution function, qmgammagpd
gives the quantile function and rmgammagpd gives a random sample.

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

Note

All inputs are vectorised except log and lower.tail, and the gamma mixture parameters can be
vectorised within the list. The main inputs (x, p or q) and parameters must be either a scalar or a
vector. If vectors are provided they must all be of the same length, and the function will be evaluated
for each element of vector. In the case of rmgammagpd any input vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rmgammagpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

220 mgammagpdcon

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

http://en.wikipedia.org/wiki/Mixture_model

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

do Nascimento, F.F., Gamerman, D. and Lopes, H.F. (2011). A semiparametric Bayesian approach
to extreme value estimation. Statistical Computing, 22(2), 661-675.

See Also

gpd and dgamma

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpdcon, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rmgammagpd(1000, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2),
u = 15, sigmau = 4, xi = 0)

xx = seq(-1, 40, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, dmgammagpd(xx, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2),

u = 15, sigmau = 4, xi = 0))
abline(v = 15)

End(Not run)

mgammagpdcon Mixture of Gammas Bulk and GPD Tail Extreme Value Mixture Model
with Single Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with mixture of gammas for bulk distribution upto the threshold and
conditional GPD for upper tail with continuity at threshold. The parameters are the multiple gamma
shapes mgshape, scales mgscale and mgweights, threshold u GPD shape xi and tail fraction phiu.

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://en.wikipedia.org/wiki/Mixture_model
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

mgammagpdcon 221

Usage

dmgammagpdcon(x, mgshape = 1, mgscale = 1, mgweight = NULL,
u = qgamma(0.9, mgshape[[1]], 1/mgscale[[1]]), xi = 0, phiu = TRUE,
log = FALSE)

pmgammagpdcon(q, mgshape = 1, mgscale = 1, mgweight = NULL,
u = qgamma(0.9, mgshape[[1]], 1/mgscale[[1]]), xi = 0, phiu = TRUE,
lower.tail = TRUE)

qmgammagpdcon(p, mgshape = 1, mgscale = 1, mgweight = NULL,
u = qgamma(0.9, mgshape[[1]], 1/mgscale[[1]]), xi = 0, phiu = TRUE,
lower.tail = TRUE)

rmgammagpdcon(n = 1, mgshape = 1, mgscale = 1, mgweight = NULL,
u = qgamma(0.9, mgshape[[1]], 1/mgscale[[1]]), xi = 0, phiu = TRUE)

Arguments

x quantiles

mgshape mgamma shape (positive) as list or vector

mgscale mgamma scale (positive) as list or vector

mgweight mgamma weights (positive) as list or vector (NULL for equi-weighted)

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining mixture of gammas for the bulk below the threshold and
GPD for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the mixture of gammas
bulk model.

Suppose there are M >= 1 gamma components in the mixture model. If you wish to have a single
(scalar) value for each parameter within each of the M components then these can be input as a
vector of length M . If you wish to input a vector of values for each parameter within each of the M
components, then they are input as a list with each entry the parameter object for each component
(which can either be a scalar or vector as usual). No matter whether they are input as a vector or
list there must be M elements in mgshape and mgscale, one for each gamma mixture component.
Further, any vectors in the list of parameters must of the same length of the x, q, p or equal to the
sample size n, where relevant.

If mgweight=NULL then equal weights for each component are assumed. Otherwise, mgweight must
be a list of the same length as mgshape and mgscale, filled with positive values. In the latter case,
the weights are rescaled to sum to unity.

222 mgammagpdcon

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
mixture of gammas bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the mixture of gammas and conditional GPD cumulative distribution
functions.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are the
mixture of gammas and conditional GPD density functions respectively. The resulting GPD scale
parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

The gamma is defined on the non-negative reals, so the threshold must be positive. Though be-
haviour at zero depends on the shape (α):

• f(0+) =∞ for 0 < α < 1;

• f(0+) = 1/β for α = 1 (exponential);

• f(0+) = 0 for α > 1;

where β is the scale parameter.

See gammagpd for details of simpler parametric mixture model with single gamma for bulk compo-
nent and GPD for upper tail.

Value

dmgammagpdcon gives the density, pmgammagpdcon gives the cumulative distribution function, qmgammagpdcon
gives the quantile function and rmgammagpdcon gives a random sample.

Acknowledgments

Thanks to Daniela Laas, University of St Gallen, Switzerland for reporting various bugs in these
functions.

mgammagpdcon 223

Note

All inputs are vectorised except log and lower.tail, and the gamma mixture parameters can be
vectorised within the list. The main inputs (x, p or q) and parameters must be either a scalar or a
vector. If vectors are provided they must all be of the same length, and the function will be evaluated
for each element of vector. In the case of rmgammagpdcon any input vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rmgammagpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://www.math.canterbury.ac.nz/~c.scarrott/evmix

http://en.wikipedia.org/wiki/Gamma_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

http://en.wikipedia.org/wiki/Mixture_model

McLachlan, G.J. and Peel, D. (2000). Finite Mixture Models. Wiley.

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

do Nascimento, F.F., Gamerman, D. and Lopes, H.F. (2011). A semiparametric Bayesian approach
to extreme value estimation. Statistical Computing, 22(2), 661-675.

See Also

gpd and dgamma

Other mgamma fmgamma gammagpd gammagpdcon fgammagpd fgammagpdcon normgpd fnor-
mgpd mgammagpd mgammagpdcon fmgammagpd fmgammagpdcon: fgammagpdcon, fgammagpd,
fmgammagpdcon, fmgammagpd, fmgamma, gammagpdcon, gammagpd, mgammagpd, mgamma

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rmgammagpdcon(1000, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2), u = 15, xi = 0)
xx = seq(-1, 40, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 40))
lines(xx, dmgammagpdcon(xx, mgshape = c(1, 6), mgscale = c(1, 2), mgweight = c(1, 2),
u = 15, xi = 0))

abline(v = 15)

End(Not run)

http://www.math.canterbury.ac.nz/~c.scarrott/evmix
http://en.wikipedia.org/wiki/Gamma_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://en.wikipedia.org/wiki/Mixture_model
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

224 mrlplot

mrlplot Mean Residual Life Plot

Description

Plots the sample mean residual life (MRL) plot.

Usage

mrlplot(data, tlim = NULL, nt = min(100, length(data)), p.or.n = FALSE,
alpha = 0.05, ylim = NULL, legend.loc = "bottomleft",
try.thresh = quantile(data, 0.9, na.rm = TRUE),
main = "Mean Residual Life Plot", xlab = "Threshold u",
ylab = "Mean Excess", ...)

Arguments

data vector of sample data

tlim vector of (lower, upper) limits of range of threshold to plot MRL, or NULL to use
default values

nt number of thresholds for which to evaluate MRL

p.or.n logical, should tail fraction (FALSE) or number of exceedances (TRUE) be given
on upper x-axis

alpha significance level over range (0, 1), or NULL for no CI

ylim y-axis limits or NULL

legend.loc location of legend (see legend) or NULL for no legend

try.thresh vector of thresholds to consider

main title of plot

xlab x-axis label

ylab y-axis label

... further arguments to be passed to the plotting functions

Details

Plots the sample mean residual life plot, which is also known as the mean excess plot.

If the generalised Pareto distribution (GPD) is an appropriate model for the excesses X − u above
u then their expected value is:

E(X − u|X > u) = σu/(1− ξ).

For any higher threshold v > u the expected value is

E(X − v|X > v) = [σu + ξ ∗ (v − u)]/(1− ξ)

which is linear in higher thresholds v with intercept given by [σu − ξ ∗ u]/(1 − ξ) and gradient
ξ/(1− ξ). The estimated mean residual life above a threshold v is given by the sample mean excess
mean(x[x > v]) - v.

mrlplot 225

Symmetric CLT based confidence intervals are provided, provided there are at least 5 exceedances.
The sampling density for the MRL is shown by a greyscale image, where lighter greys indicate low
density.

A pre-chosen threshold (or more than one) can be given in try.thresh. The GPD is fitted to the
excesses using maximum likelihood estimation. The estimated parameters are used to plot the linear
function for all higher thresholds using a solid line. The threshold should set as low as possible,
so a dashed line is shown below the pre-chosen threshold. If the MRL is similar to the dashed line
then a lower threshold may be chosen.

If no threshold limits are provided tlim = NULL then the lowest threshold is set to be just below
the median data point and the maximum threshold is set to the 6th largest datapoint.

The range of permitted thresholds is just below the minimum datapoint and the second largest value.
If there are less unique values of data within the threshold range than the number of threshold
evalations requested, then instead of a sequence of thresholds the MRL will be evaluated at each
unique datapoint.

The missing (NA and NaN) and non-finite values are ignored.

The lower x-axis is the threshold and an upper axis either gives the number of exceedances (p.or.n = FALSE)
or proportion of excess (p.or.n = TRUE). Note that unlike the gpd related functions the missing
values are ignored, so do not add to the lower tail fraction. But ignoring the missing values is
consistent with all the other mixture model functions.

Value

mrlplot gives the mean residual life plot. It also returns a matrix containing columns of the thresh-
old, number of exceedances, mean excess, standard devation of excesses and 100(1 − α)% confi-
dence interval if requested. The standard deviation and confidence interval are NA for less than 5
exceedances.

Acknowledgments

Based on the mrlplot function in the evd package for which Stuart Coles’ and Alec Stephenson’s
contributions are gratefully acknowledged. They are designed to have similar syntax and function-
ality to simplify the transition for users of these packages.

