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ABSTRACT. Mayhew et al. (2021) posed the problem of showing that the
minor-closed class of spikes and their minors has a finite set of excluded
minors and describing all of them. In this paper, we resolve this problem.

1. INTRODUCTION

Spikes arise in a variety of contexts throughout matroid theory, such as
counterexamples to conjectures and matroids with surprising properties. For
example, Kahn [2] conjectured that, for each prime power ¢, there is an
integer n(q) such that a 3-connected GF(q)-representable matroid has at
most n(q) inequivalent GF(q)-representations. Oxley et al. [§8] showed that
the conjecture is false for all ¢ > 7 using two classes of matroids, one of
which is the class of tipped free spikes. Furthermore, Seymour [10] used
tipless spikes to show that there is no polynomial-time algorithm to decide
if an arbitrary matroid is binary. These examples are indicative of spikes.
With justification, Geelen [3] writes “all of the horrors (of arbitrary matroids)
are inherent to spikes’. More recently, subclasses of spikes and their minors
have been shown to be “fractal”. Let k be a non-negative integer and let Sg
denote the class of matroids obtained by taking the class of tipless spikes
with k circuit-hyperplanes and closing the class under minors. For all even
positive integers 2t, let Si(2t) denote the subset of 2t-element matroids in
Sk and let EX,(2t) denote the set of 2t-element excluded minors for S.
Mayhew et al. [4] showed that, if £ > 5, then the ratio
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t—o00 |Sk(2t)| + |5X/€(2t)|
That is, as ¢ — 0o, the number of 2t-element excluded minors for S dom-

inates the number of 2¢t-element matroids in Sg. The class S is said to be
“weakly fractal”. In the process of proving this result, the authors posed
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the problem of showing that the class of spikes and their minors have a fi-
nite number of excluded minors, and describing these excluded minors [4]
Problem 3.11]. In this paper, we resolve this problem and also establish the
analogous result for 3-connected matroids. We next state the main results
of the paper.

Let + > 3 be an integer. A rank-r matroid M with ground set
{t,x1,y1,2,Y2, -, Tp,Yr} 18 a rank-r tipped spike if M has the following
properties:

(i) for all i € {1,2,...,r}, the set {t,z;,y;} is a triangle, and
(i) for all non-empty J C {1,2,...,7}, the set

UAzi v}

icJ

has rank |J| + 1.

We refer to t as the tip of M and the members of

{{xl,yl} NS {1,2,...,7”}}

as the legs of M. If a matroid can be obtained from M by deleting t, it
is called a rank-r tipless spike. In general, a rank-r spike refers to either a
rank-r tipped spike or a rank-r tipless spike. We use S to denote the class
of spikes and their minors. Note the class of tipless spikes and their minors
coincides with the class of tipped spikes and their minors. While the class
of spikes is not closed under minors, it is closed under duality [4], and so S
is also closed under duality.

The first main result of the paper is Theorem which shows that the
excluded minors of S consist of variants of uniform matroids and their direct
sums, as well as three other matroids, which we denote by P;”, P, and
Pg. The matroids P, and P; are obtained from the rank-3 tipped spike
P; by relaxing exactly one or exactly two circuit-hyperplanes that include
the tip, respectively. Geometric representations of P, P, , and P; are
given in Figure[I] and a geometric representation of Py is given in Figure
Let {¢1,02,...,¢;} be a multi-set of positive integers exceeding one, and let
{z1,22,..., 2} be a subset of the ground set of the uniform matroid U, ,,.
We use {41, 02, ..,L;}-Upp, to denote the matroid obtained from U,.,, by, for
all © € {1,2,...,k}, replacing the element x; with a parallel class of size ¢;.
Thus, for example, {2,n}-Us4 denotes the matroid obtained from Us4 by
replacing one element with a parallel class of size two and a second element
with a parallel class of size n. For ease of reading, we will also use 2U,
to denote the matroid obtained from U, , by replacing each element with a
parallel class of size two.



THE EXCLUDED MINORS OF SPIKE MINORS

AA A

FIGURE 1. The rank-3 matroids P7, P,", and P;.

FIGURE 2. Pg, the unique excluded minor for § of rank and
corank at least four.

Theorem 1.1. A matroid M is a minor of a spike if and only if neither M
nor M* has a minor isomorphic to one of the following matroids:

(i) U5 @ Uoy2,
(ii) Usy @ Upy1, Uiz ® Uiy @ Up, Uszg, Uiz @ Uiz, {2}-Uzs ® Uyp,
{27 27 2}_U2,4; {27 2}_U2,57
(iii) P, P, and
(iV) Pg.

The matroids in Theorem are grouped so that the matroids in (i), (ii),
(iii), and (iv) each have rank one, two, three, and four, respectively.

In addition to Theorem we prove the analogue of this theorem for
when the matroids under consideration are 3-connected. Let S3 denote the
subset of S consisting of the 3-connected members of S. Note that, while S3
is not closed under minors, it is closed under duality. Let O7 be the matroid
obtained from the rank-3 wheel by freely adding an element to a rank-2 flat
of size 3. Similarly, let O; be the matroid obtained from the rank-3 whirl by
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(4) O7 (B) O7

FIGURE 3. The matroids O7 and O .

freely adding an element to a rank-2 flat of size 3. Geometric representations
of O7 and O are given in Figure[3l Observe that O; is obtained from O7 by
relaxing any one of its three circuit-hyperplanes. We denote by AG(2,3)\e
the unique (up to isomorphism) single-element deletion of the rank-3 ternary
affine geometry. The second main result of this paper is Theorem

Theorem 1.2. A 3-connected matroid M is a minor of a spike if and only
if neither M nor M™* has a minor isomorphic to one of Usg, O7, O7, Pr,
P=, AG(2,3)\e, Ps, M(Wy), and W*.

As the self-dual matroid M (W,) is the unique binary matroid in the list
of excluded minors in Theorem we immediately get the following result
of Oxley [5] as a corollary.

Corollary 1.3. A 3-connected binary matroid M is a minor of a spike if
and only if M has no minor isomorphic to M (Wy).

Similarly, we immediately establish the ternary analogue of Corollary

Corollary 1.4. A 3-connected ternary matroid M is a minor of a spike if
and only if M has no minor isomorphic to one of M(Wy), W*, Oz, O%,
AG(2,3)\e, (AG(2,3)\e)*, or Ps.

The paper is organised as follows. Notation and terminology follows Ox-
ley [7], with the exception that our definition of the “leg” of a spike does not
include the tip. In the next section, we detail some lemmas that are used
throughout the paper. The proof of Theorem [1.1]is given in Section [3, while
the proof of Theorem [I.2]is given in Section [

2. PRELIMINARIES

In this section, we state some lemmas that will be used in the paper. The
first two lemmas characterise spikes in terms of circuits (see, for example, [7]).
To ease reading, a 4-circuit and a 4-cocircuit is a 4-element circuit and a 4-
element cocircuit, respectively.
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Lemma 2.1. Let r > 3, and let M be a matroid with ground set
{t,x1,y1,22,Y2, - - -, Ty, Yyr}.  Then M is a rank-r tipped spike with legs
L = {1,915 Lo = {wo,90}s- . Lo = {@,ys} if and only if the set of
non-spanning circuits of M is C1 UCqo U Cs, where

(1) CIZ{LiU{t} : 1§Z§T}
(11) CQZ{LiULj11§i<jST}
(iii) Cs is a, possibly empty, subset of

{{21,22,...,zr} 2 € {xy,yi} for alli € {1,2,...,7’}},

such that no two members of Cs have more than r — 2 elements in
common.

The circuits given in (iii) of Lemma are called traversals. A spike with
no traversals is said to be free.

