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Abstract. A normal network is uniquely determined by the set of phy-
logenetic trees that it displays. Given a set P of rooted binary phy-
logenetic trees, this paper presents a polynomial-time algorithm that
reconstructs the unique binary normal network whose set of displayed
binary trees is P, if such a network exists. Additionally, we show that
any two rooted phylogenetic trees can be displayed by a normal net-
work and show that this result does not extend to more than two trees.
This is in contrast to tree-child networks where it has been previously
shown that any collection of rooted phylogenetic trees can be displayed
by a tree-child network. Lastly, we introduce a type of cherry-picking
sequence that characterises when a collection P of rooted phylogenetic
trees can be displayed by a normal network and, further, characterise the
minimum number of reticulations needed over all normal networks that
display P. We then exploit these sequences to show that, for all n ≥ 3,
there exist two rooted binary phylogenetic trees on n leaves that can be
displayed by a tree-child network with a single reticulation, but cannot
be displayed by a normal network with less than n− 2 reticulations.

1. Introduction

The task of accurately representing the evolutionary history of a set of
species can now be approached by using leaf-labelled graphs of different
complexities [4]. Traditionally, phylogenetic trees have been inferred to rep-
resent speciation events that have given rise to the present-day diversity of
species. However, the tree model is, in many cases, too simplistic and does
not capture all evolutionary signals in the data. For example, reticulation
events such as hybridisation and lateral gene transfer cause patterns of rela-
tionships that cannot be represented by a single phylogenetic tree. On the
other hand, the reconstruction of more complex leaf-labelled graphs that can
capture reticulation events may result in an inferred phylogenetic network
that represents information that only has little support from the data. This
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is, for instance, the case when a phylogenetic network is reconstructed from
a set P of phylogenetic trees such that the resulting phylogenetic network
N displays each tree in P. Typically, N also displays additional trees that
are not in P. Recently, we have characterised those sets of rooted binary
phylogenetic trees that can be displayed by a rooted binary level-1 net-
work without inferring any additional trees [7]. Roughly speaking, a level-1
network is a rooted phylogenetic network whose underlying cycles do not
intersect. As such, level-1 networks are a relatively small class of phyloge-
netic networks that are suited to represent evolutionary relationships with
sparse reticulation events.

In this paper, we focus on the reconstruction of normal networks from
a collection of rooted phylogenetic trees. Normal networks, which were
first introduced by Willson [20], are phylogenetic networks that have no
shortcuts and each non-leaf vertex has a child with in-degree one (formal
definitions are given in Section 2). The class of normal networks has re-
cently been described as a class with prospect for practical use due to their
proven mathematical properties [9]. Furthermore, it was shown by Francis
et al. [10] that each rooted phylogenetic network that is not normal can be
transformed into a unique canonical network that is normal by omitting ver-
tices and edges that are, in some sense, redundant. Referring to the set of
all rooted binary phylogenetic X-trees that are displayed by a rooted binary
phylogenetic network N on X as the display set of N , the first part of this
paper establishes a polynomial-time algorithm that reconstructs a binary
normal network whose display set is equal to a given set P of rooted binary
phylogenetic trees if such a network exists. Importantly, if the algorithm re-
turns a binary normal network, then it is the unique such network because
no two binary normal networks have the same display set [21]. This last re-
sult is known to hold for regular networks, which are a superclass of normal
networks. Willson [21] established a top-down algorithm, based on clusters,
that always reconstructs a regular network from a collection P of rooted
phylogenetic trees. In particular, if P is the display set of a binary regular
network N , then the algorithm returns N . Our approach is a bottom-up
algorithm based on cherries and reticulated cherries.

As each binary normal network with k vertices of in-degree two has a
display set of size 2k [13, 22], a simple necessary but not sufficient condition
for a collection P of rooted binary phylogenetic trees to be the display
set of a binary normal network is that |P| = 2k

′
for some non-negative

integer k′. Hence, most collections of rooted binary phylogenetic trees are
not the display set of a binary normal network. In the second part of this
paper, we therefore turn to the question of which collections of (arbitrary)
rooted phylogenetic trees can be displayed by a (arbitrary) normal network.
We show that two rooted phylogenetic trees can always be displayed by a
normal phylogenetic network and, moreover, that the result does not extend
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to more than two trees. This latter result is in contrast to the class of tree-
child networks for which it has been shown that any collection of rooted
phylogenetic trees can be displayed by such a network [17]. Like normal
networks, tree-child networks [6] satisfy the structural constraint that each
non-leaf vertex has a child of in-degree one but, unlike normal networks,
tree-child networks may have shortcuts.

We then turn to cherry-picking sequences, which are sequences of pairs of
leaves of phylogenetic trees. These sequences were introduced by Humphries
et al. in 2013 [11] and used to establish the following equivalence: A set P
of rooted phylogenetic trees can be displayed by a temporal tree-child net-
work precisely if P has a cherry-picking sequence. Moreover, by associating
a weight to each cherry-picking sequence, these sequences were also used to
characterise the minimum number of reticulations needed over all such net-
works that display P. This optimisation problem was introduced by Baroni
et al. [1] and is know as Minimum Hybridisation. Since the publica-
tion of [11], cherry-picking sequences have been generalised to larger classes
of rooted phylogenetic networks (e.g., [14, 17]). Subsequently, this work
has resulted in the development of software to reconstruct phylogenetic net-
works from collections of trees in practice [2, 12]. In addition, cherry-picking
sequences have recently been used in the context of computing distances be-
tween phylogenetic networks [15, 16]. In the present paper, we introduce
a new type of cherry-picking sequences to decide if a given collection P of
phylogenetic trees can be displayed by a normal network. Intuitively, this
new type captures the constraint that normal networks do not have any
shortcuts. We then exploit the new type of cherry-picking sequences and
show that the solution to the Minimum Hybridisation problem for P over
all normal networks is given by the minimum weight of such a sequence for
P. Lastly, we show that, for all n ≥ 3, there exists a pair of rooted binary
phylogenetic trees T and T ′ on n leaves such that there exists a binary tree-
child network that displays T and T ′ with a single reticulation, whereas
any binary normal network that displays T and T ′ has n− 2 reticulations,
which is the maximum number of reticulations a binary normal network on
n leaves can have [3, 18].

The remainder of the paper is organised as follows. Section 2 provides
mathematical definitions and concepts that are used throughout the follow-
ing sections. In Section 3, we present a polynomial-time algorithm to decide
if a given set of rooted binary phylogenetic X-trees is the display set of a
binary normal network and, if so, to reconstruct such a network. We then
show that any two rooted phylogenetic X-trees can always be displayed by
a normal network in Section 4 before characterising arbitrarily large col-
lections of rooted phylogenetic X-trees that can be displayed by a normal
network using cherry-picking sequences in Section 5. In the latter section,
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we also show how these sequences can be used to solve Minimum Hybridi-
sation, provided that the initial collection of rooted phylogenetic X-trees
can be displayed by a normal network. In Section 6, we show that, for all
n ≥ 3, there exists a pair of rooted binary phylogenetic X-trees on n leaves
that can be displayed by a binary tree-child network with a single reticula-
tion and for which any binary normal network that displays the same two
trees requires n− 2 reticulations.

2. Preliminaries

In this section, we introduce notation and terminology that is needed for
the upcoming sections. Throughout the paper, X denotes a non-empty finite
set.

Phylogenetic networks. A rooted phylogenetic network N on X is a
rooted acyclic digraph with no parallel edges or loops that satisfies the fol-
lowing properties:

(i) the (unique) root ρ has out-degree two,
(ii) the set X is the set of vertices of out-degree zero, each of which has

in-degree one, and
(iii) all other vertices either have in-degree one and out-degree two, or in-

degree at least two and out-degree one.

For technical reasons, if |X| = 1, we additionally allow N to consist of the
single vertex in X. The set X is the leaf set of N and the vertices in X
are called leaves. Furthermore, the vertices of in-degree at most one and
out-degree two are tree vertices, while the vertices of in-degree at least two
and out-degree one are reticulations. An edge directed into a reticulation
is called a reticulation edge while each non-reticulation edge is called a tree
edge. We say that N is binary if each reticulation has in-degree exactly two.

Let N be a rooted phylogenetic network on X, and let u and v be two
vertices of N . We say that v (resp. u) is a descendant (resp. an ancestor)
of u (resp. v) if there is a directed path of length at least zero from u to
v in N . In particular, if (u, v) is an edge in N , then u is a parent of v
and, equivalently, v is a child of u. Note that we consider a vertex to be an
ancestor and a descendant of itself. For an element x in X, we also write
px to denote the (unique) parent of x in N . Moreover, the subset of X
that precisely contains the leaves that are descendants of u in N , denoted
by CN (u) or, simply, C(u) if there is no ambiguity, is called the cluster of
u. Hence, for an element x in X, we have C(x) = {x}. Now, let {x, y}
be a 2-element subset of X. We call {x, y} a cherry of N if px = py and
a reticulated cherry of N with reticulation leaf x if (py, px) is a reticulation
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edge in N . In this paper, we typically distinguish the leaves in a cherry and
a reticulated cherry, in which case we write {x, y} as the ordered pair (x, y)
depending on the roles of x and y.