Note

If the user specifies the threshold range, the thresholds above the second largest are dropped. A
warning message is given if any thresholds have at most 5 exceedances, in which case the confidence
interval is not calculated as it is unreliable due to small sample. If there are less than 10 exceedances
of the minimum threshold then the function will stop.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

226 normgpd

Coles S.G. (2004). An Introduction to the Statistical Modelling of Extreme Values. Springer-Verlag:
London.

See Also

gpd and mrlplot from evd library

Examples

x = rnorm(1000)
mrlplot(x)
mrlplot(x, tlim = c(0, 2.2))
mrlplot(x, tlim = c(0, 2), try.thresh = c(0.5, 1, 1.5))
mrlplot(x, tlim = c(0, 3), try.thresh = c(0.5, 1, 1.5))

normgpd Normal Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with normal for bulk distribution upto the threshold and conditional
GPD above threshold. The parameters are the normal mean nmean and standard deviation nsd,
threshold u GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dnormgpd(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, log = FALSE)

pnormgpd(q, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, lower.tail = TRUE)

qnormgpd(p, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE, lower.tail = TRUE)

rnormgpd(n = 1, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
sigmau = nsd, xi = 0, phiu = TRUE)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

normgpd 227

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining normal distribution for the bulk below the threshold and
GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the normal bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
normal bulk model (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the normal and conditional GPD cumulative distribution functions (i.e.
pnorm(x, nmean, nsd) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

See gpd for details of GPD upper tail component and dnorm for details of normal bulk component.

Value

dnormgpd gives the density, pnormgpd gives the cumulative distribution function, qnormgpd gives
the quantile function and rnormgpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rnormgpd any input vector
must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rnormgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles. The normal
mean nmean and GPD threshold u will also require negation.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

228 normgpd

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Hu Y. and Scarrott, C.J. (2018). evmix: An R Package for Extreme Value Mixture Modeling,
Threshold Estimation and Boundary Corrected Kernel Density Estimation. Journal of Statistical
Software 84(5), 1-27. doi: 10.18637/jss.v084.i05.

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dnorm

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, fnormgpd, gngcon, gng, itmgng, normgpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rnormgpd(1000)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpd(xx))

three tail behaviours
plot(xx, pnormgpd(xx), type = "l")
lines(xx, pnormgpd(xx, xi = 0.3), col = "red")
lines(xx, pnormgpd(xx, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rnormgpd(1000, phiu = 0.2)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpd(xx, phiu = 0.2))

plot(xx, dnormgpd(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dnormgpd(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dnormgpd(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

normgpdcon 229

normgpdcon Normal Bulk and GPD Tail Extreme Value Mixture Model with Single
Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with normal for bulk distribution upto the threshold and conditional
GPD above threshold with continuity at threshold. The parameters are the normal mean nmean and
standard deviation nsd, threshold u and GPD shape xi and tail fraction phiu.

Usage

dnormgpdcon(x, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
phiu = TRUE, log = FALSE)

pnormgpdcon(q, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
phiu = TRUE, lower.tail = TRUE)

qnormgpdcon(p, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd), xi = 0,
phiu = TRUE, lower.tail = TRUE)

rnormgpdcon(n = 1, nmean = 0, nsd = 1, u = qnorm(0.9, nmean, nsd),
xi = 0, phiu = TRUE)

Arguments

x quantiles

nmean normal mean

nsd normal standard deviation (positive)

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining normal distribution for the bulk below the threshold and
GPD for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the normal bulk
model.

230 normgpdcon

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
normal bulk model (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the normal and conditional GPD cumulative distribution functions (i.e.
pnorm(x, nmean, nsd) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are the
normal and conditional GPD density functions (i.e. dnorm(x, nmean, nsd) and dgpd(x, u, sigmau, xi))
respectively. The resulting GPD scale parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

See gpd for details of GPD upper tail component and dnorm for details of normal bulk component.

Value

dnormgpdcon gives the density, pnormgpdcon gives the cumulative distribution function, qnormgpdcon
gives the quantile function and rnormgpdcon gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rnormgpdcon any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rnormgpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles. The normal
mean nmean and GPD threshold u will also require negation.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

normgpdcon 231

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dnorm

Other normgpd normgpdcon gng gngcon fnormgpd fnormgpdcon fgng fgngcon: fgngcon, fgng,
fitmgng, fnormgpdcon, fnormgpd, gngcon, gng, itmgng, normgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rnormgpdcon(1000)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpdcon(xx))

three tail behaviours
plot(xx, pnormgpdcon(xx), type = "l")
lines(xx, pnormgpdcon(xx, xi = 0.3), col = "red")
lines(xx, pnormgpdcon(xx, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rnormgpdcon(1000, phiu = 0.2)
xx = seq(-4, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-4, 6))
lines(xx, dnormgpdcon(xx, phiu = 0.2))

plot(xx, dnormgpdcon(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dnormgpdcon(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dnormgpdcon(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

232 pickandsplot

pickandsplot Pickands Plot

Description

Produces the Pickand’s plot.

Usage

pickandsplot(data, orderlim = NULL, tlim = NULL, y.alpha = FALSE,
alpha = 0.05, ylim = NULL, legend.loc = "topright",
try.thresh = quantile(data, 0.9, na.rm = TRUE), main = "Pickand's Plot",
xlab = "order", ylab = ifelse(y.alpha, " tail index - alpha",
"shape - xi"), ...)

Arguments

data vector of sample data

orderlim vector of (lower, upper) limits of order statistics to plot estimator, or NULL to use
default values

tlim vector of (lower, upper) limits of range of threshold to plot estimator, or NULL to
use default values

y.alpha logical, should shape xi (FALSE) or tail index alpha (TRUE) be given on y-axis

alpha significance level over range (0, 1), or NULL for no CI

ylim y-axis limits or NULL

legend.loc location of legend (see legend) or NULL for no legend

try.thresh vector of thresholds to consider

main title of plot

xlab x-axis label

ylab y-axis label

... further arguments to be passed to the plotting functions

Details

Produces the Pickand’s plot including confidence intervals.

For an ordered iid sequence X(1) ≥ X(2) ≥ · · · ≥ X(n) the Pickand’s estimator of the reciprocal
of the shape parameter ξ at the kth order statistic is given by

ξ̂k,n =
1

log(2)
log

(
X(k) −X(2k)

X(2k) −X(4k)

)
.

Unlike the Hill estimator it does not assume positive data, is valid for any ξ and is location and scale
invariant. The Pickands estimator is defined on orders k = 1, . . . , bn/4c.
Once a sufficiently low order statistic is reached the Pickand’s estimator will be constant, upto
sample uncertainty, for regularly varying tails. Pickand’s plot is a plot of

ξ̂k,n

pickandsplot 233

against the k. Symmetric asymptotic normal confidence intervals assuming Pareto tails are pro-
vided.

The Pickand’s estimator is for the GPD shape ξ, or the reciprocal of the tail index α = 1/ξ. The
shape is plotted by default using y.alpha=FALSE and the tail index is plotted when y.alpha=TRUE.

A pre-chosen threshold (or more than one) can be given in try.thresh. The estimated parameter
(ξ or α) at each threshold are plot by a horizontal solid line for all higher thresholds. The threshold
should be set as low as possible, so a dashed line is shown below the pre-chosen threshold. If
Pickand’s estimator is similar to the dashed line then a lower threshold may be chosen.

If no order statistic (or threshold) limits are provided orderlim = tlim = NULL then the lowest
order statistic is set to X(1) and highest possible value Xbn/4c. However, Pickand’s estimator is
always output for all k = 1, . . . , bn/4c.

The missing (NA and NaN) and non-finite values are ignored.

The lower x-axis is the order k. The upper axis is for the corresponding threshold.

Value

pickandsplot gives Pickand’s plot. It also returns a dataframe containing columns of the order
statistics, order, Pickand’s estimator, it’s standard devation and 100(1 − α)% confidence interval
(when requested).

Acknowledgments

Thanks to Younes Mouatasim, Risk Dynamics, Brussels for reporting various bugs in these func-
tions.

Note

Asymptotic Wald type CI’s are estimated for non-NULL signficance level alpha for the shape pa-
rameter, assuming exactly GPD tails. When plotting on the tail index scale, then a simple reciprocal
transform of the CI is applied which may well be sub-optimal.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

Pickands III, J.. (1975). Statistical inference using extreme order statistics. Annal of Statistics 3(1),
119-131.

Dekkers A. and de Haan, S. (1989). On the estimation of the extreme-value index and large quantile
estimation. Annals of Statistics 17(4), 1795-1832.

Resnick, S. (2007). Heavy-Tail Phenomena - Probabilistic and Statistical Modeling. Springer.

See Also

pickands

234 psden

Examples

Not run:
par(mfrow = c(2, 1))

Reproduce graphs from Figure 4.7 of Resnick (2007)
data(danish, package="evir")

Pickand's plot
pickandsplot(danish, orderlim=c(1, 150), ylim=c(-0.1, 2.2),
try.thresh=c(), alpha=NULL, legend.loc=NULL)

Using default settings
pickandsplot(danish)

End(Not run)

psden P-Splines probability density function

Description

Density, cumulative distribution function, quantile function and random number generation for the
P-splines density estimate. B-spline coefficients can be result from Poisson regression with log or
identity link.