Lemma 2.2. Let r > 3 and let M be a matroid on 2r elements. Then M
is a rank-r spike if and only if the ground set of M can be partitioned into
pairs {Li, Lo, ..., L.} such that, for all distincti,j € {1,2,...,r}, the union
of L; and L; is a 4-circuit and a 4-cocircuit.

The next lemma characterises tipped spike minors as restrictions of par-
ticular matroids, and is used frequently in the proof of Theorem This
lemma is separated into two cases. The first of these is concerned with tipped
spike minors in which the tip has been contracted, and the second with tipped
spike minors in which the tip has not been contracted. Its straightforward
proof is omitted.

Lemma 2.3. Let r > 3, and let M be a rank-r matroid. Then M is a
minor of a spike if and only if, for some positive integer n, the matroid M
is isomorphic to a restriction of either

(1) 2Ur,r+l S UO,n; or
(ii) @ rank-r tipped spike in which the tip has been replaced by a parallel
class of size n.

We refer to the matroid in Lemma (ii) as an overloaded tipped spike. If
M is a restriction of a spike and L is a leg of that spike, we shall say that
the set L’ of elements of L which are still elements of M is a leg of M. If
|L'| = 2, then we say that L' is a full leg, and if |L'| = 1, we say that L’ is a
half leg.

Let e be an element in a half leg of a spike minor M. The union of e
and each full leg of M is a triad. Thus, M* is a spike minor with e at
the tip. We will sometimes refer to e is a cotip of M. In particular, if M
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is a tipped spike minor with a single non-tip element deleted, so that M
has exactly one half leg, we say that M is a spike with tip and cotip. The
following characterisation of spikes with tip and cotip is a straightforward
consequence of Lemma, [2.1

Lemma 2.4. A matroid M is a spike with tip and cotip if and only if
there exist distinct t,t* € E(M) such that E(M) — {t,t*} can be partitioned
into pairs {x1,y1}, {x2,y2}, ..., {zr,yr}, where {x;,y;,t} is a triangle and
{zi,yi, t*} is a triad for alli € {1,2,...,r}.

Proof. Let i and j be distinct elements of {1,2,...,r}. First, we show
that {x;,yi,z;,y;} is a circuit. Circuit elimination between {t¢,z;,vy;} and
{t,xj,y;} implies that M has a circuit contained in {z;,y;,x;,y;}. By or-
thogonality with the triads {t*, z;,v;} and {t*,z;,y;}, the set {z;,v;, z;,y;}
is a circuit.

Let C be a circuit of M which is not of the form {t, z;, y; } or {x;, vi, z;,y;}.
Orthogonality with the triads implies that C' contains t* and an element of
{zi,y;} for all i € {1,2,...,r}. It follows from Lemma that the circuits
of M are the circuits of a deletion of a non-tip element from a tipped spike.
Thus, M is a spike with tip and cotip. O

One of the consequences of Theorem [I.1] is that Ps is the only excluded
minor for § with rank and corank at least 4. The following characterisation
of Py (see, for example, [T, p. 651]) will be used to prove this.

Lemma 2.5. Let M be a matroid. Then M = Py if and only if M\e = Pr
and M /e = Pf for all e € E(M).

The last four lemmas of this section are used in the proof of Theorem
The first and second are well known and easily proved, the third is due to
Oxley [6], and the fourth is Tutte’s Triangle Lemma [11].

Lemma 2.6. Let @, be a tipped spike with tip t and rank r, where v > 4.
Then the 3-connected rank-r restrictions of ®, are ®,\t, ®,\e, and ®,\{t,e}
for all e € E(®,) — {t}.

Lemma 2.7. Let M be a 3-connected matroid and let X C E(M) such that
M|X = Us,,, where n > 4. Then M\z is 3-connected for all x € X.

Lemma 2.8. Let M be a 3-connected matroid with rank and corank at least
three. Then M has a Uy 5-minor if and only if M has a Us 5-minor.

Lemma 2.9. Let M be a 3-connected matroid having at least four elements,
and suppose that {e, f,g} is a triangle of M such that neither M\e nor
M\ f is 3-connected. Then M has a triad that contains e and exactly one of

f and g.
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3. PROOF OF THEOREM [L.1]

In this section, we prove Theorem[I.1] We begin by establishing the minors
of spikes of rank at most two.

Lemma 3.1. Let r € {1,2} and let M be a rank-r matroid. Then M is a
minor of a spike if and only if, for some positive integer n, the matroid M
is 1somorphic to a restriction of one of the matroids

(i) 2U23 ® Uon, {n}-Uas, {2,n}-Usa, {2,2,n}-Us 3,
(i) Ur,a @ Uon, and Urn @ Up 1.

Proof. Let M be a rank-2 spike minor. Then M is a contraction of a rank-
3 spike minor and so, by Lemma the matroid M is either a minor of
2U3 4 @ Uy, for some positive integer m, or a minor of a rank-3 tipped
spike N in which the tip has been replaced by a parallel class of size n for
some positive integer n. Each rank-2 minor of 2Us 4 @ Uy, is a restriction
of 2Uz3 @ Up 1. Thus, if the former holds, then M is a restriction of
2U3,3®Up m+1. Otherwise, M is a restriction of N/e for some element e of N.
If e is in the parallel class of size n, then N/e is isomorphic to 2Us 36 Up 1.
Otherwise, N/e consists of the parallel class of size n and four additional
elements. Depending on whether e is in zero, one, or two traversals, N/e is
isomorphic to {n+1}-Us 5, {2,n+1}-Us 4, or {2,2,n+ 1}-Us 3, respectively.
In each case, M is a restriction of one of the matroids in (i). Conversely,
each of the matroids in (i) is a rank-2 minor of a spike, which completes the
proof of the lemma when M has rank 2.

Now let M be a rank-1 spike minor. Then M is a contraction of a rank-2
spike minor, so M is a restriction of a matroid obtained by contracting a
non-loop element from one of the matroids in (i). Every matroid obtained in
this way is isomorphic to either Uy 4 ® Uy, or Uy, @ Uy 1, for some positive
integer n, so M is a restriction of one of the matroids in (ii). Each of the
matroids in (ii) is a rank-1 minor of a spike, which completes the proof of
the lemma. (]

The rest of the proof of Theorem essentially consists of the next two
lemmas. The first lemma determines the excluded minors of S of rank at
most three and the second lemma determines the excluded minors of S of
rank and corank at least four.

Lemma 3.2. Let M be a matroid with rank at most three. Then M is an
excluded minor for S if and only if M is isomorphic to one of the matroids

(i) Uis @ Uy,
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(i) Usa @ Uop, Usg, Ui z® Uiz, {2,2,2}-Usy, {2,2}-Uss, Uiz® U1 @
Uo,1,
(iii) Uss ®@Ur1, Usg® Ui @ Upp, {2}‘U2,3 ®Uip, P;, and Pr.

Proof. Using Lemmas [2.3] and [3.1] it is straightforward to verify that each
of the matroids in (i), (ii), and (iii) is an excluded minor for S. It remains
to show that there are no further excluded minors for & of rank at most
three. We check each rank in turn, noting that every rank-0 matroid is a
spike minor.

3.2.1. The matroid Uy 5 ® Up o is the only rank-1 excluded minor for S.

Let M be a rank-1 excluded minor for §. Then M = Uy, ® Uy, for
some positive integers m and n. If n > 5 and m > 2, then M has a minor
isomorphic to Uy 5 ® Up 2. If either n < 5 or m < 2, then M is a spike minor

by Lemma [3.1f(ii). Thus (3.2.I) holds.