Phylogenetic trees. A rooted phylogenetic X-tree T is a rooted tree that
has no vertex of degree two except possibly the root which has degree at
least two. As for rooted phylogenetic networks, X is the leaf set of T and, if
|X| = 1, then T consists of the single vertex in X. Furthermore, T is binary
if |X| = 1 or, the root has degree two and all other internal vertices have
degree three. For an element x in X, we denote by T \x the operation of
deleting x and its incident edge and, if the parent of x in T has out-degree
two, suppressing the resulting degree-two vertex. Note that if the parent
of x is the root ρ of T and ρ has out-degree two, then T \x denotes the
operation of deleting x and its incident edge, and then deleting ρ and its
incident edge. Observe that T \x is a phylogenetic (X − {x})-tree.

Now, let T and T ′ be two rooted phylogenetic X-trees. We say that T ′
is a refinement of T if T can be obtained from T ′ by contracting a possibly
empty set of internal edges in T ′. In addition, T ′ is a binary refinement of
T if T ′ is binary.

Naming convention. Since all phylogenetic trees and networks in this
paper are rooted, we omit the adjective rooted from now on.

Caterpillars and subtrees. Let T be a phylogenetic X-tree with |X| ≥ 3.
We call T a caterpillar if we can order X, say x1, x2, . . . , xn, so that px1 =
px2 and, for all i ∈ {2, 3, . . . , n − 1}, we have that (pxi+1 , pxi) is an edge
in T . We denote such a caterpillar T by (x1, x2, . . . , xn) or, equivalently,
(x2, x1, x3, . . . , xn). Two caterpillars are shown in Figure 1. Furthermore,
we call a caterpillar on exactly three leaves a triple. Again, let T be a
phylogenetic X-tree, and let Y be a subset of X. The restriction of T to Y ,
denoted by T |Y , is the phylogenetic tree obtained from the minimal rooted
subtree of T that connects all elements in Y by suppressing each vertex with
in-degree one and out-degree one

Displaying. Let T be a phylogenetic X ′-tree, and let N be a phylogenetic
network on X with X ′ ⊆ X. We say that N displays T if, up to suppressing
vertices with in-degree one and out-degree one, there exists a binary refine-
ment of T that can be obtained from N by deleting edges, leaves not in
X ′, and any resulting vertices of out-degree zero, in which case the resulting
acyclic digraph is referred to as an embedding of T in N . More generally, if
P is a collection of phylogenetic X ′-trees, then N displays P if each tree in
P is displayed by N . Moreover, the set of all binary phylogenetic X-trees
displayed by N is referred to as the display set of N . Let E be an embedding
of a phylogenetic X-tree in N . For the purpose of the upcoming sections,
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N ′
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Figure 1. The two caterpillars T = (`1, `2, `3, . . . , `n−1, `n)
and T ′ = (`2, `3, `4, . . . , `n, `1) on n leaves with n ≥ 3, a tree-
child network N , and a normal network N ′. Each of N and
N ′ displays T and T ′ for n = 4.

we view E as a subset of the edge set of N . Furthermore, for an edge e of
N , we say that E uses e if e is an edge of E .

Tree-child and normal networks. Let N be a phylogenetic network on
X. A reticulation edge (u, v) of N is a shortcut if N has a directed path
from u to v that avoids (u, v). If a reticulation edge e = (u, v) is a shortcut
of N , then we define the length of e to be the number of vertices in the union
of the vertex sets of all directed paths from u to any parent of v.

We say that a phylogenetic network N is tree-child if each non-leaf vertex
in N has a child that is a leaf or a tree vertex. A vertex v of N is said to
have a tree path if there is a directed path from v to some leaf x in N such
that every vertex in the path, except possibly v itself, is a tree vertex or a
leaf. The following equivalence is well known and freely used in this paper.

Lemma 2.1. Let N be a phylogenetic network on X. Then N is tree-child
if and only if each vertex of N has a tree path.

Furthermore, we say that N is normal if it is tree-child and has no shortcut.
IfN is a binary normal network with k reticulations, thenN displays exactly
2k binary phylogenetic X-trees [13, 22].

Now let P be a collection of phylogeneticX-trees. We say that P is normal
compatible if there exists a normal network on X that displays P. To illus-
trate, Figure 1 shows a tree-child network N that contains a shortcut and
a normal network N ′ that both display P = {(`1, `2, `3, `4), (`2, `3, `4, `1)}.
Hence, P is normal compatible.

Hybridisation number. With the definitions of a tree-child and normal
network in hand, we end this section by introducing three quantities that will
play an important role in solving Minimum Hybridisation over all normal
networks. Let V be the vertex set, and let ρ be the root of a phylogenetic
network N on X. The hybridisation number of N , denoted h(N ), is the
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value
h(N ) =

∑
v∈V−{ρ}

(
d−(v)− 1

)
,

where d−(v) denotes the in-degree of v. Furthermore, for a set P of phylo-
genetic X-trees, we set

hn(P) = min{h(N ) : N is a normal network on X that displays P}
and

htc(P) = min{h(N ) : N is a tree-child network on X that displays P}.

3. Sets of binary phylogenetic trees that are the display set
of a binary normal network

In this section, we establish a simple recursive algorithm for deciding if
a collection P of binary phylogenetic trees is the display set of a binary
normal network N . We say that P is tightly normal compatible if there
exists a binary normal network on X whose display set is exactly P. If P
is tightly normal compatible, then |P| = 2k for some non-negative integer
k, and the binary normal network whose display set is P is unique and has
exactly k reticulations [21].

Called Display Set Compatibility, we begin with a formal description
of the algorithm.

Display Set Compatibility
Input: A collection of binary phylogenetic X-trees.
Output: A binary normal network on X whose display set is P or the
statement P is not tightly normal compatible.

Step 1. If there is no non-negative integer k such that |P| = 2k, then return
P is not tightly normal compatible.

Step 2. If |X| = 1, then return the binary normal network consisting of a
single vertex labelled with the element in X.

Step 3. If |X| = 2, then return the binary normal network consisting of a
root vertex and two leaves bijectively labelled with the elements in
X.

Step 4. If there is subset {a, b} of X such that {a, b} is a cherry of every
tree in P, then
(a) Delete b from each tree in P, and set P ′ to be the resulting

collection of binary phylogenetic (X − {b})-trees.
(b) Apply Display Set Compatibility to P ′.

(i) If a binary normal network N ′ on X − {b} is returned,
construct a binary normal network N on X by subdi-
viding the edge directed into a with a new vertex pa
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and adjoining a new leaf b to pa via a new edge (pa, b).
Return N .

(ii) Else, return P is not tightly normal compatible.
Step 5. If there is a subset {a, b} of X such that {a, b} is a cherry of exactly

half of the trees in P and, for some x ∈ {a, b}, there is a bijection
ϕ from the subset P1 of trees in P with {a, b} as a cherry to P−P1
such that, for all T1 in P1, the pair {a, b} is a reticulated cherry
with reticulation leaf x of the unique binary normal network whose
display set is {T1, ϕ(T1)}, then
(a) Apply Display Set Compatibility to P − P1.

(i) If a binary normal network N ′ on X is returned, con-
struct a binary phylogenetic network N on X by subdi-
viding the edges directed into x and y with new vertices
px and py, respectively, and adding the new edge (py, px),
where y ∈ {a, b} − {x}.

(ii) If N is normal, return N .
(iii) Else, return P is not tightly normal compatible.

Step 6. Else, return P is not tightly normal compatible.

Before continuing, we make some remarks concerning Display Set Com-
patibility. If N is a binary normal network, then either N has a cherry
or a reticulated cherry [5]. Suppose that P is the display set of N . If N
has a cherry {a, b}, then every tree in P has {a, b} as a cherry. Step 4 is
checking for this property. Analogously, if N has a reticulated cherry {a, b}
with reticulation leaf b, then P satisfies the conditions in Step 5. The algo-
rithm Display Set Compatibility recursively checks for these conditions
in Steps 4 and 5 and, if satisfied, reduces the size of |X| or the size of |P|.

To illustrate the working of the algorithms, applying Display Set Com-
patibility to the set P of eight binary phylogenetic X-trees with X =
{1, 2, 3, 4, 5} as shown in Figure 2, the algorithm starts by checking if any
2-element subset of X is a cherry in all trees of P in Step 4. Since this is not
the case, Step 5 checks if any such subset is a cherry in half of the trees of P.
Assuming that the algorithm iterates through all 2-element subset of X in
numerical ordering, {1, 2} is the first such subset that is found because {1, 2}
is a cherry of each tree in P1 = {T1, T3, T4, T6}. Moreover, there is a bijection
ϕ : P1 → P − P1 such that, for each S ∈ P1, {1, 2} is a reticulated cherry
with reticulation leaf 2 of the unique binary normal network whose display
set is {S, ϕ(S)}. In particular, we have ϕ(T1) = T5, ϕ(T3) = T7, ϕ(T4) = T8,
and ϕ(T6) = T2. Display Set Compatibility is then recursively called
for P − P1.