Usage

dpsden(x, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL, log = FALSE)

ppsden(q, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL, lower.tail = TRUE)

qpsden(p, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL, lower.tail = TRUE)

rpsden(n = 1, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, design.knots = NULL)

Arguments

x quantiles

beta vector of B-spline coefficients (required)

nbinwidth scaling to convert count frequency into proper density

xrange vector of minimum and maximum of B-spline (support of density)

nseg number of segments between knots

degree degree of B-splines (0 is constant, 1 is linear, etc.)

design.knots spline knots for splineDesign function

log logical, if TRUE then log density

psden 235

q quantiles
lower.tail logical, if FALSE then upper tail probabilities
p cumulative probabilities
n sample size (positive integer)

Details

P-spline density estimate using B-splines with given coefficients. B-splines knots can be specified
using design.knots or regularly spaced knots can be specified using xrange, nseg and deg. No
default knots are provided.

If regularly spaced knots are specified using xrange, nseg and deg, then B-splines which are
shifted/spliced versions of each other are defined (i.e. not natural B-splines) which is consistent
with definition of Eilers and Marx, the masters of P-splines.

The splineDesign function is used to calculate the B-splines, which intakes knot locations as
design.knots. As such the design.knots are not the knots in their usual sense (e.g. to cover
[0, 100] with 10 segments the usual knots would be 0, 10, . . . , 100). The design.knots must be
extended by the degree, so for degree = 2 the design.knots = seq(-20, 120, 10).

Further, if the user wants natural B-splines then these can be specified using the design.knots,
with replicated knots at each bounday according to the degree. To continue the above example, for
degree = 2 the design.knots = c(rep(0, 2), seq(0, 100, 10), rep(100, 2)).

If both the design.knots and other knot specification are provided, then the former are used by
default. Default values for only the degree and nseg are provided, all the other P-spline inputs must
be provided. Notice that the order and lambda penalty are not needed as these are encapsulated in
the inference for the B-spline coefficients.

Poisson regression is typically used for estimating the B-spline coefficients, using maximum likeli-
hood estimation (via iterative re-weighted least squares). A log-link function is usually used and as
such the beta coefficients are on a log-scale, and the density needs to be exponentiated. However,
an identity link may be (carefully) used and then these coefficients are on the usual scale.

The beta coefficients are estimated using a particular sample (size) and histogram bin-width, using
Poisson regression. Thus to convert the predicted counts into a proper density it needs to be rescaled
by dividing by n ∗ binwidth. If nbinwidth=NULL is not provided then a crude approximate scaling
is used by normalising the density to be proper. The renormalisation requires numerical integration,
which is computationally intensive and so best avoided wherever possible.

Checks of the consistency of the xrange, degree and nseg and design.knots are made, with
the values implied by the design.knots used by default to replace any incorrect values. These
replacements are made for notational efficiency for users.

An inversion sampler is used for random number generation which also rather inefficient, as it could
be carried out more efficiently using a mixture representation.

The quantile function is rather complicated as there is no closed form solution, so is obtained by
numerical approximation of the inverse cumulative distribution function P (X ≤ q) = p to find
q. The quantile function qpsden evaluates the P-splines cumulative distribution function over the
xrange. A sequence of values of length fifty times the number of knots (with a minimum of 1000)
is first calculated. Spline based interpolation using splinefun, with default monoH.FC method, is
then used to approximate the quantile function. This is a similar approach to that taken by Matt
Wand in the qkde in the ks package.

Value

dpsden gives the density, ppsden gives the cumulative distribution function, qpsden gives the quan-
tile function and rpsden gives a random sample.

236 psden

Note

Unlike most of the other extreme value mixture model functions the psden functions have not been
vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vector,
which also define the output length.

Default values are provided for P-spline inputs of degree and nseg only, but all others must be
provided by the user. The default sample size for rpsden is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/B-spline

http://statweb.lsu.edu/faculty/marx/

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical
Science 11(2), 89-121.

See Also

splineDesign.

Other psden fpsden: fpsden

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-6, 6, 0.01)
y = dnorm(xx)

Plenty of histogram bins (100)
breaks = seq(-4, 4, length.out=101)

P-spline fitting with cubic B-splines, 2nd order penalty and 8 internal segments
CV search for penalty coefficient.
fit = fpsden(x, lambdaseq = 10^seq(-5, 5, 0.25), breaks = breaks,

xrange = c(-4, 4), nseg = 10, degree = 3, ord = 2)
psdensity = exp(fit$bsplines %*% fit$mle)

hist(x, freq = FALSE, breaks = seq(-4, 4, length.out=101), xlim = c(-6, 6))
lines(xx, y, col = "black") # true density

P-splines density from dpsden function
with(fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots), lwd = 2, col = "blue"))

legend("topright", c("True Density","P-spline density"), col=c("black", "blue"), lty = 1)

http://en.wikipedia.org/wiki/B-spline
http://statweb.lsu.edu/faculty/marx/

psdengpd 237

plot B-splines
par(mfrow = c(2, 1))
with(fit, matplot(mids, as.matrix(bsplines), type = "l", lty = 1))

Natural B-splines
knots = with(fit, seq(xrange[1], xrange[2], length.out = nseg + 1))
natural.knots = with(fit, c(rep(xrange[1], degree), knots, rep(xrange[2], degree)))
naturalb = splineDesign(natural.knots, fit$mids, ord = fit$degree + 1, outer.ok = TRUE)
with(fit, matplot(mids, naturalb, type = "l", lty = 1))

Compare knot specifications
rbind(fit$design.knots, natural.knots)

User can use natural B-splines if design.knots are specified manually
natural.fit = fpsden(x, lambdaseq = 10^seq(-5, 5, 0.25), breaks = breaks,

design.knots = natural.knots, nseg = 10, degree = 3, ord = 2)
psdensity = with(natural.fit, exp(bsplines %*% mle))

par(mfrow = c(1, 1))
hist(x, freq = FALSE, breaks = seq(-4, 4, length.out=101), xlim = c(-6, 6))
lines(xx, y, col = "black") # true density

check density against dpsden function
with(fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots), lwd = 2, col = "blue"))
with(natural.fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots),

lwd = 2, col = "red", lty = 2))

legend("topright", c("True Density", "Eilers and Marx B-splines", "Natural B-splines"),
col=c("black", "blue", "red"), lty = c(1, 1, 2))

End(Not run)

psdengpd P-Splines Density Estimate and GPD Tail Extreme Value Mixture
Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with P-splines density estimate for bulk distribution upto the threshold
and conditional GPD above threshold. The parameters are the B-spline coefficients beta (and
associated features), threshold u GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dpsdengpd(x, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, u = NULL, sigmau = NULL, xi = 0, phiu = TRUE,
design.knots = NULL, log = FALSE)

ppsdengpd(q, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, u = NULL, sigmau = NULL, xi = 0, phiu = TRUE,
design.knots = NULL, lower.tail = TRUE)

238 psdengpd

qpsdengpd(p, beta = NULL, nbinwidth = NULL, xrange = NULL, nseg = 10,
degree = 3, u = NULL, sigmau = NULL, xi = 0, phiu = TRUE,
design.knots = NULL, lower.tail = TRUE)

rpsdengpd(n = 1, beta = NULL, nbinwidth = NULL, xrange = NULL,
nseg = 10, degree = 3, u = NULL, sigmau = NULL, xi = 0,
phiu = TRUE, design.knots = NULL)

Arguments

x quantiles

beta vector of B-spline coefficients (required)

nbinwidth scaling to convert count frequency into proper density

xrange vector of minimum and maximum of B-spline (support of density)

nseg number of segments between knots

degree degree of B-splines (0 is constant, 1 is linear, etc.)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

design.knots spline knots for splineDesign function

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining P-splines density estimate for the bulk below the threshold
and GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alterna-
tively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the KDE bulk model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
P-splines density estimate (phiu=TRUE), upto the threshold x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the P-splines density estimate and conditional GPD cumulative distri-
bution functions respectively.

The cumulative distribution function for pre-specified φu, upto the threshold x ≤ u, is given by:

F (x) = (1− φu)H(x)/H(u)

psdengpd 239

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

See gpd for details of GPD upper tail component. The specification of the underlying B-splines and
the P-splines density estimator are discussed in the psden function help.

Value

dpsdengpd gives the density, ppsdengpd gives the cumulative distribution function, qpsdengpd
gives the quantile function and rpsdengpd gives a random sample.

Note

Unlike most of the other extreme value mixture model functions the psdengpd functions have not
been vectorised as this is not appropriate. The main inputs (x, p or q) must be either a scalar or a vec-
tor, which also define the output length. The B-splines coefficients beta and knots design.knots
are vectors.

Default values are provided for P-spline inputs of degree and nseg only, but all others must be
provided by the user. The default sample size for rpsdengpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are permitted for the parameters/B-spline criteria.

Due to symmetry, the lower tail can be described by GPD by negating the quantiles.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Alfadino Akbar and Carl Scarrott <carl.scarrott@canterbury.ac.nz>.

References

http://en.wikipedia.org/wiki/B-spline

http://statweb.lsu.edu/faculty/marx/

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Eilers, P.H.C. and Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical
Science 11(2), 89-121.