3.2.2. The matroids listed in (ii) are the only rank-2 excluded minors for S.

Let M be an additional rank-2 excluded minor for S. If M has a loop,
then M contains at most three (including trivial) distinct parallel classes;
otherwise, M has a minor isomorphic to Uz 4 @ Uy 1. If every parallel class
of M has size at most two, then M is a restriction of 2Us 3 ® Uy 5, and so, by
Lemma[3.I] M isin S. Therefore, M has a parallel class of size at least three,
and so M has a minor isomorphic to Uy 3@ U; 1 ©Up 1, another contradiction.
Hence, M has no loops.

Let si(M) = Uy, for some positive integer n > 2. Since M has no minor
isomorphic to Us g, we have that n < 6. Furthermore, as M has no minor
isomorphic to Uy 3 @ Uy 3, M has at most one parallel class containing at
least three elements. Hence, if n < 3, Lemma implies that M is in S.
Therefore n € {4,5}. If n = 4, then, as M does not have a minor isomorphic
to {2,2,2}-Us 4, we have that M has at most two non-trivial parallel classes.
But then, by Lemma M is a spike minor, a contradiction. If n = 5,
then, as M does not have a minor isomorphic to {2,2}-Us 5, it follows that
M has at most one non-trivial parallel class. But, again by Lemma M
is in §. This completes the proof of .

3.2.3. The matroids listed in (iii) are the only rank-3 excluded minors for S.

Let M be an additional rank-3 excluded minor for §. If M has a Us4-
restriction, then M has a minor isomorphic to Uz 4 @ Uy 1, and so M has no
such restriction. Suppose M contains neither a triangle nor a parallel class of
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size at least three. As r(M) =3 and M contains no triangles, we have that
si(M) = Us,, for some m > 3. Since M is not a spike minor, Lemma
implies that m > 5. If M has a loop, then M has a minor isomorphic to
U35 ®Up,1, and so M has a minor isomorphic to Us 4 @ Up 1, a contradiction.
Furthermore, if M has a pair of elements in parallel, then contracting one of
these elements implies that M has a minor isomorphic to Uz 4 ® Up 1. So M
has no loops or parallel elements. Since Us 5 and Us g are both spike minors,
m > 7. But now M has a Uz minor, a contradiction. Hence M has either
a triangle or a parallel class of size at least three.

Suppose that M has a triangle T'. If M has a loop, then M has a restriction
isomorphic to Uz 3 @ U1 @ Up,1. Thus M has no loops. Assume that M
has two distinct pairs of parallel elements {aj,a2} and {bj,ba} such that
r({a1,a2,b1,b2}) = 2. If {a1,a2,b1,b2} C cl(T), then M/a; has a minor
isomorphic to Uy 3 @ U1 @ Up1, a contradiction. If {aj,az} C cl(T") and
{b1,b2} Z cl(T), then M has a minor isomorphic to {2}-Us 3 @ Uy 2. Thus
we may assume that no element in {aj, as, by, b} is contained in a triangle.
But now M /a; has a minor isomorphic to Uz 4@ Up 1. Hence, M has at most
one non-trivial parallel class.

Assume that M has a pair of parallel elements {a;,a2}. Suppose that
{a1,a2} € cl(T). By Lemma ii), the matroid U3 @ Uy, is a spike
minor for all positive integers n. Therefore, there exists an element e €
E(M)—(TU{ai,az2}) such that r({a1,e}) = 2. The matroid M/a; does not
have a minor isomorphic to Us 4 ® Up 1, which implies that there is a triangle
T’ of M which contains a1, e, and an element of T'. Furthermore, this is true
for all elements of E(M) — (T'U{a1,az2}) which are not in parallel with a;
and ag. Since M has no Us 4-restriction, and each of these elements are in a
triangle with a; and an element of 7', it follows that there are at most three
such elements. But this implies that M is a spike minor with the parallel
pair {a1, a2} at the tip and a traversal T'. This is a contradiction, so {a1, as}
is in the closure of every triangle of 7'

Choose a maximal set {z1,z2,..., 2} of elements of E(M) — {a1} such
that {a1,x1,22,...,2;} does not contain a non-spanning circuit. Each z;
is either not contained in a triangle, or is contained in a triangle with a;
and an element outside of {a1,z1,x2,...,2,}. In particular, if £ < 3, then
M is a spike minor with the parallel pair {ai,as} at the tip, and each x;
an element from a separate leg. Thus, k > 4. But now {z1,x9,x3,24} is a
Us 4-restriction in M /a1, so M has a minor isomorphic to Uz 4 ©Up,1. Hence,
M has no parallel elements.

Let e € E(M). By Lemma the spike minor E(M\e) has at most 7
elements. If |EF(M)| < 6, then it is easily checked that M is a spike minor.
Thus |E(M)| € {7,8}. Say |[E(M)| = 8. Then e is contained in at most
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three triangles. If e is contained in zero or one triangles, then M /e has
a restriction isomorphic to Usg. If e is contained in exactly two triangles,
then M /e is isomorphic to {2, 2}-Us 5, while if e is contained in exactly three
triangles, then M /e is isomorphic to {2,2,2}-Us 4. Therefore, |[E(M)| = 7.
If e is not contained in a triangle, then M /e = U, 6. Hence, every element of
M is contained in a triangle. If M has an element common to three triangles,
then M is a spike minor. Now, M must have two disjoint triangles, 7" and
T', say. The unique element f of E(M) — (T'UT’) is contained in at least
one triangle, and cannot be contained in three triangles. If f is contained
in one triangle, then M = P7, and if f is contained in two triangles, then
M = P;. This is a contradiction, so M has no triangles.

The last case to consider is when M has no triangles, but has a par-
allel class {ai,as,...,ar}, where k& > 3. If M has a second parallel
class {b1,ba,...,bs} with ¢ > 2, then M/b; has a minor isomorphic to
U3 @® Ui @ Upi, a contradiction. Therefore, {ay,as,...,a;} is the only
parallel class of M of size at least two. If |E(M)—{a1,aq,...,ar}| < 3, then
M is a spike minor. If |E(M) — {a1,aq,...,ar}| > 3, then, as M has no tri-
angles, M /a; has a minor isomorphic to Uz 4 @ Up ;. This last contradiction
proves (3.2.3)).

Combining ((3.2.1))—(3.2.3) completes the proof of the lemma. O

The next lemma shows that there is a unique excluded minor for S of rank
and corank at least four, and in doing so, complete the proof of Theorem 1.1}
The proof of Lemma/[3.3]is a lengthy case analysis. It begins by showing that
if M is an excluded minor for S and r(M),r*(M) > 4, then M has certain
properties and relatively quickly deduces that r(M) =4 = r*(M). Most of
the work in proving the lemma is to handle the case (M) = 4 = r*(M).
The primary reason for this is that a 4-circuit of a rank-4 spike need not be
a union of legs; it could instead be a traversal.

Lemma 3.3. The matroid Py is the unique excluded minor for S of rank
and corank at least four.

Proof. Since P; is a rank-3 tipped spike, it follows from Lemma [2.5 that Pg
is an excluded minor for S. Now, let M be an arbitrary excluded minor for S
of rank and corank at least four. Since S is closed under duality, M* is also
such a matroid. For convenience, let r = (M) and r* = r*(M). The proof
of is given in [4, Lemma 3.9]. However, for the sake of completeness,
we include a proof here.

3.3.1. M is stmple and cosimple.

Suppose that M has a loop ¢. If M has at least two loops, then, by
Lemma M\ is a restriction of 2U,. ;41 @ Uy ,, for some positive integer n,
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and so M € S, a contradiction. So M has exactly one loop. By Lemma [2.3
for all e € E(M) — {¢}, the matroid M\e is a restriction of 2U, ;41 & Up 1.
Thus, all parallel classes of M have size at most two. Moreover, M has
at least one non-trivial parallel class {f, g}, as otherwise r* < 3. Now,
M\ f is a restriction of 2U, ;41 @ Up,1, so M is also such a restriction. This
contradiction implies that M has no loops.