To establish the correctness of Display Set Compatibility, we begin
with three lemmas. Let N be a phylogenetic network on X, and suppose
that {x, y} is a reticulated cherry of N , where x is the reticulation leaf.



9

T8

345 12 1 52 34

T1 T2 T3 T4

1 53 4 2 1 4 53 2 1 54 32

T5 T6 T7

1 3 4 52 1 3 4 52

1 3 4 52

N

1
2

5
43

Figure 2. Eight binary phylogenetic trees P = {T1, . . . , T8}
and the unique binary normal phylogenetic network that dis-
plays P.

Observe that (py, px) is an edge of N . Furthermore, we denote the parent of
px that is not py by gx. Throughout the remainder of this section, we freely
use the fact that if P is a collection of binary phylogenetic X-trees and P
is the display set of a binary normal network on X, then N is the unique
such network [21, Corollary 3.2]. Moreover, if T ∈ P, then there is a unique
embedding of T in N .

Lemma 3.1. Let N be a binary normal network on X, and let P be the
display set of N .

(i) If {a, b} is a cherry of N , then {a, b} is a cherry of every tree in P.
(ii) If {a, b} is a reticulated cherry of N with a being the reticulation leaf,

then {a, b} is a cherry of exactly half of the trees in P. Furthermore,
if P1 denotes the subset of trees in P with {a, b} as a cherry, then
there is a bijection ϕ : P1 → P − P1 such that, for all T1 ∈ P1, the
pair {a, b} is a reticulated cherry with reticulation leaf a of the unique
binary normal network whose display set is {T1, ϕ(T1)}.

Proof. The proof of (i) is straightforward and omitted. For the proof of
(ii), first observe that half of the trees in P use (pb, pa) in their (unique)
embedding in N . Let T1 be such a tree. Then {a, b} is a cherry of T1. Let
T be the tree in P whose embedding in N is obtained from the embedding
of T1 in N by replacing the edge (pb, pa) with (ga, pa). Then the normal
network obtained from N by deleting all reticulation edges except (pb, pa)
and (ga, pa), and suppressing the resulting degree-two vertices is the unique
binary normal network whose display set is {T1, T }. Part (ii) now follows.

�

In part, the next two lemmas are converses of Lemma 3.1(i) and (ii),
respectively.

Lemma 3.2. Let P be a collection of binary phylogenetic X-trees. Suppose
that {a, b} is a cherry of every tree in P. Let P ′ be the collection of binary
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phylogenetic (X −{a})-trees obtained from P by replacing each tree T in P
with T \a. Then P is tightly normal compatible if and only if P ′ is tightly
normal compatible. Furthermore, if P is tightly normal compatible, then
{a, b} is a cherry of the unique binary normal network on X whose display
set is P.

Proof. First suppose that P is tightly normal compatible. Then there is a
unique binary normal network N on X whose display set is P. If pa is a
reticulation in N , then, as N has no shortcuts, there is a tree path from a
parent of pa to a leaf that is not b, and so there is a tree in N that does
not have {a, b} as a cherry, a contradiction. Thus pa is a tree vertex and,
similarly, pb is a tree vertex. Let u be the child vertex of pa that is not a.
Since N is normal, there is a tree path from u to a leaf `. If ` 6= b, then
there is a tree in P whose unique embedding in N uses (pa, u) and does
not have {a, b} as a cherry, a contradiction. Therefore ` = b. Assume that
pa 6= pb, and let v be the child vertex of pb that is not b. Then there is a
tree path in N from v to a leaf `′ such that `′ 6∈ {a, b}. But then there is a
tree in P whose unique embedding in N uses (pb, v) and displays the triple
(b, `′, a), a contradiction. Hence pa = pb and so {a, b} is a cherry of N . In
turn, this implies that, if N ′ is the normal network obtained from N by
deleting a, suppressing the resulting degree-two vertex and, if pa coincides
with the root of N , additionally deleting the root, then N ′ displays P ′ and
is the unique binary normal network whose display set is P ′.

Now suppose that P ′ is tightly normal compatible. Then there is a unique
binary normal network N ′ on X−{a} whose display set is P ′. Let N be the
normal network on X obtained from N ′ by subdividing the edge directed
into b with a new vertex pb and adjoining a new leaf a to pb via a new edge
(pb, a). Since the display set of N ′ is P ′, it is easily seen that the display set
of N is P. It follows that P is tightly normal compatible. �

Lemma 3.3. Let P be a collection of binary phylogenetic X-trees. Suppose
that {a, b} is a cherry of exactly half of the trees in P, and let P1 be the
collection of such trees. Furthermore, suppose that, for some x ∈ {a, b},
there is a bijection ϕ : P1 → P − P1 such that, for all T1 in P1, the pair
{a, b} is a reticulated cherry with reticulation leaf x of the unique binary
normal network whose display set is {T1, ϕ(T1)}.

(i) If P is tightly normal compatible, then P − P1 is tightly normal com-
patible, and {a, b} is a reticulated cherry with reticulation leaf x of the
unique binary normal network on X whose display set is P.

(ii) Suppose that P − P1 is tightly normal compatible, and let N ′ be the
unique binary normal network on X whose display set is P − P1. Let
N be the network on X obtained from N ′ by subdividing the edges
directed into x and y with px and py, respectively, and adding the new
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edge (py, px), where {x, y} = {a, b}. If N is normal, then P is tightly
normal compatible, and N is the unique binary normal network whose
display set is P.

Proof. In reference to the initial hypothesis of the lemma, we may assume
without loss of generality that x = a. For the proof of (i), suppose that P is
tightly normal compatible, and let N be the unique binary normal network
on X whose display set is P. We first show that {a, b} is a reticulated cherry
of N with reticulation leaf a. Assume that pa and pb are both tree vertices
in N . If pa = pb, then {a, b} is cherry of N , and so, as N displays P, every
tree in P has {a, b} as a cherry, a contradiction. Thus pa 6= pb. Say that
neither pa is an ancestor of pb nor pb is an ancestor of pa in N . If either pa
or pb is a parent of a tree vertex or a leaf, then no tree in P has {a, b} as a
cherry. Furthermore, if each of pa and pb is a parent of a reticulation va and
vb, respectively, then no tree in P has {a, b} as a cherry if va = vb, and at
most a quarter of the trees in P have {a, b} as a cherry if va 6= vb. Thus we
may assume that pa is an ancestor of pb. Since N is normal, it is now easily
checked that (pa, pb) is an edge of N ; otherwise, less than half of the trees
in P have {a, b} as a cherry. If the child of pb that is not b, say w, is a tree
vertex or a leaf, then no tree displayed by N has {a, b} as a cherry, so w is
a reticulation. Let pw be the parent of w that is not pb, and let ` and m be
leaves at the end of tree paths starting at w and pw, respectively. Note that
` 6= m. Furthermore, as N is normal, (pw, w) is not a shortcut, so a 6= m.

Since the display set of N is P, there is a tree T in P whose unique em-
bedding in N uses the reticulation edge (pb, w). In particular, T |{a, b, `,m}
is isomorphic to (`, b, a,m). By the initial hypothesis, this implies that there
is a tree T1 in P such that T1|{a, b, `,m} is isomorphic to (a, b, `,m). But T1
is not displayed by N , a contradiction. Therefore pa is not an ancestor of
pb. A similar argument also shows that pb is not an ancestor of pa. Hence
either pa or pb is a reticulation.

If pb is a reticulation, then, as exactly half of the trees in P have {a, b}
as a cherry, it is easily seen that (pa, pb) is an edge in N . Thus {a, b}
is a reticulated cherry of N with reticulation leaf b. Similarly, if pa is a
reticulation of N , then {a, b} is a reticulated cherry of N with reticulation
leaf a. We next show {a, b} is not a reticulated cherry of N with reticulation
leaf b, thereby showing that pb is not a reticulation.

Suppose that {a, b} is a reticulated cherry of N with reticulation leaf b.
Let ` be the leaf at the end of a tree path in N starting at gb. By considering
the edge (gb, pb), half of the trees in P have (b, `, a) as a triple (note that
pa, and therefore a, cannot be a descendant of gb else (gb, pb) is a shortcut).
Moreover, by the initial hypothesis and as x = a, if T ′ is a tree in P and
(b, `, a) is not a triple of T ′, then {a, b} is a cherry of T ′ and the cluster of
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T ′ corresponding to the grandparent of b in T ′, excluding a, is a non-empty
subset of the cluster of gb in N . Since T ′ is displayed by N and the unique
embedding of T ′ in N uses (pa, pb), it follows that there exists a directed
path P from the parent of pa to gb in N .