See Also

psden and fpsden.

http://en.wikipedia.org/wiki/B-spline
http://statweb.lsu.edu/faculty/marx/
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

240 tcplot

Examples

Not run:
set.seed(1)
par(mfrow = c(1, 1))

x = rnorm(1000)
xx = seq(-6, 6, 0.01)
y = dnorm(xx)

Plenty of histogram bins (100)
breaks = seq(-4, 4, length.out=101)

P-spline fitting with cubic B-splines, 2nd order penalty and 8 internal segments
CV search for penalty coefficient.
fit = fpsdengpd(x, lambdaseq = 10^seq(-5, 5, 0.25), breaks = breaks,

xrange = c(-4, 4), nseg = 10, degree = 3, ord = 2)
hist(x, freq = FALSE, breaks = seq(-4, 4, length.out=101), xlim = c(-6, 6))

P-splines only
with(fit, lines(xx, dpsden(xx, beta, nbinwidth, design = design.knots), lwd = 2, col = "blue"))

P-splines+GPD
with(fit, lines(xx, dpsdengpd(xx, beta, nbinwidth, design = design.knots,

u = u, sigmau = sigmau, xi = xi, phiu = phiu), lwd = 2, col = "red"))
abline(v = fit$u, col = "red")

legend("topleft", c("True Density","P-spline density", "P-spline+GPD"),
col=c("black", "blue", "red"), lty = 1)

End(Not run)

tcplot Parameter Threshold Stability Plots

Description

Plots the MLE of the GPD parameters against threshold

Usage

tcplot(data, tlim = NULL, nt = min(100, length(data)), p.or.n = FALSE,
alpha = 0.05, ylim.xi = NULL, ylim.sigmau = NULL,
legend.loc = "bottomright", try.thresh = quantile(data, 0.9, na.rm =
TRUE), ...)

tshapeplot(data, tlim = NULL, nt = min(100, length(data)), p.or.n = FALSE,
alpha = 0.05, ylim = NULL, legend.loc = "bottomright",
try.thresh = quantile(data, 0.9, na.rm = TRUE),
main = "Shape Threshold Stability Plot", xlab = "Threshold u",
ylab = "Shape Parameter", ...)

tscaleplot(data, tlim = NULL, nt = min(100, length(data)), p.or.n = FALSE,

tcplot 241

alpha = 0.05, ylim = NULL, legend.loc = "bottomright",
try.thresh = quantile(data, 0.9, na.rm = TRUE),
main = "Modified Scale Threshold Stability Plot", xlab = "Threshold u",
ylab = "Modified Scale Parameter", ...)

Arguments

data vector of sample data

tlim vector of (lower, upper) limits of range of threshold to plot MRL, or NULL to use
default values

nt number of thresholds for which to evaluate MRL

p.or.n logical, should tail fraction (FALSE) or number of exceedances (TRUE) be given
on upper x-axis

alpha significance level over range (0, 1), or NULL for no CI

ylim.xi y-axis limits for shape parameter or NULL

ylim.sigmau y-axis limits for scale parameter or NULL

legend.loc location of legend (see legend) or NULL for no legend

try.thresh vector of thresholds to consider

... further arguments to be passed to the plotting functions

ylim y-axis limits or NULL

main title of plot

xlab x-axis label

ylab y-axis label

Details

The MLE of the (modified) GPD scale and shape (xi) parameters are plotted against a set of possible
thresholds. If the GPD is a suitable model for a threshold u then for all higher thresholds v > u
it will also be suitable, with the shape and modified scale being constant. Known as the threshold
stability plots (Coles, 2001). The modified scale parameter is σu − uξ.

In practice there is sample uncertainty in the parameter estimates, which must be taken into account
when choosing a threshold.

The usual asymptotic Wald confidence intervals are shown based on the observed information ma-
trix to measure this uncertainty. The sampling density of the Wald normal approximation is shown
by a greyscale image, where lighter greys indicate low density.

A pre-chosen threshold (or more than one) can be given in try.thresh. The GPD is fitted to the
excesses using maximum likelihood estimation. The estimated parameters are shown as a horizontal
line which is solid above this threshold, for which they should be the same if the GPD is a good
model (upto sample uncertainty). The threshold should always be chosen to be as low as possible to
reduce sample uncertainty. Therefore, below the pre-chosen threshold, where the GPD should not
be a good model, the line is dashed and the parameter estimates should now deviate from the dashed
line (otherwise a lower threshold could be used). If no threshold limits are provided tlim = NULL
then the lowest threshold is set to be just below the median data point and the maximum threshold
is set to the 11th largest datapoint. This is a slightly lower order statistic compared to that used in
the MRL plot mrlplot function to account for the fact the maximum likelihood estimation is likely
to be unreliable with 10 or fewer datapoints.

242 tcplot

The range of permitted thresholds is just below the minimum datapoint and the second largest value.
If there are less unique values of data within the threshold range than the number of threshold evala-
tions requested, then instead of a sequence of thresholds they will be set to each unique datapoint,
i.e. MLE will only be applied where there is data.

The missing (NA and NaN) and non-finite values are ignored.

The lower x-axis is the threshold and an upper axis either gives the number of exceedances (p.or.n = FALSE)
or proportion of excess (p.or.n = TRUE). Note that unlike the gpd related functions the missing
values are ignored, so do not add to the lower tail fraction. But ignoring the missing values is
consistent with all the other mixture model functions.

Value

tshapeplot and tscaleplot produces the threshold stability plot for the shape and scale param-
eter respectively. They also returns a matrix containing columns of the threshold, number of ex-
ceedances, MLE shape/scale and their standard devation and 100(1−α)% Wald confidence interval
if requested. Where the observed information matrix is not obtainable the standard deviation and
confidence intervals are NA. For the tscaleplot the modified scale quantities are also provided.
tcplot produces both plots on one graph and outputs a merged dataframe of results.

Acknowledgments

Based on the threshold stability plot function tcplot in the evd package for which Stuart Coles’ and
Alec Stephenson’s contributions are gratefully acknowledged. They are designed to have similar
syntax and functionality to simplify the transition for users of these packages.

Note

If the user specifies the threshold range, the thresholds above the sixth largest are dropped. A warn-
ing message is given if any thresholds have at most 10 exceedances, in which case the maximum
likelihood estimation is unreliable. If there are less than 10 exceedances of the minimum threshold
then the function will stop.

By default, no legend is included when using tcplot to get both threshold stability plots.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Coles S.G. (2004). An Introduction to the Statistical Modelling of Extreme Values. Springer-Verlag:
London.

See Also

mrlplot and tcplot from evd library

http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

weibullgpd 243

Examples

Not run:
x = rnorm(1000)
tcplot(x)
tshapeplot(x, tlim = c(0, 2))
tscaleplot(x, tlim = c(0, 2), try.thresh = c(0.5, 1, 1.5))
tcplot(x, tlim = c(0, 2), try.thresh = c(0.5, 1, 1.5))

End(Not run)

weibullgpd Weibull Bulk and GPD Tail Extreme Value Mixture Model

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with Weibull for bulk distribution upto the threshold and conditional
GPD above threshold. The parameters are the weibull shape wshape and scale wscale, threshold u
GPD scale sigmau and shape xi and tail fraction phiu.

Usage

dweibullgpd(x, wshape = 1, wscale = 1, u = qweibull(0.9, wshape, wscale),
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, phiu = TRUE, log = FALSE)

pweibullgpd(q, wshape = 1, wscale = 1, u = qweibull(0.9, wshape, wscale),
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, phiu = TRUE, lower.tail = TRUE)

qweibullgpd(p, wshape = 1, wscale = 1, u = qweibull(0.9, wshape, wscale),
sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, phiu = TRUE, lower.tail = TRUE)

rweibullgpd(n = 1, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), sigmau = sqrt(wscale^2 * gamma(1 + 2/wshape) - (wscale * gamma(1 +
1/wshape))^2), xi = 0, phiu = TRUE)

Arguments

x quantiles

wshape Weibull shape (positive)

wscale Weibull scale (positive)

u threshold

sigmau scale parameter (positive)

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

244 weibullgpd

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining Weibull distribution for the bulk below the threshold and
GPD for upper tail.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the weibull bulk
model.

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
Weibull bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the Weibull and conditional GPD cumulative distribution functions (i.e.
pweibull(x, wshape, wscale) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The Weibull is defined on the non-negative reals, so the threshold must be positive.

See gpd for details of GPD upper tail component and dweibull for details of weibull bulk compo-
nent.

Value

dweibullgpd gives the density, pweibullgpd gives the cumulative distribution function, qweibullgpd
gives the quantile function and rweibullgpd gives a random sample.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rweibullgpd any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rweibullgpd is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

weibullgpd 245

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dweibull

Other weibullgpd weibullgpdcon fweibullgpd fweibullgpdcon: weibullgpdcon

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rweibullgpd(1000)
xx = seq(-1, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 6))
lines(xx, dweibullgpd(xx))

three tail behaviours
plot(xx, pweibullgpd(xx), type = "l")
lines(xx, pweibullgpd(xx, xi = 0.3), col = "red")
lines(xx, pweibullgpd(xx, xi = -0.3), col = "blue")
legend("topleft", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rweibullgpd(1000, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 6))
lines(xx, dweibullgpd(xx, phiu = 0.2))

plot(xx, dweibullgpd(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dweibullgpd(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dweibullgpd(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topleft", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

246 weibullgpdcon

weibullgpdcon Weibull Bulk and GPD Tail Extreme Value Mixture Model with Single
Continuity Constraint

Description

Density, cumulative distribution function, quantile function and random number generation for the
extreme value mixture model with Weibull for bulk distribution upto the threshold and conditional
GPD above threshold with continuity at threshold. The parameters are the weibull shape wshape
and scale wscale, threshold u GPD shape xi and tail fraction phiu.