Now suppose that M has a parallel class P of size at least two. Say M has
another non-trivial parallel class P'. Let e € E(M)—(PUP’). By Lemmal[2.3]
M\e is a restriction of 2U, ,41. Thus |P| = 2 and [P’| = 2. In turn, this
implies that all non-trivial parallel classes of M have size two. If e is in a
non-trivial parallel class of M, then, since M \e is a restriction of 2U, 11, we
have that M is also a restriction of 2U,. 1, a spike minor. It now follows that
P and P’ are the only non-trivial parallel classes of M. Since r*(M) > 4,
we have that M\e = {2,2}-U,,41. Let p’ € P'. Since M\p' has only one
non-trivial parallel class, Lemma implies that M\p' is a restriction of an
overloaded tipped spike. Since r* > 4, there is a full leg {f, f'} of M\p'.
Now, r(PU{f, f'}) = 2, so there exists g ¢ cl(PUP'U{f, f'}). The matroid
M\ g contains a triangle and two distinct non-trivial parallel classes. This
contradicts Lemma[2.3] Hence, P is the only non-trivial parallel class of M.

Let p € P. Since r* > 4 and M\p has at most one non-trivial parallel
class, the matroid M\p is not a restriction of 2U,,y1. Thus, M\p is a
restriction of an overloaded tipped spike. If |P| > 3, then P — {p} is at the
tip of M\p. But this implies that M is also a restriction of an overloaded
tipped spike. So |P| = 2.

Let P = {p,q} and let e € E(M) — P. Since r* > 4, the matroid M\e
is a restriction of a tipped spike with P at the tip and at least one full leg.
Thus, there is a triangle T of M containing p. Similarly, let f € T — P.
Then M\ f is a restriction of a tipped spike with P at the tip and a triangle
T" # T containing p. In Mg, the element p is contained in the intersection
of two triangles. Furthermore r(M\q) > 4, so M\q is a tipped spike with
tip p. But now M is also a spike minor. Thus, M is simple, and, by duality,
M is also cosimple.

3.3.2. M has no triangles and no triads.

Suppose that M has a triangle, and let e € E(M) be an element outside
of this triangle. Since M\e is simple, Lemma implies that M\e is a
restriction of a tipped spike. Moreover, M \e has a triangle, and has rank at
least 4, so M \e has a tip t. Now, r*(M\e) > 3, so M\e has at least two full
legs. Thus, t is contained in at least two triangles of M.

Consider M/t. Since M/t contains at least two parallel pairs, Lemma
implies that M/t is a restriction of 2U,_q,. If M/t is a restriction of
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2U;_1,—1, then M/t, and thus also M, contains series pairs. This con-
tradiction implies that si(M/t) = U,_;,. Since M is cosimple, there is at
most one parallel class of M/t consisting of a single element, and all other
parallel classes of M/t have size two.

Suppose there is a parallel class of M/t consisting of a single element t*,
and let {x1,y1}, {z2, 92}, ..., {®r—1,yr—1} be the parallel pairs of M/t. For
all i € {1,2,...,7 — 1}, the set {z;,v;,t"} is a triad of M/t, so also of M.
Also, {z;,y;,t} is a triangle of M, so, by Lemma M is a spike with tip
and cotip. This is a contradiction.

Otherwise, every parallel class of M/t has two elements. Let
{z1,y1},{x2,y2},...,{zr,yr} be these parallel classes. For all distinct
i,7 €{1,2,...,r}, the set {x1,y1,z2,y2} is a cocircuit of M/t, so also a co-
circuit of M. Since r(M) > 4, there exists some element f & {x;, y;, xj,y;}.
Since {t,z;,y;} and {t,z;,y;} are triangles of M\ f and r(M\f) > 4, the
matroid M\ f is a restriction of a rank-r tipped spike with legs {z;,y;} and
{z;,y;}. Hence, {x;,y;,x;,y;} is also a circuit of M. Thus, M is a tipped
spike. This contradiction implies that M has no triangles and, by duality,

no triads, so (3.3.2)) holds.
3.3.3. Neither M nor M* has a Uz 5-restriction.

Suppose that M has a Us s-restriction. Then, since r(M) > 4, there is
some element = in F(M) such that M\z also has a Us s-restriction. But, by
Lemma M\z has no such restriction as (M) > 4. Therefore M and,
by duality, M* have no Us s-restriction. This proves .

Since both M and M* are simple and have no triangles, (3.3.3) is equiv-
alent to saying that no 5-element subset of E(M) has rank or corank three.

3.3.4. min{r(M),r* (M)} < 4.

Without loss of generality, suppose that r(M) > r(M*) > 5, and let z €
E(M). Since M is simple and has no triangles, and r(M*) > 5, Lemma
implies that M\ z is a restriction of a rank-r tipless spike. Since r*(M\z) > 4,
it follows that M\ z has at least k full legs L1, Lo, . .., Ly, where k = r*(M ) —
1>4. Let L, = {xk,yk}

If M\z has two half legs L and L', then L U L’ is a series pair of M\z,
and so either L U L' is a series pair of M or LU L' U {z} is a triad of M, a
contradiction. Thus M\z has at most one half leg, and so k € {r — 1,7}.

Consider M\yi. Again by Lemma M\yy is a rank-r tipless spike.
Since r(M\yx) > 5, a traversal of M \yy has at least five elements, and so all
4-circuits of M \yy are unions of pairs of legs. Let i € {1,2,...,r—1}. Since
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k —1 > 3, there exist distinct j,k € {1,2,...,r — 1} — {i}. Both L; U L;
and L; U L; are 4-element circuits of M\yy, so each is a union of two legs.
The only possibility is that L; is a leg of M\y,. More generally, each of
Li,Lo, ..., L1 is a leg of M\y.

If {zx, z} is a leg of M\yg, then Li_1 U {xg, 2} is a 4-circuit of M. But
Li—1 U {zk,yx} is also a 4-circuit of M and so, as M has no triangles,
L1 U{zk, yk, 2} is a Uszs-restriction of M, contradicting . Thus,
{zk, 2} is not a leg of M\yx. In turn, this implies that & # r; otherwise,
M\ yg, is not a spike minor. Therefore k = r—1. Let x, be the unique element
ofa E(M)—LiULyU--- L U{z}. Now, M\y; has a full leg containing two
of the elements xy, x,, and z. This leg is not {xy, z}, and, since M\z does

not have a 4-element circuit containing {zy,x,}, it is not {x,x,} either.
Thus, {x,, 2} is a leg of M\y.

The set {zk,yr, -} is a triad of M\z, so {zk,yk, T, 2} is a cocircuit
of M. Suppose r({zk, Yk, zr,z}) = 4. Then, as r(L; U {z,,2}) = 3 and
r(L;ULg)=3forallie{l,2,...,k— 1}, it follows by submodularity that

r(L; ULy U{z,, z}) <7(Li U{xr,2z}) +7(Li ULg) —1r(L;)
=4.
But then L; C cl(L,—1 U{z;, 2}) for all i, and so (M) = 4, a contradiction.

Therefore {z,_1,yr—1, %y, 2} is a circuit of M. Hence, by Lemma[2.2] M is
a rank-r tipless spike. This last contradiction proves (3.3.4)).

3.3.5. (M) = r*(M) = 4. Furthermore, for all e € E(M), we have M/e
is a tipped 3-spike and, dually, M\e is a single-element deletion of a rank-4
tipless spike.

By duality and (3.3.4), we may assume that (M) = 4. As M has no
triangles, it follows by Lemma that M /e is a simple restriction of a rank-
3 tipped spike. This implies that r*(M) < 4, so r*(M) = 4. This proves
(13.3.5)).