We now show that P consists of a single edge. Let u be the parent of
pa, so u is the first vertex in P , and let v denote the second vertex in P .
Assume that v 6= gb. Say v is a tree vertex and let w be the child of v that
does not lie on P . Since N has no shortcuts, such a vertex exists. Now
there is a tree path from w to a leaf m regardless of whether w is a leaf, a
tree vertex, or a reticulation. Note that if w is a leaf, then m = w. As m is
at the end of a tree path starting at w, it follows that m is not a descendant
of gb in N . Let T be a phylogenetic X-tree that is displayed by N and
whose embedding uses the edges (pa, pb) and (v, w). Clearly T has cherry
{a, b}. Importantly, the cluster of the grandparent of b in T contains m, a
contradiction. Therefore, v is a reticulation. Let v′ be the parent of v that
is not u, and let m′ be a leaf at the end of tree path starting at v′. Since
(v′, v) is not a shortcut, m′ 6= a. Furthermore, m′ is also not a descendant
of gb in N . But then again there is a tree displayed by N whose unique
embedding uses the edges (pa, pb), (v′, v), and all edges on the subpath of P
from v to gb, and whose cluster of the grandparent of b contains m′, another
contradiction. Hence P consists of a single edge and the parent of pa is the
parent of gb.

Now let T be a tree displayed by N and whose unique embedding uses the
edge (gb, pb). Note that (b, `, a) is a triple of T , and the parents of a and b in
T are joined by an edge. By the initial hypothesis and since x = a, there is
a tree T1 in P1 with ϕ(T1) = T such that the unique binary normal network,
M say, whose display set is {T1, T } has {a, b} as a reticulated cherry with
reticulation leaf a. As M is normal, the leaf ` which is at the end of a tree
path starting at gb in N is not a descendant of ga in M, otherwise, (a, `, b)
is a triple of T . Since (b, `, a) is a triple of T , the tree displayed by M
that uses (ga, pa) does not have the property that the parents of a and b are
joined by an edge. This last contradiction establishes that {a, b} is not a
reticulated cherry of N with reticulation leaf b. It now follows that {a, b} is
a reticulated cherry of N with reticulation leaf a.

To complete the proof of (i), observe that the network obtained from
N by deleting the reticulation edge (pb, pa) of the reticulated cherry {a, b}
with reticulation leaf a and suppressing the resulting degree-two vertices is
binary normal and has display set P −P1. The proof of (ii) is an immediate
consequence of the initial hypothesis. �

The next theorem shows that Display Set Compatibility correctly de-
cides if a collection of binary phylogenetic trees is tightly normal compatible.
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Theorem 3.4. Let P be a collection of binary phylogenetic X-trees. Then
Display Set Compatibility applied to P correctly determines if P is
tightly normal compatible, in which case, it returns the unique binary normal
network whose display set is P.

Proof. We may assume that |P| = 2k for some non-negative integer k; oth-
erwise, the theorem holds. The proof of the correctness of Display Set
Compatibility is by induction on k+ |X|. If k = 0 or |X| ≤ 2, the theorem
clearly holds. Thus we may assume that k ≥ 1 and |X| ≥ 3. Suppose that
the theorem holds for all collections of binary phylogenetic X ′-trees of size
2k
′
, where k′ is a non-negative integer and k′ + |X ′| < k + |X|.

First assume that P is tightly normal compatible. Then there is a unique
binary normal network N on X whose display set is P. If {x, y} is a cherry
of N , then, by Lemma 3.1(i), all trees in P have {x, y} as a cherry. On
the other hand if N has no cherries, then, by [5, Lemma 4.1], N has a
reticulated cherry, say {x, y} with reticulation leaf x. Furthermore, as the
display set of N is P, Lemma 3.1(ii) implies that exactly half of the trees
in P have {x, y} as a cherry and there is a bijection from the subset P1
of trees in P that have {x, y} as a cherry to P − P1 such that, for all
T1 in P1, the 2-elements subset {x, y} of X is a reticulated cherry with
reticulation leaf x of the unique binary normal network whose display set
is {T1, ϕ(T1)}. Thus Display Set Compatibility applied to P constructs
either (i) a collection P ′ of binary phylogenetic (X−{a})-trees by replacing
each tree S in P with S\a for some cherry {a, b} of N or (ii) a collection
P −P1 for some reticulated cherry {a, b} with reticulation leaf a, where P1
is the subset of trees in P with {a, b} as a cherry. If (i) holds, it follows by
induction and Lemma 3.2 that Display Set Compatibility applied to P ′
correctly determines that P ′ is tightly normal compatible and returns the
unique binary normal network on X − {a} whose display set is P ′. In turn
this implies that Display Set Compatibility correctly determines that
P is tightly normal compatible and returns the unique normal network on
X whose display set is P, namely, N . So assume that (ii) holds. Then,
by induction and Lemma 3.3(i), Display Set Compatibility applied to
P − P1 correctly determines that P − P1 is tightly normal compatible and
returns the unique binary normal network on X, say N ′, whose display set is
P−P1. The algorithm Display Set Compatibility correctly reconstructs
N from N ′. Therefore, as N is normal, Display Set Compatibility
correctly determines that P is tightly normal compatible and returns the
unique binary normal network on X whose display set is P, namely N .

Now assume that P is not tightly normal compatible. If there is no pair
of leaves a and b satisfying the conditions in Step 4 or Step 5, then, by
Lemma 3.1, P is not tightly normal compatible and Display Set Com-
patibility applied to P correctly determines this outcome. So assume that
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there is such a pair of leaves. Then Display Set Compatibility applied to
P constructs either (I) a collection P ′ of phylogenetic (X − {a})-trees from
P by replacing each tree S in P with S\a if {a, b} is a cherry of every tree
in P, or (II) a collection P −P1 of 2k−1 binary phylogenetic X-trees, where
P1 is the subset of trees in P in which {a, b} is a cherry. If (I) holds, then,
by Lemma 3.2, P ′ is not tightly normal compatible and so, by induction,
Display Set Compatibility applied to P ′ correctly determines that P ′
is not tightly normal compatible. In turn, this implies that Display Set
Compatibility applied to P correctly determines that P is not tightly nor-
mal compatible. On the other hand, if (II) holds, then, by the working of
the algorithm, we may assume that there is a bijection ϕ : P1 → P−P1 such
that, for all T1 ∈ P, the pair {a, b} is a reticulated cherry with reticulation
leaf a of the unique binary normal network whose display set is {T1, ϕ(T1)}.
If P−P1 is not tightly normal compatible, then, by induction, Display Set
Compatibility applied to P − P1 correctly determines that P − P1 is not
tightly normal compatible. It follows that Display Set Compatibility
applied to P correctly determines that P is not tightly normal compatible.
If P − P1 is tightly normal compatible, then, by induction, Display Set
Compatibility applied to P−P1 returns the unique binary normal network
N ′ on X whose display set is P −P1. Let N be the network on X obtained
from N ′ by subdividing the edges directed into a and b with new vertices
pa and pb, respectively, and adding the new edge (pb, pa). If N is normal,
then, as a and b satisfy the conditions in Step 5, and the display set of N ′
is P −P1, it follows from Lemma 3.3(ii) that the display set of N is P. But
then P is tightly normal compatible, a contradiction. So N is not normal,
and it follows that Display Set Compatibility applied to P correctly de-
termines that P is not tightly normal compatible. This completes the proof
of the theorem. �

We end the section with a discussion of the running time of Display Set
Compatibility. The most time consuming part of Display Set Com-
patibility is deciding whether the conditions in Step 4 or Step 5 hold
for some 2-element subset of X. Naively, checking if Step 4 applies takes
time O(|X|2|P|). Moreover, checking if half of the trees of P have a com-
mon cherry takes time O(|X|2|P|). The next lemma shows that it takes
O(|X|3|P|2) time to decide if the bijection in Step 5 exists.

Lemma 3.5. To decide if the bijection in Step 5 exists takes O(|X|3|P|2)
time.

Proof. If there is a bijection ϕ for a 2-element subset {a, b} with x = a, then
T1 and ϕ(T1) have the property that T1\a ∼= ϕ(T1)\a. Say there is a tree T2
in P1 such that T2\a ∼= ϕ(T1)\a. Then T1\a ∼= T2\a and so, as {a, b} is a
cherry of T1 and T2, it follows that T1 ∼= T2. Hence if the bijection in Step 5
exists for {a, b} with x = a, then it is unique, and so we simply need to
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find, for each T1 ∈ P1, a tree T ′1 in P −P1 such that T ′1\a ∼= T1\a and check
that there exists a binary normal network whose display set is {T1, T ′1} with
a reticulated cherry {a, b} in which a is a reticulation leaf. For this check,
we only need to decide if b is not a descendant of the parent of a in T ′1 . In
total, this takes time O(|X||P|2). Since the number of 2-element subsets of
X is O(|X|2), deciding if the bijection in Step 5 exists takes O(|X|3|P|2)
time. �

Continuing the discussion, if |P| = 2k for some non-negative integer k, then
we only need to complete Step 5 at most k times, that is, at most O(|X|)
times. To see this, note that Step 5 is invoked only if there is no cherry
common to all the trees in P and, if P is tightly normal compatible and N
is the unique binary normal network whose display set is P, then N has ex-
actly k reticulations. Lastly, Display Set Compatibility is called at most
O(|X|+|X|) = O(|X|) times. This occurs when P is tightly normal compat-
ible or P is the display set of a tree-child network with precisely one shortcut
and this shortcut is a reticulation edge of a reticulated cherry. Hence, the
total running time of Display Set Compatibility is O(|X|4|P|2).