Usage

dweibullgpdcon(x, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), xi = 0, phiu = TRUE, log = FALSE)

pweibullgpdcon(q, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), xi = 0, phiu = TRUE, lower.tail = TRUE)

qweibullgpdcon(p, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), xi = 0, phiu = TRUE, lower.tail = TRUE)

rweibullgpdcon(n = 1, wshape = 1, wscale = 1, u = qweibull(0.9, wshape,
wscale), xi = 0, phiu = TRUE)

Arguments

x quantiles

wshape Weibull shape (positive)

wscale Weibull scale (positive)

u threshold

xi shape parameter

phiu probability of being above threshold [0, 1] or TRUE

log logical, if TRUE then log density

q quantiles

lower.tail logical, if FALSE then upper tail probabilities

p cumulative probabilities

n sample size (positive integer)

Details

Extreme value mixture model combining Weibull distribution for the bulk below the threshold and
GPD for upper tail with continuity at threshold.

The user can pre-specify phiu permitting a parameterised value for the tail fraction φu. Alter-
natively, when phiu=TRUE the tail fraction is estimated as the tail fraction from the weibull bulk
model.

weibullgpdcon 247

The cumulative distribution function with tail fraction φu defined by the upper tail fraction of the
Weibull bulk model (phiu=TRUE), upto the threshold 0 < x ≤ u, given by:

F (x) = H(x)

and above the threshold x > u:

F (x) = H(u) + [1−H(u)]G(x)

where H(x) and G(X) are the Weibull and conditional GPD cumulative distribution functions (i.e.
pweibull(x, wshape, wscale) and pgpd(x, u, sigmau, xi)) respectively.

The cumulative distribution function for pre-specified φu, upto the threshold 0 < x ≤ u, is given
by:

F (x) = (1− φu)H(x)/H(u)

and above the threshold x > u:

F (x) = φu + [1− φu]G(x)

Notice that these definitions are equivalent when φu = 1−H(u).

The continuity constraint means that (1 − φu)h(u)/H(u) = φug(u) where h(x) and g(x) are
the Weibull and conditional GPD density functions (i.e. dweibull(x, wshape, wscale) and
dgpd(x, u, sigmau, xi)) respectively. The resulting GPD scale parameter is then:

σu = φuH(u)/[1− φu]h(u)

. In the special case of where the tail fraction is defined by the bulk model this reduces to

σu = [1−H(u)]/h(u)

.

The Weibull is defined on the non-negative reals, so the threshold must be positive.

See gpd for details of GPD upper tail component and dweibull for details of weibull bulk compo-
nent.

Value

dweibullgpdcon gives the density, pweibullgpdcon gives the cumulative distribution function,
qweibullgpdcon gives the quantile function and rweibullgpdcon gives a random sample.

Acknowledgments

Thanks to Ben Youngman, Exeter University, UK for reporting a bug in the rweibullgpdcon func-
tion.

Note

All inputs are vectorised except log and lower.tail. The main inputs (x, p or q) and parameters
must be either a scalar or a vector. If vectors are provided they must all be of the same length, and
the function will be evaluated for each element of vector. In the case of rweibullgpdcon any input
vector must be of length n.

Default values are provided for all inputs, except for the fundamentals x, q and p. The default
sample size for rweibullgpdcon is 1.

Missing (NA) and Not-a-Number (NaN) values in x, p and q are passed through as is and infinite
values are set to NA. None of these are not permitted for the parameters.

Error checking of the inputs (e.g. invalid probabilities) is carried out and will either stop or give
warning message as appropriate.

248 weibullgpdcon

Author(s)

Yang Hu and Carl Scarrott <carl.scarrott@canterbury.ac.nz>

References

http://en.wikipedia.org/wiki/Weibull_distribution

http://en.wikipedia.org/wiki/Generalized_Pareto_distribution

Scarrott, C.J. and MacDonald, A. (2012). A review of extreme value threshold estimation and
uncertainty quantification. REVSTAT - Statistical Journal 10(1), 33-59. Available from http:
//www.ine.pt/revstat/pdf/rs120102.pdf

Behrens, C.N., Lopes, H.F. and Gamerman, D. (2004). Bayesian analysis of extreme events with
threshold estimation. Statistical Modelling. 4(3), 227-244.

See Also

gpd and dweibull

Other weibullgpd weibullgpdcon fweibullgpd fweibullgpdcon: weibullgpd

Examples

Not run:
set.seed(1)
par(mfrow = c(2, 2))

x = rweibullgpdcon(1000)
xx = seq(-0.1, 6, 0.01)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 6))
lines(xx, dweibullgpdcon(xx))

three tail behaviours
plot(xx, pweibullgpdcon(xx), type = "l")
lines(xx, pweibullgpdcon(xx, xi = 0.3), col = "red")
lines(xx, pweibullgpdcon(xx, xi = -0.3), col = "blue")
legend("bottomright", paste("xi =",c(0, 0.3, -0.3)),

col=c("black", "red", "blue"), lty = 1)

x = rweibullgpdcon(1000, phiu = 0.2)
hist(x, breaks = 100, freq = FALSE, xlim = c(-1, 6))
lines(xx, dweibullgpdcon(xx, phiu = 0.2))

plot(xx, dweibullgpdcon(xx, xi=0, phiu = 0.2), type = "l")
lines(xx, dweibullgpdcon(xx, xi=-0.2, phiu = 0.2), col = "red")
lines(xx, dweibullgpdcon(xx, xi=0.2, phiu = 0.2), col = "blue")
legend("topright", c("xi = 0", "xi = 0.2", "xi = -0.2"),

col=c("black", "red", "blue"), lty = 1)

End(Not run)

http://en.wikipedia.org/wiki/Weibull_distribution
http://en.wikipedia.org/wiki/Generalized_Pareto_distribution
http://www.ine.pt/revstat/pdf/rs120102.pdf
http://www.ine.pt/revstat/pdf/rs120102.pdf

Index

bckden, 4, 7, 12, 17, 34, 101, 185, 197, 200,
204, 207, 209

bckdengpd, 8, 9, 12, 17, 34, 101, 197, 200, 204
bckdengpdcon, 8, 12, 13, 16, 34, 101, 197,

200, 204
bckdenxbeta1 (internal), 184
bckdenxbeta2 (internal), 184
bckdenxcopula (internal), 184
bckdenxcutnorm (internal), 184
bckdenxgamma1 (internal), 184
bckdenxgamma2 (internal), 184
bckdenxreflect (internal), 184
bckdenxrenorm (internal), 184
bckdenxsimple (internal), 184
betagpd, 17, 22
betagpdcon, 19, 20
bw.nrd0, 8, 12, 17, 34, 38, 43, 63, 67, 68, 100,

101, 104, 105, 108, 109, 160, 161,
164, 165, 196, 197, 199, 200, 203,
204

check.bcmethod (checking), 23
check.control (checking), 23
check.design.knots (checking), 23
check.inputn, 25
check.inputn (checking), 23
check.kbw (kfun), 207
check.kernel, 208
check.kernel (kfun), 207
check.kinputs, 208
check.kinputs (kfun), 207
check.klambda, 208
check.logic (checking), 23
check.n (checking), 23
check.nn (checking), 23
check.nparam (checking), 23
check.offset (checking), 23
check.optim (checking), 23
check.param, 23
check.param (checking), 23
check.phiu (checking), 23
check.posparam, 23
check.posparam (checking), 23
check.prob (checking), 23

check.quant (checking), 23
check.text (checking), 23
checking, 23
condmixt, 4, 83, 86, 180, 183
cvpsden, 139, 140
cvpsden (fpsden), 138

dbckden, 6, 11, 15, 37, 42
dbckden (bckden), 4
dbckdengpd, 11
dbckdengpd (bckdengpd), 9
dbckdengpdcon, 15, 41
dbckdengpdcon (bckdengpdcon), 13
dbeta, 19, 21, 22, 46, 49
dbetagpd, 19
dbetagpd (betagpd), 17
dbetagpdcon, 22, 48
dbetagpdcon (betagpdcon), 20
dcauchy, 27
ddwm, 26
ddwm (dwm), 25
density, 5, 8, 11, 12, 15, 17, 29, 31, 34, 37,

38, 41, 43, 61, 63, 66–68, 98, 101,
104, 105, 107–109, 159–161,
163–165, 185, 195–197, 199, 200,
202–204, 206–209

densplot, 29
densplot (evmix.diag), 28
dgamma, 55, 59, 119, 124, 129, 153, 154, 156,

157, 217, 220, 223
dgammagpd, 154
dgammagpd (gammagpd), 152
dgammagpdcon, 57, 157
dgammagpdcon (gammagpdcon), 155
dgkg, 160
dgkg (gkg), 158
dgkgcon, 66, 164
dgkgcon (gkgcon), 162
dgng, 167, 171
dgng (gng), 166
dgngcon, 75, 171
dgngcon (gngcon), 169
dgpd, 80, 174
dgpd (gpd), 172

249

250 INDEX

dhpd, 179
dhpd (hpd), 178
dhpdcon, 85, 182
dhpdcon (hpdcon), 181
ditmgng, 89, 187
ditmgng (itmgng), 186
ditmnormgpd, 92, 187, 190
ditmnormgpd (itmnormgpd), 189
ditmweibullgpd, 95, 193
ditmweibullgpd (itmweibullgpd), 192
dkde, 8, 12, 17, 38, 43, 63, 68, 105, 109, 161,