3.3.6. For each x € E(M), there exists a unique element y € E(M) — {x}
with the property that {z,y} is a subset of three distinct 4-circuits of M.

The existence of y follows from the fact that M /x is a tipped rank-3 spike.
To establish uniqueness, let E(M) = {1,2,3,4,5,6,7,8}, and suppose to the
contrary that {1,2} and {1, 3} are each contained in three distinct 4-circuits
of M. Then, by considering M /1, it follows, up to labelling, that M has the
4-circuits

{17 27 37 4}7 {17 27 5? 6}’ {17 27 77 8}7 {1’ 3’ 57 7}7 {17 37 6’ 8}'

We aim to construct enough 4-circuits of M to show there exists a partition
of E(M) into 2-element subsets such that the union of any two of these
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subsets is a circuit of M. Since M has no triangles or Us 5-restrictions, this
suffices, by Lemma [2.2] to show that M is a rank-4 spike, thereby obtaining
a contradiction.

By , M\1 is a single-element deletion of a rank-4 tipless spike. We
break the rest of the proof of into three cases: (i) either {2} or {3}
is a half leg of M\1; (ii) {2,3} is a full leg of M\1; and (iii) the elements 2
and 3 are on distinct full legs of M\1. For convenience, we denote, for all
i€{2,3,...,8}, the leg of M\1 containing i by Lj;.

Consider (i). Without loss of generality, we may assume that {2} is a half
leg of M\1. If the elements 3 and 4 are on distinct legs of M\1, then there
is a 4-circuit of M\1 containing either {3,5,7} or {3,6,8}. But {1,3,5,7}
and {1, 3,6,8} are 4-circuits of M, and so M has a Us s-restriction, contra-
dicting (3.3.3). Hence {3,4} is a leg of M\1.

Since {1,3,5,7} is a circuit of M and M has no Us s-restriction, {5, 7}
is not a leg of M\1. Hence the set of full legs of M\1 is either
{{3,4},{5,6},{7,8}} or {{3,4},{5,8},{6,7}}. If the first possibility holds,
then

{{1,2},{3,4},{5,6},{7,8}}

is a partition of F(M) whose pairwise unions are all 4-circuits of M, and so
M is a rank-4 spike, a contradiction. Thus the second possibility holds and
the set of 4-circuits of M include

{1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7},
{1,3,6,8}, {3,4,5,8}, {3,4,6,7}, {5,6,7,8}.

Now consider M\5. First, observe that a union of two legs of M\5 in-
tersects every other 4-circuit of M\5 in exactly two elements. In particular,
this implies that {1,2,7,8} and {3,4,6,7} are traversals. The element in
the half leg of M\5 appears in every traversal, so this element is 7. Since
{1,2,3,4} and {1,3,6,8} do not contain 7, these circuits are unions of two
legs. Hence, M\5 has full legs {1,3}, {2,4}, and {6,8}. Thus, {2,4,6,8} is
also a 4-circuit of M.

Similarly, {1,2,7,8} and {3,4,5,8} are traversals of M\6, and {8} is the
half leg of M\6. The circuits {1,2,3,4} and {1,3,5,7} are unions of two
legs, so M\6 has full legs {1,3}, {2,4}, and {5,7}. Therefore, {2,4,5,7} is
a circuit of M. But this implies that M is a rank-4 spike whose set of legs is
{{1,3},{2,4},{5,7},{6,8}}, a contradiction. Thus, neither {2} nor {3} is a
half leg of M\1.
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(a) M/5 (B) M/6 (c) M/7 (D) M/8

FIGURE 4. Known circuits of M /5, M /6, M/7, and M/8 in

the proof of (3.3.6]).

Consider (ii), and suppose that {2,3} is a full leg of M\1. If Ly is full leg
of M\1, then, as {1, 2, 3,4} is a 4-circuit of M, we have that {1,2,3}U Ly in-
duces a Us s-restriction of M, contradicting (3.3.3). Therefore {4} is the half
leg of M\1. If either {6,8} or {7,8} is a full leg of M\1, then, as {1,2,7,8}
and {1,3,6,8} are 4-circuits of M, it follows that either {1,2,3,6,8} or
{1,2,3,7,8} induce a Uss-restriction of M. This contradiction to (3.3.3)
implies that {5,8} and {6,7} are legs of M\1. The list of 4-circuits of M
now includes

{1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7},
{1,3,6,8}, {2,3,5,8}, {2,3,6,7}, {5,6,7,8}.

Consider each of the contractions M /5, M /6, M/7, and M/8. Figure
shows geometric representations of these matroids, including only the 3-
element circuits implied by the above list. By , each matroid is a
rank-3 tipped spike, and so there is at least one additional 3-element circuit
in each containing 4. Thus, the rank-3 tipped spike M /5 implies that at least
one of {1,4,5,8}, {2,4,5,7}, and {3,4,5,6} is a 4-circuit of M. Similarly,
M/6 implies that at least one of {1,4,6,7}, {2,4,6,8}, and {3,4,5,6} is
a 4-circuit of M, the matroid M /7 implies that at least one of {1,4,6,7},
{2,4,5,7}, and {3,4,7,8} is a 4-circuit of M, and M /8 implies that at least
one of {1,4,5,8}, {2,4,6,8}, and {3,4,7,8} is a 4-circuit of M.

If {1,4,5,8} and {1,4,6,7} are 4-circuits of M, then M is a rank-4 spike
whose set of legs is {{1,4},{2,3},{5,8},{6,7}}, a contradiction. Simi-
larly, if {2,4,6,8} and {2,4,5,7} are 4-circuits of M, then M is a rank-4
spike whose set of legs is {{1,3},{2,4},{5,7},{6,8}} and, if {3,4,5,6} and
{3,4,7,8} are 4-circuits of M, then M is a rank-4 spike whose set of legs
is {{1,2},{3,4},{5,6},{7,8}}. We next check possible combinations of 4-
circuits that avoid these three pairs of 4-element sets.

If {1,4,5,8} is a 4-circuit of M, then either {2,4,6,8} and {3,4,7,8} are
4-circuits of M, or {3,4,5,6} and {2,4,5,7} are 4-circuits of M to ensure
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that both M /6 and M /7 are rank-3 tipped spikes. If the first instance holds,
then M is a rank-4 spike whose set of legs is {{1,5},{2,6},{3,7},{4,8}}
and, if the second instance holds, then M is a rank-4 spike whose set of legs

is {{1,8},{2,7},{3,6},{4,5}}. Thus, {1,4,5,8} is not a 4-circuit of M.

If {3,4,7,8} is a 4-circuit of M, then {2,4,5,7} and {1,4,6,7} are also 4-
circuits of M to ensure that both M /5 and M /6 are rank-3 tipped spikes. But
then M is a rank-4 spike whose set of legs is {{1,6},{2,5},{3,8},{4,7}}, a
contradiction. Therefore, {3,4,7,8} is not a 4-circuit of M. Hence, to ensure
M /8 is a rank-3 tipped spike, {2,4,6,8} is a 4-circuit of M, in which case
{3,4,5,6} and {1,4, 6,7} are also 4-circuits of M so that both M /5 and M /7
are rank-3 tipped spikes. In this last instance, M is a rank-4 spike whose set
of legs is {{1,7},{2,8},{3,5},{4,6}}. This last contradiction implies that
{2,3} is not a leg of M\1.

Lastly, consider (iii), and suppose that elements 2 and 3 are on distinct
full legs of M\1. First, assume that {4} is the half leg of M\1. We consider
the possibilities for the element on the same leg as 2. This element is not 3
or 4. If {2,5} or {2,6} is a leg of M\1 then the circuit {1,2,5,6} implies
that either Ly U Ls U {1} or Ly U Lg U {1} induces a Us s-restriction of M,
a contradiction. In the same way, the circuit {1,2,7,8} implies that neither
{2,7} nor {2,8} is a leg of M\1. Thus, there are no possible element which
can be on the same leg as 2, and so {4} is not the half leg of M\1.