4. Two phylogenetic trees are always displayed by a normal
network

In this section, we show that any two phylogenetic trees are normal com-
patible. In particular, we show that any two binary phylogenetic trees can
be displayed by a binary normal network. An analogous two-tree result for
tree-child networks has been known since 2005 [1] and an explicit proof is
given in [17]. Moreover, we observe at the end of this section that there
are three binary phylogenetic trees that are not normal compatible. This
last result is in contrast to tree-child networks, where any set of phyloge-
netic trees can be displayed by a tree-child network [17], and also in contrast
to temporal tree-child networks, where there exist two binary phylogenetic
trees that cannot be displayed by a temporal tree-child network [11].

We start with a lemma that follows from [19, Theorem 1.1].

Lemma 4.1. Let N be a binary tree-child network on X, and let E be a
subset of the edges of N . Then E is an embedding of a binary phylogenetic
X-tree displayed by N if and only if E contains every tree edge of N and,
for each reticulation v in N with parents u and u′, E contains exactly one
of (u, v) and (u′, v).

Let N be a binary tree-child network on X, and let E be an embedding of a
phylogenetic X-tree that is displayed by N . Let R be the subset of E that
contains precisely each edge of E that is a reticulation edge in N . Since
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E contains each tree edge of N by Lemma 4.1, it follows that R contains
enough information to determine E . In what follows, we freely use this fact
and describe an embedding by the set of reticulation edges in N that it
contains instead of all edges. We say that R induces E if E is the union of
R and all tree edges in N .

Theorem 4.2. Let T and T ′ be two binary phylogenetic X-trees. Then T
and T ′ are normal compatible.

Proof. Towards a contradiction, assume that there exist two binary phylo-
genetic X-trees T and T ′ that are not normal compatible. By [17, Corollary
1.4], there exists a binary tree-child network on X that displays T and T ′.
Let N be a binary tree-child network that displays T and T ′ with the min-
imum number of shortcuts amongst binary tree-child networks on X that
display T and T ′ and whose length of a shortest shortcut is minimised over
all binary tree-child networks on X that display T and T ′ with the minimum
number of shortcuts.

Let k be the number of shortcuts in N , and let l be the minimum length
of a shortcut in N . Furthermore, let E and E ′ be embeddings of T and T ′,
respectively, in N . Throughout the remainder of the proof, we freely assume
that each reticulation edge of N is used by exactly one of E or E ′ because, if
that is not the case, then there exists a tree-child network on X that displays
T and T ′ with less than h(N ) reticulations, at most k shortcuts, and whose
length of a minimum shortcut is at most l. Let v be a reticulation in N
with parents u and u′ such that (u, v) is a shortcut of length l. Without loss
of generality, we may assume that E uses (u, v) and E ′ uses (u′, v). Let R
(resp. R′) be the subset of the reticulation edges in N that are used by E
(resp. E ′).

In the following, we construct a tree-child network N ′ on X from N that
displays T and T ′ and has either less than k shortcuts, or k shortcuts one of
which with length less than l, thereby deriving a contradiction in both cases.
If l = 2, then (u, u′) is an edge in N . It follows that (R−{(u, v)})∪{(u′, v)}
induces an embedding of T in N that does not use (u, v). Hence, the binary
tree-child network N ′ obtained from N by deleting (u, v) and suppressing
u and v displays T and T ′ and has k − 1 shortcuts, a contradiction. We
therefore assume that l > 2. Let u = u1, u2, . . . , um = u′ be a directed path
P from u to u′. Since (u, v) is a shortcut of minimum length, each tree vertex
on P has a child that does not lie on P . Let i be the maximum element
in {1, 2, . . . ,m − 1} such that ui is a reticulation, ui is a tree vertex whose
child that does not lie on P is a tree vertex or a leaf, or ui = u1. Observe
that ui is a vertex of each directed path from u to u′ and, for each j ∈
{i+1, i+2, . . . ,m−1}, the child of uj that does not lie on P is a reticulation,
wj say. The setup is illustrated in Figure 3(i). Assume that there exists a
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j ∈ {i + 1, i + 2, . . . ,m − 1} such that (uj , wj) is used by E . Choose j so
that no reticulation edge in {(uj+1, wj+1), (uj+2, wj+2), . . . , (um−1, wm−1)}
is used by E . Let q be the child of u′ that is not v. Now obtain N ′ from N
by deleting (uj , wj), suppressing uj , subdividing (u′, q) with a new vertex
u′j , and adding the edge (u′j , wj). Figure 3(i)–(ii) shows the construction of

N ′ from N . It is straightforward to check that, as N is a binary tree-child
network, N ′ is also such a network. Let u′′j be the parent of wj in N (resp.

N ′) that is not uj (resp. u′j). If (u′′j , wj) is a shortcut in N ′, then u′′j is an

ancestor of u′j and, in turn, an ancestor of ui. It follows that (u′′j , wj) is a

shortcut in N . On the other hand, if (u′j , wj) is a shortcut in N ′, then u′′j
is a descendant of q, thereby implying that (uj , wj) is also a shortcut in N .
Thus, N ′ has at most k shortcuts. To see that N ′ displays T and T ′, observe
that R′ induces an embedding of T ′ in N ′ and, because no reticulation edge
in {(uj+1, wj+1), (uj+2, wj+2), . . . , (um−1, wm−1)} in an edge of R, it follows
that

(R− {(uj , wj)}) ∪ {(u′j , wj)}
induces an embedding of T in N ′. As uj does not lie on a directed path
from u to u′ in N ′, (u, v) has length l − 1 in N ′, we derive a contradiction.
We continue with the proof under the following assumption.

(A) For each j ∈ {i+ 1, i+ 2, . . . ,m− 1}, the edge (uj , wj) is used by E ′.

Let s be the parent of u in N , and let t be the child of v in N . We next
consider three cases.

First, assume that ui = u1. Then, for each j ∈ {2, 3, . . . , um−1}, the edge
(uj , wj) is only used by E ′. Similar to the construction in the last paragraph,
obtain N ′ from N by deleting (u2, w2), suppressing u2, subdividing (s, u)
with a new vertex u′2, and adding the edge (u′2, w2). As N is a binary tree-
child network with k shortcuts, N ′ is such a network as well because w2 is
incident with a shortcut in N ′ precisely if w2 is incident with a shortcut in
N . Moreover, R induces an embedding of T in N ′ and

(R′ − {(u2, w2)}) ∪ {(u′2, w2)}

induces an embedding of T ′ in N ′. Lastly, since u2 does not lie on any
directed path from u to u′ in N ′, the length of (u, v) is l− 1 in N ′, another
contradiction.

Second, assume that ui 6= u1 and that ui is a tree vertex. We next obtain
a binary phylogenetic network N ′ on X from N by applying the following
edge deletions, subdivisions, and additions. Intuitively, these operations
turn ui into a parent of v and move the subpath of P from ui+1 to um,
which contains at least um, below v, thereby turning um into an additional
reticulation and shortening the shortcut (u, v). More precisely, obtain N ′
from N by
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Figure 3. (i) The tree-child network N with a shortcut
(u, v) of length l with l ≥ m as described in the proof
of Theorem 4.2. The tree-child network N ′ obtained from
N with a shortcut (u, v) of length strictly less than l for
when (ii) there exists a reticulation edge (uj , wj) with j ∈
{i+ 1, i+ 2, . . . ,m− 1} that is used by E and no such reticu-
lation edge exists and ui is a tree vertex (iii) or a reticulation
(iv). In (iv), one of g or g′ is ui−1. Some parts of N and N ′
are omitted.
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(i) deleting the edges (um, v), (ui, ui+1), and (v, t),
(ii) subdividing the tree edge that is directed out of ui and not incident

with ui+1 with a new vertex p, and the edge (um−1, um) with a new
vertex p′, and

(iii) adding the edges (ui, v), (p, um), (v, ui+1), and (p′, t).

The construction of N ′ from N is shown in Figure 3(i) and (iii). Let ` be
a leaf at the end of a tree path that starts at v in N . Since the child of v
in N ′ is either ui+1 or p′, which are both tree vertices, and each vertex in
{ui+1, ui+2, . . . , um−1, p

′} has a tree path that starts at that vertex and ends
at ` in N ′, it is straightforward to check that, as N is tree-child, N ′ is also
tree-child. Moreover,

R ∪ {(p, um)} and (R′ − {(um, v)}) ∪ {(ui, v), (p′, um)}

induce an embedding of T and T ′, respectively in N ′. Lastly, we turn to
shortcuts in N ′. It follows from the construction that um is a reticulation
in N ′ with parents p and p′. Since p is neither an ancestor nor a descendant
of p′, um is not incident with a shortcut in N ′. For each j ∈ {i + 1, i +
2, . . . ,m− 1}, let u′j be the parent of wj that is not uj in N . Observe that

uj and u′j are also the parents of wj in N . Furthermore, by Assumption (A),

it follows that u′j /∈ {ui+1, ui+2, . . . um}. Hence, if (uj , wj) (resp. (u′j , wj)) is

a shortcut in N ′, then (uj , wj) (resp. (u′j , wj)) is a shortcut in N . Thus N ′
has at most k shortcuts and, importantly, the shortcut (u, v) has length at
most l − 1 because u1 and ui are the two parents of v in N ′ and um does
not lie on a directed path from u1 to ui, another contradiction.