165, 197, 200, 204
dkden, 160, 164, 195, 196, 199, 203
dkden (kden), 195
dkdengpd, 200
dkdengpd (kdengpd), 198
dkdengpdcon, 107, 203
dkdengpdcon (kdengpdcon), 201
dlnorm, 112, 115, 210, 211, 213, 214
dlognormgpd, 211
dlognormgpd (lognormgpd), 209
dlognormgpdcon, 114, 213
dlognormgpdcon (lognormgpdcon), 212
dmgamma, 216
dmgamma (mgamma), 215
dmgammagpd, 219
dmgammagpd (mgammagpd), 217
dmgammagpdcon, 222
dmgammagpdcon (mgammagpdcon), 220
dnorm, 72, 76, 86, 90, 93, 134, 137, 167, 168,

171, 172, 179, 180, 182, 183, 188,
191, 227, 228, 230, 231

dnormgpd, 167, 171, 227
dnormgpd (normgpd), 226
dnormgpdcon, 136, 230
dnormgpdcon (normgpdcon), 229
dpsden, 139, 235
dpsden (psden), 234
dpsdengpd, 239
dpsdengpd (psdengpd), 237
dweibull, 27, 96, 148, 151, 194, 244, 245,

247, 248
dweibullgpd, 244
dweibullgpd (weibullgpd), 243
dweibullgpdcon, 150, 247
dweibullgpdcon (weibullgpdcon), 246
dwm, 25

evd, 4, 28, 29, 37, 41, 45, 49, 51, 52, 55, 58,
62, 67, 71, 75, 78, 79, 81, 82, 85, 99,
104, 108, 111, 115, 123, 127, 132,
133, 136, 144, 147, 150, 173–175,
225, 226, 242

evmix, 28
evmix (evmix-package), 2
evmix-package, 2
evmix.diag, 28, 29

fbckden, 6, 8, 11, 12, 15, 17, 30, 32, 101, 197,
200, 204

fbckdengpd, 11, 33, 35, 37, 43, 105, 109
fbckdengpdcon, 15, 38, 39, 41, 105, 109
fbetagpd, 44, 45, 49
fbetagpdcon, 46, 47, 48
fdwm, 50, 52
fgammagpd, 53, 54, 59, 119, 124, 129, 154,

157, 217, 220, 223
fgammagpdcon, 55, 56, 58, 119, 124, 129, 154,

157, 217, 220, 223
fgkg, 60, 61, 62, 68, 100
fgkgcon, 63, 64, 66, 67
fgng, 29, 60, 65, 66, 69, 70, 71, 74–76, 90,

134, 137, 168, 172, 188, 228, 231
fgngcon, 72, 73, 75, 90, 134, 137, 168, 172,

188, 228, 231
fgpd, 28, 29, 38, 43, 46, 49, 53, 55, 59, 63, 68,

72, 76, 77, 78, 79, 83, 86, 90, 93, 96,
105, 109, 112, 115, 124, 129, 134,
137, 145, 148, 151, 175

fhpd, 81, 82, 86
fhpdcon, 83, 84, 85
fitdistr, 80
fitmgng, 72, 76, 87, 89, 134, 137, 168, 172,

188, 228, 231
fitmnormgpd, 91, 92
fitmweibullgpd, 94, 95
fkden, 8, 12, 17, 34, 37, 41, 42, 61, 62, 66, 67,

97, 99, 103, 104, 107, 108, 197, 200,
204

fkdengpd, 38, 43, 100, 102, 104, 109
fkdengpdcon, 38, 43, 105, 106, 107
flognormgpd, 110, 111, 115
flognormgpdcon, 112, 113, 114
fmgamma, 55, 59, 116, 118, 124, 129, 154, 157,

217, 220, 223
fmgammagpd, 55, 59, 118, 119, 120, 122, 129,

154, 157, 217, 220, 223
fmgammagpdcon, 55, 59, 119, 124, 125, 127,

154, 157, 217, 220, 223
fnormgpd, 28, 29, 36, 38, 40–42, 44–46, 48,

49, 52, 54, 55, 57, 58, 61, 62, 66, 67,
70, 72, 75, 76, 85, 89, 90, 92, 93, 95,
96, 100, 103, 104, 107, 108,
110–112, 114, 115, 121, 123, 125,
126, 128, 129, 130–132, 135–137,

INDEX 251

142–147, 149–151, 168, 172, 188,
228, 231

fnormgpdcon, 72, 76, 90, 134, 135, 136, 168,
172, 188, 228, 231

fpgd, 80
fpot, 33, 52, 79, 80, 82, 133, 175
fpsden, 138, 139, 140, 143, 145, 236, 239
fpsdengpd, 142, 143
fweibullgpd, 146, 147, 151
fweibullgpdcon, 148, 149, 150

gammagpd, 55, 59, 119, 124, 129, 152, 157,
217, 219, 220, 222, 223

gammagpdcon, 55, 59, 119, 124, 129, 154, 155,
217, 220, 223

gammamixEM, 119
gkg, 158, 160, 165
gkgcon, 161, 162, 164
gng, 72, 76, 90, 134, 137, 166, 172, 188, 228,

231
gngcon, 72, 76, 90, 134, 137, 168, 169, 188,

228, 231
gpd, 11, 12, 15, 17–19, 21, 22, 27, 38, 43, 46,

49, 53, 55, 59, 63, 68, 72, 76, 80, 83,
86, 90, 93, 96, 105, 109, 112, 115,
124, 129, 134, 137, 145, 148, 151,
153, 154, 156, 157, 160, 164, 167,
168, 171, 172, 172, 174, 179, 180,
182, 183, 188, 191, 194, 199, 203,
210, 211, 213, 214, 217, 220, 223,
226–228, 230, 231, 239, 244, 245,
247, 248

gpd.diag, 30
gpd.fit, 79

hill, 178
hillplot, 175, 177
hist, 139, 142
hpareto, 180, 183
hpareto.fit, 83, 86
hpareto.negloglike, 83, 86
hparetomixt, 180, 183
hpd, 178, 183
hpdcon, 180, 181

integrate, 7, 11, 16
internal, 184
ismev, 4, 79, 133
itmgng, 72, 76, 90, 134, 137, 168, 172, 186,

228, 231
itmnormgpd, 189
itmweibullgpd, 192
iwlspsden, 139, 140

iwlspsden (fpsden), 138

jitter, 31, 33, 34, 36, 40, 61, 65, 98, 100,
101, 103, 107

ka0, 208
ka0 (kfun), 207
ka1, 208
ka1 (kfun), 207
ka2, 208
ka2 (kfun), 207
kbw, 208
kbw (kfun), 207
kd*, 206
kdbiweight (kernels), 204
kdcosine (kernels), 204
kden, 5, 8, 12, 17, 34, 101, 141, 185, 195, 196,

200, 204, 207, 209
kdengpd, 8, 12, 17, 34, 101, 197, 198, 200, 204
kdengpdcon, 8, 12, 17, 34, 101, 197, 200, 201,

203
kdenx (internal), 184
kdepanechnikov (kernels), 204
kdgaussian (kernels), 204
kdoptcosine (kernels), 204
kdparzen (kernels), 204
kdtriangular (kernels), 204
kdtricube (kernels), 204
kdtriweight (kernels), 204
kduniform (kernels), 204
kdz, 206
kdz (kernels), 204
kernels, 5, 6, 8, 11, 12, 15, 17, 31, 34, 37, 38,

41, 43, 61, 63, 66, 68, 98, 101, 104,
105, 107, 109, 159, 161, 163, 165,
195, 197, 199, 200, 202, 204, 204,
209

kfun, 8, 12, 17, 34, 38, 43, 63, 68, 101, 105,
109, 161, 165, 197, 200, 204, 207,
207

klambda, 100, 208
klambda (kfun), 207
kp*, 206
kpbiweight (kernels), 204
kpcosine (kernels), 204
kpepanechnikov (kernels), 204
kpgaussian (kernels), 204
kpoptcosine (kernels), 204
kpparzen (kernels), 204
kptriangular (kernels), 204
kptricube (kernels), 204
kptriweight (kernels), 204
kpu, 208

252 INDEX

kpuniform (kernels), 204
kpz, 206
kpz (kernels), 204
ks, 6–8, 12, 17, 38, 43, 63, 68, 105, 109, 161,