If either {2,4} or {3,4} is a leg of M\1, then Ly U L3U{1} induces a Us 5-
restriction of M with the circuit {1,2,3,4}. Therefore 2, 3, and 4 are on
distinct full legs of M\x. Observing that the elements 5, 6, 7, and 8 are not
distinguishable in our initial assignment of circuits, we may assume without
loss of generality that {6} is the half leg of M\1. Moreover, if {2,3,7,8},
{2,3,5,7}, or {2,4,7,8} is a 4-circuit of M, then r({1,2,3,7,8}) = 3,
r({1,2,3,5,7}) = 3, or r({1,2,4,7,8}) = 3, a contradiction. Hence M\1
has legs {2,5}, {3,8}, and {4, 7}, and the list of 4-circuits of M now include

{1727 37 4}’ {]‘72’ 5’6}7 {1’27 77 8}7 {173757 7}7
{1,3,6,8}, {2,3,5,8}, {2,4,5,7}, {3,4,7,8}.

Consider M /4. The geometric representation of M /4 is shown in Fig-
ure including only the 3-element circuits implied by the above list. Since
M/4 is a rank-3 tipped spike, it has at least one of the circuits {1,6,7},
{2,6,8}, and {3,5,6}. Hence, at least one of {1,4,6,7}, {2,4,6,8}, and
{3,4,5,6} is a 4-circuit of M. If {1,4,6,7} is a 4-circuit of M, then M
is a rank-4 spike whose set of legs is {{1,6},{2,5},{3,8},{4,7}}. Hence,
either {2,4,6,8} or {3,4,5,6} is a 4-circuit of M. Consider M /6. Depend-
ing on whether {2,4,6,8} or {3,4,5,6} is a 4-circuit of M, the possible
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(A) M/4 (B) M/6, if {2,4,6,8} (c) MJ6, if {3,4,5,6}
is a circuit of M. is a circuit of M.

FIGURE 5. Known circuits of M/4 and M/6 in the proof

of B35)

geometric representations of M /6 are shown in Figures and respec-
tively (including only the known 3-element circuits). Regardless of whether
{2,4,6,8} or {3,4,5,6} is a 4-circuit of M, either {2,3,7} or {5,7,8} is
a circuit of M/6, so either {2,3,6,7} or {5,6,7,8} is a 4-circuit of M. If
both {2,4,6,8} and {5,6,7,8} are 4-circuits of M, then M is a rank-4 spike
whose set of legs is {{1,3},{2,4}, {5, 7}, {6,8}}. Furthermore, if {3,4,5,6}
and {5,6,7,8} are 4-circuits of M, then M is a rank-4 spike whose set of
legs is {{1,2},{3,4},{5,6},{7,8}}. Therefore, {5,6,7,8} is not a 4-circuit
of M, and so {2,3,6,7} is a 4-circuit of M. The list of 4-circuits of M now
include

{1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1, 3,6, 8},
{2,3,5,8},{2,4,5,7}, {3,4,7,8}, {2,3,6,7},

together with at least one of {2,4,6,8} and {3,4,5,6}.

Now consider M\2. For each choice of Ly, there is exactly one possibility
for M\2. In particular, if L; is the half leg, then the 4-circuit {1,3,5,7} is
a traversal of M\2 and so, as {1,3,6,8} and {3,4,7,8} are 4-circuits of M,
it is easily checked that M\2 has legs {1}, {3,4}, {5,6}, {7,8}. A similar
analysis shows that if {1,3}, {1,4}, {1,5}, {1,6}, {1,7} or {1,8} is a leg of
M\2, then the set of legs of M\2 is

{{1,3},{5,73,{6,8}, {4}}, {{1,4}, {3}, {5, 8}, {6, 7}},

{{1,5},{3, 7}, {6}, {4,8}}, {{1,6},{3,8}, {5}, {4, 7}},

{{1,73,{3,5},{4,6}, {8} }, {{1,8},{3,6},{4,5}, {7}},
respectively. If Ly € {{1},{1,3},{1,4},{1,6},{1,7}}, then either {1,4,6,7}
or {5,6,7,8} is a 4-circuit of M, and we have previously seen that M is a
rank-4 spike. Otherwise, Ly € {{1,5},{1,8}}, in which case {1,4,5,8} is

a 4-circuit of M. If {2,4,6,8} is a 4-circuit of M, then M is a rank-4
spike whose set of legs is {{1,5},{2,6},{3,7},{4,8}}. On the other hand, if
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{3,4,5,6} is a 4-circuit of M, then M is a rank-4 spike whose set of legs is
{{1,8},{2,7},{3,6},{4,5}}. This last contradiction proves (3.3.6)).

3.3.7. For each x € E(M), any two distinct traversals of M\x meet in
exactly one element.

Let x € E(M), and consider M\z. Since M\z is a restriction of a rank-4
(tipless) spike, M\x has exactly three full legs. Denote the legs of M\z by
{a,b}, {c,d}, {e, f}, and {y}. Each traversal of M\z contains y, so any two
distinct traversals meet in at least one element. Suppose M\x has two dis-
tinct traversals that meet in two elements. We may assume these traversals
are {a,c,e,y} and {b,d,e,y}. Since {a,b,c,d}, {a,b,e, f}, and {c,d,e, f}
are 4-circuits of M, the sets {x,y,e, f}, {z,y,¢,d}, and {z,y,a,b} are hy-
perplanes of M*. In turn, by , this implies that these three hyper-
planes are all 4-circuits of M*. Additionally, the traversals {a,c,e,y} and
{b,d,e,y} imply that {z, f,b,d} and {z, f,a,c} are hyperplanes of M*, and
thus 4-circuits of M*. But then z is in three distinct 4-circuits of M™* con-
taining y as well as three distinct 4-circuits of M* containing f, contradicting

the dual of (3.3.6]). This proves (3.3.7)).

3.3.8. Ifx € E(M), then there is a unique choice for the set of legs of M\x.
Furthermore, each of the following properties hold:

(i) If z € E(M), then there is a unique element y € E(M) such that {x}
is the half leg of M\y and {y} is the half leg M\x.

(i) If {«',y'} C E(M), then there are at most two elements z1,zo € E(M)
such that {x',y'} is a full leg of M\z1 and M\zs.

Let € FE(M) and suppose that a set of legs for M\x is
{{a,b},{c,d},{e, f},{y}}. If there is another choice for a set of legs of M\,
then exactly two of the 4-circuits {a,b,c,d}, {c,d,e, f}, and {a,b,e, f} are
traversals of M\z in this other choice, contradicting . Thus the set of
legs of M\z is unique.

To prove (i), observe that {x,y,e, f}, {x,y,¢,d}, and {z,y,a,b} are hy-
perplanes of M* and so, by , 4-circuits of M*. Thus y is in three
distinct 4-circuits of M* containing x. Consider M\y. If {z} is the half leg
of M\y, where z € E(M) — {y}, then, by applying the same argument, z is
in three distinct 4-circuits of M* containing y. By , we deduce that
z = x, thereby proving (i).

Lastly, we prove (ii). Take a pair which is a full leg of some single-element
deletion of M. We may assume this pair is {a,b}. Suppose there is a single-
element deletion of M other than M\x and M\y for which {a,b} is a full
leg. Without loss of generality, let this single-element deletion be M\c. Since
{a,b,e, f} is a 4-circuit of M\c, the set {e, f} is a leg of M\c. Furthermore,
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by (i), neither {z} nor {y} is the half leg of M\c, and so {z,y} is the final
full leg of M\c, and {d} is the half leg of M\c. Now consider M\e. Since
{a,b,c,d} and {a, b, z,y} are 4-circuits of M\e, it follows by that nei-
ther circuit is a traversal of M\e. So M\e has legs {a, b}, {c,d}, and {z,y}.
But then M is a rank-4 spike whose set of legs is {{a, b}, {c,d},{e, f}, {z,y}},
a contradiction. This completes the proof of (ii) and, therefore, .