Third assume that ui 6= u1 and ui is a reticulation. Let g and g′ be
the two parents of ui. At least one of g and g′ lies on P . Without loss of
generality, we may assume that E uses (g, ui) and E ′ uses (g′, ui). We next
obtain a binary phylogenetic network N ′ on X from N in which um is a
reticulation, ui is not a vertex, g is a parent of um, and g′ is a parent of v.
More precisely, in order, obtain N ′ from N by

(i) deleting the edges (um, v) and (v, t),
(ii) deleting the vertex ui,

(iii) adding the edges (g′, v), (g, um), and (v, ui+1),
(iv) subdividing the edge that is directed into um and not incident with g

with a new vertex p′, and
(v) adding the edge (p′, t).

The construction of N ′ from N is shown in Figure 3(i) and (iv). As N is
tree-child, note that g and g′ are tree vertices in N and N ′. We can now
apply the same argument as in the second case to show that N ′ is tree-child.
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Moreover

(R− {(g, ui)}) ∪ {(g, um)} and (R′ − {(g′, ui), (um, v)}) ∪ {(g′, v), (p′, um)}
induce an embedding of T and T ′, respectively, in N ′. Turning to shortcuts
in N ′, assume that (g, um) is a shortcut. Then g is an ancestor of p′ in
N ′. By construction and Assumption (A), this in turn implies that g is an
ancestor of g′ in N ′ and N . Thus (g, ui) is a shortcut in N . Now assume
that (p′, um) is a shortcut in N ′. Then g is a descendant of t in N ′ and in N .
But t is also a descendant of g in N because there is a directed path from
ui, a child of g, to v. Thus, N contains a directed cycle, thereby implying
that (p′, um) is not a shortcut in N ′. It follows that, if um is incident with
a shortcut in N ′, then ui is incident with a shortcut in N . Again, for each
j ∈ {i + 1, i + 2, . . . ,m − 1}, let u′j be the parent of wj that does not lie
on P is not uj in N . Applying the same argument as in the second case,
we deduce that, if (uj , wj) (resp. (u′j , wj)) is a shortcut in N ′, then (uj , wj)

(resp. (u′j , wj)) is a shortcut in N . It remains to show that v is either

incident with no shortcut or with a shortcut of length at most l − 1 in N ′.
Assume that g′ does not lie on any directed path from u to u′ in N . Then
there is no directed path from u to g′ in N ′, thereby implying that (u, v)
is not a shortcut in N ′. Hence, if (u, v) is a shortcut in N ′, then g′ and ui
both lie on a directed path from u to u′ in N , whereas ui does not lie on a
directed path from u to g′ in N ′. Hence, (u, v) has length at most l− 1. In
summary, it follows that N ′ has at most k shortcuts. Moreover, if N ′ has
k shortcuts, then (u, v) is one of them and has length at most l − 1, a final
contradiction. The theorem now follows. �

Observe that the process of obtaining N ′ from N as described in the proof
of Theorem 4.2 can be repeatedly applied to reduce the length of a shortcut
to two, at which point it can be removed. For two binary phylogenetic trees
X-trees T and T ′, this gives an algorithmic approach to construct a binary
normal network that displays T and T ′. More specifically, start with a
binary tree-child network N that displays T and T ′ and then keep applying
the process of removing or shortening a shortcut to each shortcut until the
resulting network becomes normal.

The next corollary is an immediate consequence of Theorem 4.2 because,
if a binary refinement of a phylogenetic tree is displayed by a phylogenetic
network, then the (unrefined) tree is also displayed by the same network.

Corollary 4.3. Let T and T ′ be two phylogenetic X-trees. Then T and T ′
are normal compatible.

Since each binary normal network on X has at most |X| − 2 reticula-
tions [3, 18] and a display set of size 2k, where k is the number of reticula-
tions in N and each such vertex has in-degree two, it immediately follows
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that Theorem 4.2 does not generalise to more than two phylogenetic X-
trees. To see this, consider the three binary phylogenetic trees with leaf
set {a, b, c}. Each phylogenetic network N that displays these trees with a
single reticulation v has the property that the in-degree of v is three and,
regardless of which leaf is the child of v, it is straightforward to check that
N has a shortcut. Moreover, there exists no normal network on three leaves
with two reticulations. Hence, the three binary phylogenetic trees with leaf
set {a, b, c} are not normal compatible.

5. Sets of phylogenetic trees displayed by a normal network

In this section, we characterise hn(P) for a collection P of phylogenetic
X-trees in terms of a particular type of sequence on the elements in X called
a “normal cherry-picking sequence”. Let T be a phylogenetic X-tree and let
(x, y) be an ordered pair of leaves in X. If (x, y) is a cherry of T , then let
T ′ = T \x; otherwise, let T ′ = T . We say that T ′ has been obtained from
T by cherry picking (x, y).

Let σ = (x1, y1), (x2, y2), . . . , (xs, ys) be a sequence of ordered pairs in
X ×X. We refer to σ as a shortcut sequence if there are indices i1 < i2 <
· · · < im with i1 = 1 and im = s such that either m = 2, xi1 = xi2 , and
yi1 = yi2 , or m > 2 and the following four properties are satisfied:

(1) xi1 = xim ,
(2) for each j ∈ {2, 3, . . . ,m− 1}, we have xi1 /∈ {xij , yij},
(3) the elements xi2 , xi3 , . . . , xim−1 are distinct, and
(4) for each j ∈ {2, 3, . . . ,m}, the intersection {xij−1 , yij−1} ∩ {xij , yij}

is non-empty.

If σ is a shortcut sequence, then we refer to (xi1 , yi1), (xi2 , yi2), . . . , (xim , yim)
as the subsequence of σ that verifies σ.

Now, let P be a set of phylogenetic X-trees, and let

σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−)

be a sequence of ordered pairs in X × (X ∪ {−}) such that the following
property is satisfied.

(TC) For all i ∈ {1, 2, . . . , s}, we have xi 6∈ {yi+1, yi+2, . . . , ys}.

Setting P0 = P and, for all i ∈ {1, 2, . . . , s}, setting Pi to be the set of
phylogenetic trees obtained from Pi−1 by cherry picking (xi, yi) in each tree
in Pi−1, we call σ a tree-child cherry-picking sequence for P if each tree in
Ps consists of the single vertex xs+1. Furthermore, for all i ∈ {1, 2, . . . , s},
we say that Pi is obtained from P by picking x1, x2, . . . , xi. Additionally, if
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Pi 6= Pi+1, then we refer to (xi, yi) as being essential. Let σ be a tree-child
cherry-picking sequence for P, then the weight of σ, denoted w(σ), is the
value s+ 1− |X|. Observe that,

w(σ) = s+ 1− |X| ≥ 0

as each element in X must appear as the first element in an ordered pair in
σ.

Let σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−) be a tree-child cherry-
picking sequence for a collection P of phylogenetic X-trees. For two ele-
ments i, j ∈ {1, 2, . . . , s + 1}, we denote by σ[i, j] the substring of σ that
starts at the ith ordered pair and ends at the jth ordered pair. We say that
σ is a normal cherry-picking sequence for P if it additionally satisfies the
following property.

(N) For each pair (xi, yi) and (xj , yj) with i < j, the substring σ[i, j] is not
a shortcut sequence.

To illustrate these notions,

σ = (`1, `2), (`2, `3), (`3, `4), (`1, `4), (`4,−) and

σ′ = (`2, `1), (`2, `3), (`3, `4), (`3, `1), (`1, `4), (`4,−)

are two tree-child cherry-picking sequences for the two caterpillars T and T ′
with n = 4 that are shown in Figure 1. Since σ[1, 4] is a shortcut sequence, σ
is not a normal cherry-picking sequence whereas σ′ is such a sequence. Most
sequences of ordered pairs of elements in X× (X ∪{−}) that we consider in
this paper are normal cherry-picking sequences and the more general tree-
child cherry-picking sequences are only needed for technical reasons. We
refer to (TC) as the tree-child property and to (N) as the normal property.
Observe that checking if an arbitrary sequence of ordered pairs in X × (X ∪
{−}) satisfies these properties does not require any information about the
elements in P.

Now, let σ be a normal cherry-picking sequence for a collection P of
phylogenetic X-trees. We call σ a minimum normal cherry-picking sequence
of P if w(σ) is minimised over all normal cherry-picking sequences of P. This
smallest value is denoted by s(P).

Lemma 5.1. Let P be a set of phylogenetic X-trees. Let σ be a tree-child
cherry-picking sequence for P. Then there exists a tree-child network N
on X that displays P with h(N ) ≤ w(σ) and satisfies the following four
properties:

(i) If u is a tree vertex in N and not a parent of a reticulation, then there
are leaves `1 and `′1 at the end of tree paths starting at the two children
of u, such that (`1, `

′
1) is an element in σ.
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(ii) If u is a tree vertex in N that has a child that is a reticulation v, then
there are leaves `u and `v at the end of tree paths starting at u and v,
respectively, such that (`v, `u) is an element in σ.