165, 196, 197, 200, 204, 235

lbckden, 31, 32
lbckden (fbckden), 30
lbckdengpd, 37
lbckdengpd (fbckdengpd), 35
lbckdengpdcon, 41
lbckdengpdcon (fbckdengpdcon), 39
lbetagpd, 45
lbetagpd (fbetagpd), 44
lbetagpdcon, 48
lbetagpdcon (fbetagpdcon), 47
ldwm, 51, 52
ldwm (fdwm), 50
legend, 176, 224, 232, 241
lgammagpd, 54
lgammagpd (fgammagpd), 53
lgammagpdcon, 58
lgammagpdcon (fgammagpdcon), 56
lgkg, 61, 62
lgkg (fgkg), 60
lgkgcon, 66, 67
lgkgcon (fgkgcon), 64
lgng, 71
lgng (fgng), 69
lgngcon, 75
lgngcon (fgngcon), 73
lgpd, 78–80
lgpd (fgpd), 77
lhpd, 81, 82
lhpd (fhpd), 81
lhpdcon, 85
lhpdcon (fhpdcon), 84
litmgng, 89
litmgng (fitmgng), 87
litmnormgpd, 92
litmnormgpd (fitmnormgpd), 91
litmweibullgpd, 95
litmweibullgpd (fitmweibullgpd), 94
lkden, 99
lkden (fkden), 97
lkdengpd, 104
lkdengpd (fkdengpd), 102
lkdengpdcon, 107
lkdengpdcon (fkdengpdcon), 106
llognormgpd, 111
llognormgpd (flognormgpd), 110
llognormgpdcon, 114
llognormgpdcon (flognormgpdcon), 113

lmgamma, 117–119
lmgamma (fmgamma), 116
lmgammagpd, 122, 123
lmgammagpd (fmgammagpd), 120
lmgammagpdcon, 126–128
lmgammagpdcon (fmgammagpdcon), 125
lnormgpd, 118, 131–133
lnormgpd (fnormgpd), 129
lnormgpdcon, 136
lnormgpdcon (fnormgpdcon), 135
lognormgpd, 209, 214
lognormgpdcon, 211, 212
lpgd, 80
lpsden, 139, 140
lpsden (fpsden), 138
lpsdengpd, 143
lpsdengpd (fpsdengpd), 142
lweibullgpd, 147
lweibullgpd (fweibullgpd), 146
lweibullgpdcon, 150
lweibullgpdcon (fweibullgpdcon), 149

mgamma, 55, 59, 119, 124, 129, 154, 157, 215,
220, 223

mgammagpd, 55, 59, 119, 124, 129, 154, 157,
217, 217, 223

mgammagpdcon, 55, 59, 119, 124, 129, 154,
157, 217, 220, 220

mrlplot, 224, 225, 226, 241, 242

nlbckden, 31, 32
nlbckden (fbckden), 30
nlbckdengpd, 37
nlbckdengpd (fbckdengpd), 35
nlbckdengpdcon, 41
nlbckdengpdcon (fbckdengpdcon), 39
nlbetagpd, 45
nlbetagpd (fbetagpd), 44
nlbetagpdcon, 48
nlbetagpdcon (fbetagpdcon), 47
nldwm, 51, 52
nldwm (fdwm), 50
nlEMmgamma, 117–119
nlEMmgamma (fmgamma), 116
nlEMmgammagpd, 121–123
nlEMmgammagpd (fmgammagpd), 120
nlEMmgammagpdcon, 126–128
nlEMmgammagpdcon (fmgammagpdcon), 125
nleuitmgng (fitmgng), 87
nleuitmnormgpd (fitmnormgpd), 91
nleuitmweibullgpd (fitmweibullgpd), 94
nlgammagpd, 54
nlgammagpd (fgammagpd), 53

INDEX 253

nlgammagpdcon, 58
nlgammagpdcon (fgammagpdcon), 56
nlgkg, 61, 62
nlgkg (fgkg), 60
nlgkgcon, 66, 67
nlgkgcon (fgkgcon), 64
nlgng, 71
nlgng (fgng), 69
nlgngcon, 75
nlgngcon (fgngcon), 73
nlgpd, 78–80
nlgpd (fgpd), 77
nlhpd, 81, 82
nlhpd (fhpd), 81
nlhpdcon, 85
nlhpdcon (fhpdcon), 84
nlitmgng, 89
nlitmgng (fitmgng), 87
nlitmnormgpd, 92
nlitmnormgpd (fitmnormgpd), 91
nlitmweibullgpd, 95
nlitmweibullgpd (fitmweibullgpd), 94
nlkden, 99
nlkden (fkden), 97
nlkdengpd, 104
nlkdengpd (fkdengpd), 102
nlkdengpdcon, 107
nlkdengpdcon (fkdengpdcon), 106
nllognormgpd, 111
nllognormgpd (flognormgpd), 110
nllognormgpdcon, 114
nllognormgpdcon (flognormgpdcon), 113
nlmgamma, 117–119
nlmgamma (fmgamma), 116
nlmgammagpd, 121–123
nlmgammagpd (fmgammagpd), 120
nlmgammagpdcon, 126–128
nlmgammagpdcon (fmgammagpdcon), 125
nlnormgpd, 131–133
nlnormgpd (fnormgpd), 129
nlnormgpdcon, 136
nlnormgpdcon (fnormgpdcon), 135
nlpgd, 80
nlpsden, 139, 140
nlpsden (fpsden), 138
nlpsdengpd, 143
nlpsdengpd (fpsdengpd), 142
nlubckdengpd, 37
nlubckdengpd (fbckdengpd), 35
nlubckdengpdcon, 41
nlubckdengpdcon (fbckdengpdcon), 39
nlubetagpd, 45

nlubetagpd (fbetagpd), 44
nlubetagpdcon, 48
nlubetagpdcon (fbetagpdcon), 47
nluEMmgammagpd, 122, 123
nluEMmgammagpd (fmgammagpd), 120
nluEMmgammagpdcon, 126–128
nluEMmgammagpdcon (fmgammagpdcon), 125
nlugammagpd, 54
nlugammagpd (fgammagpd), 53
nlugammagpdcon, 58
nlugammagpdcon (fgammagpdcon), 56
nlugkg, 61, 62
nlugkg (fgkg), 60
nlugkgcon, 66, 67
nlugkgcon (fgkgcon), 64
nlugng, 71
nlugng (fgng), 69
nlugngcon, 75
nlugngcon (fgngcon), 73
nluhpdcon, 85
nluhpdcon (fhpdcon), 84
nluitmgng, 89
nluitmgng (fitmgng), 87
nluitmnormgpd, 92
nluitmnormgpd (fitmnormgpd), 91
nluitmweibullgpd, 95
nluitmweibullgpd (fitmweibullgpd), 94
nlukdengpd, 104
nlukdengpd (fkdengpd), 102
nlukdengpdcon, 107
nlukdengpdcon (fkdengpdcon), 106
nlulognormgpd, 111
nlulognormgpd (flognormgpd), 110
nlulognormgpdcon, 114
nlulognormgpdcon (flognormgpdcon), 113
nlumgammagpd, 122, 123
nlumgammagpd (fmgammagpd), 120
nlumgammagpdcon, 127, 128
nlumgammagpdcon (fmgammagpdcon), 125
nlunormgpd, 131–133
nlunormgpd (fnormgpd), 129
nlunormgpdcon, 136
nlunormgpdcon (fnormgpdcon), 135
nlupsdengpd, 143
nlupsdengpd (fpsdengpd), 142
nluweibullgpd, 147
nluweibullgpd (fweibullgpd), 146
nluweibullgpdcon, 150
nluweibullgpdcon (fweibullgpdcon), 149
nlweibullgpd, 147
nlweibullgpd (fweibullgpd), 146
nlweibullgpdcon, 150

254 INDEX

nlweibullgpdcon (fweibullgpdcon), 149
normgpd, 72, 76, 90, 134, 137, 168, 172, 188,

191, 226, 231
normgpdcon, 72, 76, 90, 134, 137, 168, 172,

188, 228, 229

optim, 24, 31, 32, 36, 40, 41, 44, 45, 48, 51,
54, 57, 61, 65, 66, 70, 74, 78, 79, 81,
82, 84, 88, 92, 95, 98, 99, 103, 107,
111, 114, 117, 118, 121, 126, 130,
132, 136, 143, 146, 149, 150

pbckden, 6
pbckden (bckden), 4
pbckdengpd, 11
pbckdengpd (bckdengpd), 9
pbckdengpdcon, 15
pbckdengpdcon (bckdengpdcon), 13
pbckdenxbeta1 (internal), 184
pbckdenxbeta2 (internal), 184
pbckdenxcopula (internal), 184
pbckdenxcutnorm (internal), 184
pbckdenxgamma1 (internal), 184
pbckdenxgamma2 (internal), 184
pbckdenxlog (internal), 184
pbckdenxnn (internal), 184
pbckdenxreflect (internal), 184
pbckdenxrenorm (internal), 184
pbckdenxsimple (internal), 184
pbetagpd, 19
pbetagpd (betagpd), 17
pbetagpdcon, 22
pbetagpdcon (betagpdcon), 20
pdwm, 26
pdwm (dwm), 25
pgammagpd, 154
pgammagpd (gammagpd), 152
pgammagpdcon, 157
pgammagpdcon (gammagpdcon), 155
pgkg, 160
pgkg (gkg), 158
pgkgcon, 164
pgkgcon (gkgcon), 162
pgng, 167
pgng (gng), 166
pgngcon, 171
pgngcon (gngcon), 169
pgpd, 174
pgpd (gpd), 172
phpd, 179
phpd (hpd), 178
phpdcon, 182
phpdcon (hpdcon), 181

pickands, 233
pickandsplot, 232, 233
pitmgng, 187
pitmgng (itmgng), 186
pitmnormgpd, 190
pitmnormgpd (itmnormgpd), 189
pitmweibullgpd, 193
pitmweibullgpd (itmweibullgpd), 192
pkden, 196
pkden (kden), 195
pkdengpd, 200
pkdengpd (kdengpd), 198
pkdengpdcon, 203
pkdengpdcon (kdengpdcon), 201
pkdenx (internal), 184
plognormgpd, 211
plognormgpd (lognormgpd), 209
plognormgpdcon, 213
plognormgpdcon (lognormgpdcon), 212
plot, 28
plot.uvevd, 29, 30
pmgamma, 216
pmgamma (mgamma), 215
pmgammagpd, 219
pmgammagpd (mgammagpd), 217
pmgammagpdcon, 222
pmgammagpdcon (mgammagpdcon), 220
pnorm, 208
pnormgpd, 227
pnormgpd (normgpd), 226
pnormgpdcon, 230
pnormgpdcon (normgpdcon), 229
pplot, 29
pplot (evmix.diag), 28
ppoints, 28–30
ppsden, 235
ppsden (psden), 234
ppsdengpd, 239
ppsdengpd (psdengpd), 237
profleuitmgng (fitmgng), 87
profleuitmnormgpd (fitmnormgpd), 91
profleuitmweibullgpd (fitmweibullgpd),