3.3.9. For each x € E(M), the matroid M\x has at least two traversals.

Let x € E(M), and suppose that M\z has legs {a,b}, {c,d}, {e, f}, and
{y}. Consider each of the minors M\a, M\b, M\c, M\d, M\e, and M\ f as
a restriction of a rank-4 spike. By , y is in a full leg of each of these
matroids and {z,y} is a leg of at most two of these matroids. Hence, in at
least four of M\a, M\b, M\c, M\d, M\e, and M\ f, we have that y is in
a 4-circuit not containing x. Since such a 4-circuit contains three elements
of {a,b,c,d,e, f}, it follows that M has two 4-circuits containing y but not
x. As {y} is the half leg of M\z, this implies that M\x has at least two
traversals. This proves (3.3.9).

We now complete the proof of the lemma. Let x € E(M) and consider
M\z. Combining and , M\z has exactly two traversals, and
these traversals meet in the element lying on the half leg. Thus, for all
x € E(M), we have M\z = P# and, by duality, M/z = P;. By Lemma[2.5]
M is isomorphic to Pg. U

Proof of Theorem[I.1] Since S is closed under duality, Lemma(3.2establishes
the excluded minors of S of rank or corank at most three. Theorem [L.1] now
follows by Lemma [3.3 U

4. PROOF OF THEOREM [L.2]

In this section we prove Theorem [I.2] Recall that S3 denotes the subset
of § comnsisting of the 3-connected members of S. A 3-connected matroid
M is minimally not in Sz if M is not a spike minor but every 3-connected
minor of M is a spike minor. As in the proof of Theorem we partition
the proof of Theorem into two parts depending on whether a minimal
3-connected matroid not in S3 has rank at most three or rank and corank at
least four.

Lemma 4.1. Let M be a 3-connected matroid with rank at most three. Then
M is minimally not in Ss if and only if M s isomorphic to one of Uag, O7,
O, P-, P7, and AG(2,3)\e.

Proof. By considering the excluded minors of &, it is routine to show that
each of the 3-connected matroids Us ¢, O7, O7, P, , P, and AG(2,3)\e are
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minimally not in §3. Now suppose that M is a 3-connected matroid that is
minimally not in S3 and r(M) < 3. Clearly, r(M) > 2 and, if r(M) = 2,
then M is isomorphic to Usg. So assume that r(M) = 3. Up to duality, we
may also assume that r*(M) > 3.

4.1.1. |[B(M)| > 7.

If |[E(M)| <6, then, by Theorem M has a single-element deletion or
contraction isomorphic to one of the matroids Us 4 ® Uy 1, U1 3@ U1 1 ® Up 1,
Us4a @ U1, and Uz 3 @ Ui 1 @ Up,1. But this implies that M has a circuit or
cocircuit of size at most two, a contradiction to 3-connectivity. Thus,
holds.

4.1.2. If |E(M)| = 7, then M is isomorphic to one of O7, O7, Py, and
=

If M is an excluded minor for S, then, by Theorem M is isomorphic
to either P~ or P;-. On the other hand, if M is not an excluded minor for
S, then there is an element e € E(M) such that either M /e or M\e is not a
spike minor. If M /e is isomorphic to either U 3@ U, 3 or {2}-Us 3B U 2, then
M is 2-separating, a contradiction. If M has a minor isomorphic to either
Uiz® U1 @ Uy or Uys @ Uy @ U1, then M has a circuit or cocircuit of
size at most two, another contradiction. Therefore, by Theorem M has
a minor isomorphic to either Uy 4 ® Up 1 or Usy @ Uy 1. If M has a minor
isomorphic to Uz 4@ Up 1, then M has a circuit of size two. This contradiction
implies that M consists of a Us 4-restriction with ground set Y and a triad
{e, f,g9}. As M has no U g-minor, we may assume that cl({e,g}) N'Y and
cl({f,¢g}) NY are both non-empty. If cl({e,g}) = cl({f, g}), then M is 2-
separating, a contradiction. Thus, cl({e, g}) and cl({f, g}) are distinct. It
follows that M is isomorphic to O~ if cl({e, f})NY is empty, and isomorphic

to O7 if cl({e, f}) NY is non-empty. Thus (4.1.2]) holds.
We may now assume that |E(M)| > 8.

4.1.3. M\e is a tipped 3-spike for all e € E(M).

If M has a Uj s-restriction, then, by Lemma deleting an element of
this restriction produces a 3-connected matroid. Furthermore, this matroid
has Uz 4 ® Uy 1, an excluded minor of S, as a minor. Thus, M has no Us 5-
restriction. Suppose M \e has a 2-separation (X,Y"). Since M has rank 3 and
is simple, M|X and M|Y are each isomorphic to a rank-2 uniform matroid.
Furthermore, as |[E(M)| > 8 and M has no U s-restriction, either | X| =4
or |Y| = 4. Without loss of generality, say |X|=4. Let y € Y. Then, as M
is 3-connected and |Y U {e}| > 4, the matroid M\y is 3-connected. So M\y
is a rank-3 spike minor. But (M\y)|X = Us 4, a contradiction. Hence, M\e
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is 3-connected for all e € E(M), and so M \e is a spike minor. Furthermore,
M \e is a tipped spike, since |[E(M)| > 8. This completes the proof of (4.1.3).

As a consequence of (4.1.3), we have that |EF(M)| = 8 and that M has no
Us 4-restriction. We next argue that M has none of the matroids Us 5, Us 5,
F7, or F¥ as a minor, thereby showing that M is ternary [I, [9].

4.1.4. M has no Uy 5-minor or Uz 5-minor.

By Lemma it suffices to prove that M has no U s-minor. Suppose to
the contrary that M has such a minor. Then there are elements {e, f, g} €
E(M) such that M/e\{f, g} = Us 5. If M /e has a parallel class of size three,
then M has a Upy-restriction, a contradiction. Thus, as M has no U -
minor, we deduce that M/e is isomorphic to {2,2}-Us 5. This means that
e is contained in exactly two triangles of M. Now consider M\e. This is a
tipped 3-spike, so contains an element ¢ which is contained in three triangles
of M\e. The elements of M\e can be contained in at most two triangles of
M\e which do not contain t. However, they cannot then be contained in
a triangle containing e, as this would imply that M has a Us 4-restriction.
Therefore, M\t has no element in at least three triangles, contradicting

(4.1.3). Thus, M has no Up s-minor and (4.1.4) holds.

4.1.5. M has no Fr-minor or F7-minor.

Since (M) = 3, it follows that M has no F7-minor. Thus it remains to
show that M has no Fy-minor. As |E(M)| = 8, this reduces to checking
that M is not a single-element extension of F7. It is easily checked that
each single-element extension of F7 has a loop, a non-trivial parallel class, a

Us 5-restriction, or a Uz s-restriction. Since M is 3-connected, it follows by
(4.1.4) that (4.1.5)) holds.

Thus, M is ternary. We now note that every simple rank-3 ternary matroid
with no Us 4-restriction is a restriction of AG(2,3). Since |E(M)| = 8 and M
is 3-connected, we deduce that M = AG(2,3)\e. This completes the proof
of Lemma [£1] O

Lemma 4.2. Let M be a 3-connected matroid with rank and corank at least

four. Then M is minimally not in S3 if and only if M is isomorphic to one
of Py, M(W,), or W*.