(iii) If u and u′ are tree vertices and v a reticulation of N such that v is
a child of u and u′, and u′ is the parent of u, then there are leaves `1
and `′1 at the end of tree paths starting at the two children of u such
that (`1, `

′
1), (`1, `

′
1) is a subsequence of σ.

(iv) Let u and u′ be tree vertices of N such that either (u, v) and (v, u′)
are the edges of a path of length two and v is a reticulation, or (u, u′)
is an edge and no reticulation of N is a child of u and u′. If `1 and
`′1 are leaves at the end of tree paths starting at the two children of
u′ such that (`1, `

′
1) is an ordered pair in σ, then there exist leaves `2

and `′2 at the end of tree paths starting at the two children of u such
that (`1, `

′
1), (`2, `

′
2) is a subsequence of σ, {`1, `′1} ∩ {`2, `′2} 6= ∅ and

`1 6= `2.

Proof. Properties (i) and (ii) are established in [17, Lemma 3.1]. Moreover,
Property (iii) follows from applying Property (ii) twice, and Property (iv)
follows from Properties (i) and (ii), and a straightforward extension of the
proof of [17, Lemma 3.1]. �

Lemma 5.2. Let P be a set of binary phylogenetic X-trees. Suppose that
there exists a normal cherry-picking sequence σ for P. Then there exists a
normal network N on X that displays P with h(N ) ≤ w(σ).

Proof. Without loss of generality, we may assume that each ordered pair
in σ is essential. It follows from Lemma 5.1 that there exists a tree-child
network N on X that satisfies Properties (i)–(iv) as stated in the same
lemma and displays P with h(N ) ≤ w(σ). We complete the proof by showing
that N is also normal. Towards a contradiction, assume that N has a
shortcut. Let (u′, v) be a shortcut of minimum length over all shortcuts
in N . Furthermore, let u be a parent of v that is not u′ such that there
exists a directed path P from u′ to u in N . If the second child of u′ that
is not v equates to u, then, as N satisfies Property (iii) in the statement of
Lemma 5.1, there are leaves `1 and `′1 at the end of tree paths starting at
the two children of u such that (`1, `

′
1), (`1, `

′
1) is a subsequence of σ. Hence

σ contains a shortcut sequence, a contradiction. We may therefore assume
for the remainder of the proof that the length of (u′, v) is at least three. In
order, let u′ = um, um−1, . . . , u2, u1 = u be the tree vertices on P , where
m ≥ 3 as N is tree-child. Furthermore, let w1 denote the child of u1 that
is not v and, for each j ∈ {2, 3, . . . ,m − 1}, let wj be the child of uj in N
that does not lie on P . As (u′, v) is a shortcut of minimum length, there is
no reticulation on P that has two parents that also both lie on P and, thus,
wj exists for each j ∈ {2, 3, . . . ,m− 1}. Moreover, because N is tree-child,
observe that the child of uj that is not wj is either uj−1 or a reticulation
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v

u′ = um

`1

w1

u2

w3

w2

wm−2

u3

`′1

um−1

u = u1

um−2

wm−1

Figure 4. The setup of N as described in the proof of
Lemma 5.2. Each of the three thick lines indicates directed
paths that consists of at most two edges and each of the two
dashed lines indicates a tree path.

in which case the child of that reticulation equates to uj−1. The setup is
shown in Figure 4.

As N satisfies Property (ii) in the statement of Lemma 5.1, there exist a
leaf `1 at the end of a tree path starting at v and a leaf `′1 at the end of a
tree path starting at u1 such that (`1, `

′
1) is an element in σ. Now consider

each j ∈ {2, 3, . . . ,m − 1} in order. Since N satisfies Property (iv) in the
statement of Lemma 5.1, there exist leaves `j and `′j at the end of tree paths

starting at the two children of uj and leaves `j−1 and `′j−1 at the end of tree

paths starting at the two children of uj−1 such that (`j−1, `
′
j−1), (`j , `

′
j) is a

subsequence of σ, {`j−1, `′j−1}∩ {`j , `′j} 6= ∅, and `j−1 6= `j . Lastly, consider

um. By Properties (ii) and (iv) in the statement of Lemma 5.1, there exist
a leaf `m at the end of a tree path starting at v and a leaf `′m at the end of a
tree path starting at um−1 such that (`m−1, `

′
m−1), (`m, `

′
m) is a subsequence

of σ, {`m−1, `′m−1′} ∩ {`m, `′m} 6= ∅, and `m−1 6= `m. It now follows that

(`1, `
′
1), (`2, `

′
2), . . . , (`m, `

′
m)

is a subsequence of σ such that, for each j ∈ {2, 3, . . . ,m}, the intersection
{`j−1, `′j−1} ∩ {`j , `′j} is non-empty. By the choice of (u′, v), v is not a child

of a vertex in {u2, u3, . . . , um−1} and, thus, `1 is not a leaf at the end of a
tree path that starts at a child of a vertex in {u2, u3, . . . , um−1}. Hence, no
ordered pair (`j , `

′
j) with j ∈ {2, 3, . . . ,m− 1} contains `1.
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Now assume that there exist elements i, j ∈ {2, 3, . . . ,m − 1} with i < j
such that `i = `j . Without loss of generality, we can choose i and j such
that there exists no j′ ∈ {i+1, i+2, . . . , j−1} with `j′ = `j . Since `j 6= `j+1

for all j ∈ {1, 2, . . . ,m− 1}, we have i+ 1 < j. Consider the subsequence

(`i, `
′
i), . . . , (`j−1, `

′
j−1), (`j , `

′
j)

of σ. Since `i = `j , it follows that `′j is a leaf at the end of a tree path starting

at wj . Moreover, by the choice of j and because σ satisfies (TC), we have
`j /∈ {`j−1, `′j−1}. As `′j is not a leaf at the end of any tree path starting at the

two children of uj−1, it now follows that {`j−1, `′j−1} ∩ {`j , `′j} = ∅, thereby

contradicting that N satisfies Property (iv) in the statement of Lemma 5.1.
We conclude that the elements `2, `3, . . . , `m−1 are distinct.

We next show that `1 = `m. As σ satisfies (TC), observe that `′m 6= `1.
Assume that `1 6= `m. Then `1 and `m are two distinct leaves at the end of
tree paths starting at v. Furthermore, each phylogenetic X-tree displayed
by N is binary and contains the triple (`1, `m, `

′
1). Thus, each tree in P also

contains the triple (`1, `m, `
′
1). As each ordered pair in σ is essential, there

exist binary phylogenetic X-trees T and T ′ in P such that (`1, `
′
1) picks

`1 from T and (`m, `
′
m) picks `m from T ′. Clearly, T and T ′ are distinct.

Since (`1, `m, `
′
1) is a triple of T , there exists a subsequence σ1 of σ such

that `m is the first coordinate of the first ordered pair of σ1 and `1 is the
second coordinate of the last ordered pair of σ1. Similarly, since (`1, `m, `

′
1)

is a triple of T ′, there exists a subsequence σ2 of σ such that `1 is the first
coordinate of the first ordered pair of σ2 and `m is the second coordinate of
the last ordered pair of σ2. Since σ satisfies (TC), the last ordered pair of
σ1 precedes the first ordered pair of σ2. This implies that the first ordered
pair of σ1 precedes the last ordered pair of σ2 in σ. Hence, σ does not
satisfy (TC), a contradiction. We conclude that `1 = `m. It now follows
that (`1, `

′
1), (`2, `

′
2), . . . , (`m, `

′
m) verifies a shortcut sequence of σ, thereby

contradicting that σ satisfies (N). This final contradiction completes the
proof of the lemma. �

We now generalise Lemma 5.2 to arbitrary collections of phylogenetic
trees.

Corollary 5.3. Let P be a set of phylogenetic X-trees. Suppose that there
exists a normal cherry-picking sequence σ for P. Then there exists a normal
network N on X that displays P with h(N ) ≤ w(σ).

Proof. Let P = {T1, T2, . . . , Tn}. For each Ti ∈ P with i ∈ {1, 2, . . . , n},
let T ′i be a binary refinement of Ti such that σ is a normal cherry-picking
sequence for T ′i . It follows from Lemma 5.2 that there exists a normal
network N on X that displays {T ′1 , T ′2 , . . . , T ′n} with h(N ) ≤ w(σ). By
construction, N also displays P and, thus, the corollary follows. �
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The next corollary follows from Corollary 5.3 by choosing a normal cherry-
picking sequence σ of minimum weight for P.

Corollary 5.4. Let P be a set of phylogenetic X-trees. Suppose that there
exists a normal cherry-picking sequence for P. Then hn(P) ≤ s(P).