94
proflubckdengpd, 37
proflubckdengpd (fbckdengpd), 35
proflubckdengpdcon, 41
proflubckdengpdcon (fbckdengpdcon), 39
proflubetagpd, 45
proflubetagpd (fbetagpd), 44
proflubetagpdcon, 48
proflubetagpdcon (fbetagpdcon), 47
proflugammagpd, 54

INDEX 255

proflugammagpd (fgammagpd), 53
proflugammagpdcon, 58
proflugammagpdcon (fgammagpdcon), 56
proflugkg, 61, 62
proflugkg (fgkg), 60
proflugkgcon, 66, 67
proflugkgcon (fgkgcon), 64
proflugng, 71
proflugng (fgng), 69
proflugngcon, 75
proflugngcon (fgngcon), 73
profluhpdcon, 85
profluhpdcon (fhpdcon), 84
profluitmgng, 89
profluitmgng (fitmgng), 87
profluitmnormgpd, 92
profluitmnormgpd (fitmnormgpd), 91
profluitmweibullgpd, 95
profluitmweibullgpd (fitmweibullgpd), 94
proflukdengpd, 104
proflukdengpd (fkdengpd), 102
proflukdengpdcon, 107
proflukdengpdcon (fkdengpdcon), 106
proflulognormgpd, 111
proflulognormgpd (flognormgpd), 110
proflulognormgpdcon, 114
proflulognormgpdcon (flognormgpdcon),

113
proflumgammagpd, 122
proflumgammagpd (fmgammagpd), 120
proflumgammagpdcon, 126, 127
proflumgammagpdcon (fmgammagpdcon), 125
proflunormgpd, 131, 132
proflunormgpd (fnormgpd), 129
proflunormgpdcon, 136
proflunormgpdcon (fnormgpdcon), 135
proflupsdengpd, 143
proflupsdengpd (fpsdengpd), 142
profluweibullgpd, 147
profluweibullgpd (fweibullgpd), 146
profluweibullgpdcon, 150
profluweibullgpdcon (fweibullgpdcon),

149
pscounts (internal), 184
psden, 141, 234, 236, 239
psdengpd, 237, 239
pweibullgpd, 244
pweibullgpd (weibullgpd), 243
pweibullgpdcon, 247
pweibullgpdcon (weibullgpdcon), 246
pxb (internal), 184

qbckden, 6

qbckden (bckden), 4
qbckdengpd, 11
qbckdengpd (bckdengpd), 9
qbckdengpdcon, 15
qbckdengpdcon (bckdengpdcon), 13
qbetagpd, 19
qbetagpd (betagpd), 17
qbetagpdcon, 22
qbetagpdcon (betagpdcon), 20
qdwm, 26
qdwm (dwm), 25
qgammagpd, 154
qgammagpd (gammagpd), 152
qgammagpdcon, 157
qgammagpdcon (gammagpdcon), 155
qgbgmix, 187
qgbgmix (internal), 184
qgbgmixprime (internal), 184
qgkg, 160
qgkg (gkg), 158
qgkgcon, 164
qgkgcon (gkgcon), 162
qgng, 167
qgng (gng), 166
qgngcon, 171
qgngcon (gngcon), 169
qgpd, 174
qgpd (gpd), 172
qhpd, 179
qhpd (hpd), 178
qhpdcon, 182
qhpdcon (hpdcon), 181
qitmgng, 187
qitmgng (itmgng), 186
qitmnormgpd, 190
qitmnormgpd (itmnormgpd), 189
qitmweibullgpd, 193
qitmweibullgpd (itmweibullgpd), 192
qkde, 6, 196, 235
qkden, 196
qkden (kden), 195
qkdengpd, 200
qkdengpd (kdengpd), 198
qkdengpdcon, 203
qkdengpdcon (kdengpdcon), 201
qlognormgpd, 211
qlognormgpd (lognormgpd), 209
qlognormgpdcon, 213
qlognormgpdcon (lognormgpdcon), 212
qmgamma, 216
qmgamma (mgamma), 215
qmgammagpd, 219

256 INDEX

qmgammagpd (mgammagpd), 217
qmgammagpdcon, 222
qmgammagpdcon (mgammagpdcon), 220
qmix, 187, 190, 193
qmix (internal), 184
qmixprime (internal), 184
qmixxprime, 187, 190, 193
qnormgpd, 227
qnormgpd (normgpd), 226
qnormgpdcon, 230
qnormgpdcon (normgpdcon), 229
qplot, 29
qplot (evmix.diag), 28
qpsden, 235
qpsden (psden), 234
qpsdengpd, 239
qpsdengpd (psdengpd), 237
qweibullgpd, 244
qweibullgpd (weibullgpd), 243
qweibullgpdcon, 247
qweibullgpdcon (weibullgpdcon), 246

rbckden, 6, 7
rbckden (bckden), 4
rbckdengpd, 11, 12
rbckdengpd (bckdengpd), 9
rbckdengpdcon, 15, 16
rbckdengpdcon (bckdengpdcon), 13
rbetagpd, 19
rbetagpd (betagpd), 17
rbetagpdcon, 22
rbetagpdcon (betagpdcon), 20
rdwm, 26
rdwm (dwm), 25
rgammagpd, 154
rgammagpd (gammagpd), 152
rgammagpdcon, 157
rgammagpdcon (gammagpdcon), 155
rgkg, 160
rgkg (gkg), 158
rgkgcon, 164
rgkgcon (gkgcon), 162
rgng, 167, 168
rgng (gng), 166
rgngcon, 171
rgngcon (gngcon), 169
rgpd, 174
rgpd (gpd), 172
rhpd, 179, 180
rhpd (hpd), 178
rhpdcon, 182
rhpdcon (hpdcon), 181
ritmgng, 187

ritmgng (itmgng), 186
ritmnormgpd, 190
ritmnormgpd (itmnormgpd), 189
ritmweibullgpd, 193
ritmweibullgpd (itmweibullgpd), 192
rkden, 196
rkden (kden), 195
rkdengpd, 200
rkdengpd (kdengpd), 198
rkdengpdcon, 203
rkdengpdcon (kdengpdcon), 201
rlognormgpd, 211
rlognormgpd (lognormgpd), 209
rlognormgpdcon, 213, 214
rlognormgpdcon (lognormgpdcon), 212
rlplot, 29
rlplot (evmix.diag), 28
rmgamma, 216
rmgamma (mgamma), 215
rmgammagpd, 219
rmgammagpd (mgammagpd), 217
rmgammagpdcon, 222, 223
rmgammagpdcon (mgammagpdcon), 220
rnormgpd, 227
rnormgpd (normgpd), 226
rnormgpdcon, 230
rnormgpdcon (normgpdcon), 229
rpsden, 235, 236
rpsden (psden), 234
rpsdengpd, 239
rpsdengpd (psdengpd), 237
rweibullgpd, 244
rweibullgpd (weibullgpd), 243
rweibullgpdcon, 247
rweibullgpdcon (weibullgpdcon), 246

sapply, 132, 206
splineDesign, 140, 143, 235, 236
splinefun, 6, 196, 235

tcplot, 240, 242
tscaleplot, 242
tscaleplot (tcplot), 240
tshapeplot, 242
tshapeplot (tcplot), 240

weibullgpd, 194, 243, 248
weibullgpdcon, 245, 246

	evmix-package
	bckden
	bckdengpd
	bckdengpdcon
	betagpd
	betagpdcon
	checking
	dwm
	evmix.diag
	fbckden
	fbckdengpd
	fbckdengpdcon
	fbetagpd
	fbetagpdcon
	fdwm
	fgammagpd
	fgammagpdcon
	fgkg
	fgkgcon
	fgng
	fgngcon
	fgpd
	fhpd
	fhpdcon
	fitmgng
	fitmnormgpd
	fitmweibullgpd
	fkden
	fkdengpd
	fkdengpdcon
	flognormgpd
	flognormgpdcon
	fmgamma
	fmgammagpd
	fmgammagpdcon
	fnormgpd
	fnormgpdcon
	fpsden
	fpsdengpd
	fweibullgpd
	fweibullgpdcon
	gammagpd
	gammagpdcon
	gkg
	gkgcon
	gng
	gngcon
	gpd
	hillplot
	hpd
	hpdcon
	internal
	itmgng
	itmnormgpd
	itmweibullgpd
	kden
	kdengpd
	kdengpdcon
	kernels
	kfun
	lognormgpd
	lognormgpdcon
	mgamma
	mgammagpd
	mgammagpdcon
	mrlplot
	normgpd
	normgpdcon
	pickandsplot
	psden
	psdengpd
	tcplot
	weibullgpd
	weibullgpdcon
	Index