Proof. Using Theorem it is easily checked that each of the 3-connected
matroids Pg, M(W,), and W* is minimally not in S3. Now suppose that M
is a 3-connected matroid that is minimally not in S3. Let

E;={e e E(M): M\e is 3-connected }

and
E.={e€ E(M): M/e is 3-connected}.
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If E. and E; are both empty, then, by Tutte’s Wheels-and-Whirls Theo-
rem [I1], M is isomorphic to either a wheel or a whirl. In particular, M is
isomorphic to either M (W) or W*. Therefore, assume that at least one of
E. or E; is non-empty.

4.2.1. M has no Us 4-restriction.

Suppose there exists X C E(M) such that M|X = Uy 4. By Lemma [2.7]
M\e is 3-connected for all e € X, and so M\e is a spike minor. For all
e € X, the set X — {e} is a triangle of M\e. Therefore, as (M) > 4, there
is a unique element of X — {e} which is the tip of M\e. In particular, at
least two elements of X, say f and g, are each contained in a triangle of M
not in X. But then, by Lemma M\h, where h € X — {f, g}, is not a
spike minor, a contradiction. Thus, holds.

4.2.2. If M has a triangle T, then Eq C T. Dually, if M has a triad T,
then E. C T*.

Suppose that T' = {t,a, b} is a triangle of M and suppose to the contrary
that there is an element z € Ey — T. Consider M\z, and let r denote the
rank of M. As M\x is 3-connected, it follows by Lemma that M\z is
isomorphic to either @, or ®,\z, where ®, is a rank-r tipped spike and z
is a non-tip element in E(®,). Without loss of generality, we may assume
that ¢ is the tip of M\z. First assume that M\z = &, and let e € E(M) —
{t,z}. Then, by Lemma (M\z)\e = ®,\e is 3-connected. Since M is
3-connected, M\e is also 3-connected. In particular, M\e is a tipped spike
whose tip element is t. Thus {z, f} is a leg of M\e for some element f €
E(M)—{t,e,x}. The set {z, f,t} is a triangle of M\e, and f is not contained
in any other triangle of M\e. In M\z, the element f is contained in a
triangle with the tip ¢. This triangle must be {e, f,t}. But then {e, f,z,t}
is a Ug 4-restriction in M, contradicting .

Now assume that M\z = ®,\z for some non-tip element z € E(®,). Let
g be the unique element in a half leg of M\xz. Then (M/g)\x = (M\z)/g
is a rank-(r — 1) tipped spike, and so (M/g)\z is 3-connected. However,
M/g is not 3-connected as it has one too many elements to be a simple
restriction of a rank-(r — 1) tipped spike. Thus, x is in a triangle with g
in M. If {t,g,x} is a triangle, then M is isomorphic to a tipped spike, a
contradiction. Therefore, there is an element e € (E(M) — {t,g,z}) such
that {e,g,z} is a triangle of M.

By Lemma the matroid M\z\t is 3-connected, so M\t is also 3-
connected. Hence, M\t is a 3-connected restriction of a tipped spike. Since
M\t contains the triangle {e, g,z}, Lemma implies that M\t is isomor-
phic to a tipped spike with a single non-tip element deleted. The tip of
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M\t must be z, as otherwise M \z would contain a triangle which does not
contain the tip ¢.

Let {a,b} be a full leg of M\z which does not contain e. The set {t,a, b}
is a triangle of M, so Tutte’s Triangle Lemma implies that either M\a or
M\b is 3-connected if {¢,a,b} does not intersect a triad of M. The only
triad of M\x which intersects {t,a,b} is {a,b,g}. By orthogonality with
the triangle {e, g, x}, the set {a, b, g} is not a triad of M. Therefore, {t,a, b}
does not intersect a triad of M, so, without loss of generality, we may assume
that M\a is 3-connected. However, since r(M) > 4, each of M\z and M\t
contain two triangles which do not contain the element a. Therefore, M\a
has two triangles which intersect at ¢ and two triangles which intersect at x.
This means that M\a is not a spike minor, a contradiction which completes

the proof of (4.2.2)).

4.2.3. If x € Eq andy € E(M) — (E. U {x}), then {x,y} is a subset of a
triangle. Dually, if x € E. and y € E(M) — (Eq U {z}), then {z,y} is a
subset of a triad.

Let z € Egjand y € (E(M) — (E.U{x})). If M\z has a triangle, then we
have a contradiction to . Thus, M\z is isomorphic to either ®,\¢ or
®,\{t, z}, where ®, is a rank-r tipped spike with tip ¢ and z € E(®,) — {t}.
In turn, this implies that M\z/y is 3-connected. As M /y is not 3-connected,
we deduce that {z,y} is a subset of a triangle, thereby proving (4.2.3).

4.2.4. E4#0 and E. # 0.

Up to duality, Fy4 is non-empty. Let t € Ey. If E. is empty, then, by
(4.2.2) and (4.2.3), t is the unique element in Ey and every other element is
in a triangle with ¢. By , each of these triangles intersect only at t.
Since the matroid M\t is a spike minor, we see that the disjoint union of any
two triangles is a cocircuit. Therefore, M is a restriction of a tipped spike
with tip ¢, a contradiction. Hence, E. is non-empty, thus proving .

4.2.5. M has no triangles and no triads.

Suppose that M has a triangle T" = {¢,a,b}. By (4.2.2), E; C T. Since

E; is non-empty, we may assume that ¢t € Ej.

First assume that M has a triad 7*. By (4.2.2) and (4.2.4), E. C T*
and F. is non-empty. Let t* € E.. If e is an element of E, — {t*}, then,
by (422), e € T*. Let f € E(M)— (T UT*). By ((.2.2), f ¢ E, and
f ¢ E.. Therefore, by , there is a triad containing {t*, f}. By

22

this triad contains {e}, so {t*,e, f} is a triad of M. Furthermore, by
again, {t, f} is contained in a triangle. But neither ¢* nor e are in this triangle
(as M/t* and M /e are 3-connected), a contradiction to orthogonality. Thus,
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E. = {t*}. By a dual argument, E; = {t}. By ({#.2.3), for all f € E(M) —
{t,t*}, we have that f is in a triangle with ¢ and f is in a triad with ¢*.
In particular, to avoid a contradiction to orthogonality, there is a partition
{{z1, 2o, ... 2}, {y1,92, ..., yx} } of E(M) — {t,t*} such that {x;,y;,t} is a
triangle and {z;,y;,t*} is a triad for all i. But then M is a spike with tip
and cotip by Lemma [2.4] a contradiction. Thus, M has no triads.

By (4.2.4), E. is non-empty. Let z € E.. Then, as |E4| < 3 by and
|E(M)| > 8, there exists an element y € (E(M) — (EqU{z})). But then, by
, {z,y} is contained in a triad, a contradiction. Therefore M has no
triangles and, by duality, M has no triads. Thus, holds.

4.2.6. Ifx € Ey, then (E(M)—{z}) C E.. Dually, ify € E., then (E(M)—
{y}) € Ea.

Let z € E4. By (4.2.5), M\z is a 3-connected restriction of a tipless spike.
Ify € E(M)—{x}, then M\z/y is a 3-connected restriction of a tipped spike,
and so M /y is 3-connected unless = and y are contained in a triangle. By

(4.2.5)), M has no triangles, and so (4.2.6)) holds.
By repeated applications of (4.2.6)), we deduce that E; = E. = E(M). In

particular, every single-element deletion and every single-element contraction
of M is a spike minor, and so M is an excluded minor for S of rank and
corank at least four. In particular, by Theorem[I.1} M = Ps. This completes

the proof of Lemma [1.2] O

Proof of Theorem[I.3 Since Ss is closed under duality, it follows by
Lemma 7] that the theorem holds if M has rank or corank at most three.
Theorem [I.2] now follows by Lemma [£.2] O
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