Let N be a tree-child network on X with root ρ that displays a collection
P of phylogenetic X-trees, and let v1, v2, . . . , vr denote the reticulations of
N . Furthermore, let `ρ, `1, `2, . . . , `r denote the leaves at the end of tree
paths starting at ρ, v1, v2, . . . , vr, respectively. For each j ∈ {1, 2, . . . , r}, we
say that `j verifies vj . The following algorithm Construct Sequence,
which was first published in [17], constructs a sequence σ of ordered pairs in
X × (X ∪ {−}) from N . It was shown in [17, Lemma 3.4] that σ is a tree-
child cherry-picking sequence for P. After stating the algorithm, we show
that σ is in fact a normal cherry-picking sequence for when N is normal.

Construct Sequence

Step 1. Set N = N0 and σ0 to be the empty sequence. Set i = 1.
Step 2. If Ni−1 consists of a single leaf xi, then set σi to be the concatena-

tion of σi−1 and (xi,−), and return σi.
Step 3. If {xi, yi} is a cherry in Ni−1, then

(a) If one of xi and yi, say xi, equates to `j for some j ∈ {1, 2, . . . , r}
and vj is not a reticulation in Ni−1, then set σi to be the con-
catenation of σi−1 and (xi, yi).

(b) Otherwise, set σi to be the concatenation of σi−1 and (xi, yi),
where xi 6∈ {`ρ, `1, `2, . . . , `r}.

(c) Set Ni to be the tree-child network obtained from Ni−1 by
deleting xi.

(d) Increase i by one and go to Step 2.
Step 4. Else, there is a reticulated cherry {xi, yi} in Ni−1, where xi say is

the reticulation leaf.
(a) Set σi to be the concatenation of σi−1 and (xi, yi).
(b) Set Ni to be the tree-child network obtained from Ni−1 by

deleting (pyi , pxi) and suppressing the two resulting degree-two
vertices.

(c) Increase i by one and go to Step 2.

Lemma 5.5. Let P be a set of phylogenetic X-trees. Suppose that there
exists a normal network N on X that displays P. Then there exists a normal
cherry-picking sequence σ for P with w(σ) ≤ h(N ).

Proof. Let σ = (x1, y1), (x2, y2), . . . , (xs, ys), (xs+1,−) be the sequence of
ordered pairs in X× (X ∪{−}) that is obtained from applying Construct
Sequence to N . It immediately follows from [17, Lemma 3.4] that σ is a
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tree-child cherry-picking sequence for P with w(σ) ≤ h(N ). By inspecting
Construct Sequence, we also have the following observation: If two
ordered pairs of σ have the same first coordinate, say `, then there exists a
reticulation v in N such that ` is a leaf at the end of a tree path starting at v.
Lastly, in each iteration i of Construct Sequence with i ∈ {1, 2, . . . , s},
it follows from straightforward generalisations of [8, Lemmas 6 and 7] to
normal networks whose reticulations have in-degree at least two that Ni is
normal.

To complete the proof, we show that σ also satisfies (N). Towards a contra-
diction, assume that σ contains a substring σ[i, i′] that is a shortcut sequence
for some i, i′ ∈ {1, 2, . . . , s} with i < i′. Let σs = (`1, `

′
1), (`2, `

′
2), . . . , (`m, `

′
m)

be the subsequence of σ[i, i′] that verifies the shortcut sequence. By defini-
tion of a shortcut sequence, we have xi = `1 = `m = xi′ . As N does not
contain a shortcut, it also follows that `′1 6= `′m and, thus, m ≥ 3. Hence
by the observation in the last paragraph, there exists a reticulation v in N ,
such that `1 is a leaf at the end of a tree path starting at v. Furthermore,
{`1, `′1} is a reticulated cherry with reticulation leaf `1 in Ni−1, and {`1, `′m}
is either a cherry or a reticulated cherry with reticulation leaf `1 in Ni′−1.
Let p be the parent of v in Ni−1 such that p is a vertex of Ni′−1 but not a
vertex of Ni′ . Note that p is a tree vertex of Ni′−1.

For each ordered pair (xj , yj) in σ, either xj and yj have the same parent
if {xj , yj} is a cherry of Nj−1 or the parent of yj is a grandparent of xj if
{xj , yj} is a reticulated cherry with reticulation leaf xj of Nj−1. Let (`j , `

′
j),

(`j′ , `
′
j′), and (`j′′ , `

′
j′′) be three ordered pairs in σ that are consecutive or-

dered pairs in σs. By Property (4) in the definition of a shortcut sequence
and because σs satisfies (TC), `′j ∈ {`j′ , `′j′} and `′j′ ∈ {`j′′ , `′j′′}. It now

follows that the parent of `′j′′ is an ancestor of the parent of `′j′ in Nj′′−1
and, similarly, that the parent of `′j′ is an ancestor of the parent of `′j in

Nj′−1. Hence, the parent of `′m in Ni′−1, which is p, is an ancestor of `′1
and therefore an ancestor of `1 in N . But then (p, v) is a shortcut in N , a
contradiction as N is normal. Thus σ has no shortcut sequences, thereby
completing the proof of the lemma. �

The next corollary follows from Lemma 5.5 by choosing a normal network
that displays a collection P of phylogenetic trees and whose hybridisation
number is minimised over all such networks.

Corollary 5.6. Let P be a set of phylogenetic X-trees. Suppose that P is
normal compatible. Then hn(P) ≥ s(P).

The following theorem summarises Lemmas 5.2 and 5.5, and Corollar-
ies 5.4 and 5.6.
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Theorem 5.7. Let P be a set of phylogenetic X-trees. Then P is normal
compatible if and only if there exists a normal cherry-picking sequence for
P, in which case hn(P) = s(P).

6. Disparity between tree-child and normal networks

In this section, we use the results of Section 5 to show that, for all n ≥ 3,
there exists a pair of binary phylogenetic X-trees T1 and T2 on n leaves such
that htc(T1, T2) = 1, but hn(T1, T2) = n− 2. In particular, we establish the
following proposition.

Proposition 6.1. Let T1 be the caterpillar (`1, `2, . . . , `n) and let T2 be
the caterpillar (`2, `3, . . . , `n, `1), where n ≥ 3. Then htc(T1, T2) = 1 and
hn(T1, T2) = n− 2.

Proof. Since T1 and T2 are distinct, htc(T1, T2) ≥ 1. Let N be the bi-
nary tree-child network obtained from T2 by subdividing the edges directed
into `2 and `1 with the new vertices p2 and p1 and adding the new edge
(p2, p1). Then N displays T1 and T2, and has exactly one reticulation. Thus
htc(T1, T2) = 1.

To show that hn(T1, T2) = n−2, let σ be a normal cherry-picking sequence
for T1 and T2. Without loss of generality, we may assume that every ordered
pair in σ is essential. Suppose that, for some i ∈ {2, 3, . . . , n}, there is an
ordered pair in σ of the form (`1, `i) that picks `1 in T1. If σ picks `1 in T2
(strictly) before σ picks `1 in T1, then σ contains an ordered pair of the form
(`1, `i′) corresponding to picking `1 in T2. But then, if i 6= i′, the normal
cherry-picking sequence σ has already picked `i in T2 (otherwise (`1, `i′) is
not yet a cherry), a contradiction as σ satisfies (TC). In the case that i = i′,
it follows that (`1, `i) appears twice in σ, and so σ is a shortcut sequence,
another contradiction. If σ picks `1 in T1 and T2 simultaneously, then if i 6= n
we have (`n, `i) as an ordered pair in σ picking `n in T2 and appearing before
(`1, `i), and (`n, `i) as an ordered pair in σ picking `n in T1 and appearing
after (`1, `i). This verifies that σ is a shortcut sequence.

It now follows that, unless i = n, we may assume that σ picks `1 in T2
after it picks `1 in T1. Say there is an ordered pair in σ of the form (`1, `i′)
that picks `1 in T2. If i = i′, then (`1, `i) appears twice in σ, a contradiction.
If i 6= i′, then σ picks `i before `i′ in T2, so the subsequence of σ beginning
with (`1, `i) and ending with (`1, `i′) and whose intermediate ordered pairs
consist of those pairs that pick leaves in T2 starting with the ordered pair
that picks `i in T2 verifies that σ is a shortcut sequence, a contradiction.
Thus the ordered pair that picks `1 in T2 is of the form (`1,−).
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We now deduce that either (`1,−) is the last ordered pair in σ or, if this
does not hold, then (`1, `n) is the ordered pair in σ that picks `1 in T1 and
T2 simultaneously. For the former to happen, (`1,−) picks `1 in T1 and T2.
For the latter to happen, the last two ordered pairs in σ are (`1, `n) and
(`n,−). In both outcomes, σ contains the subsequence

(`2, `1), (`3, `1), . . . , (`n−1, `1)

corresponding to picking the leaves `2, `3, . . . , `n−1 in T1. By compari-
son, the second coordinates of the ordered pairs in σ that pick the leaves
`2, `3, . . . , `n−1 in T2 are distinct from those picking `2, `3, . . . , `n−1 in T1.
Hence hn(T1, T2) ≥ n − 2. But a binary normal network with n leaves has
at most n− 2 reticulations [3, 18], and so hn(T1, T2) = n− 2. �
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