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Abstract. A connected matroid M is unbreakable if, for each of its
flats F , the matroid M/F is connected or, equivalently, if M∗ has no
two skew circuits. Pfeil showed that a simple graphic matroid M(G) is
unbreakable exactly when G is either a cycle or a complete graph. We
extend this result to describe which graphs are the underlying graphs of
unbreakable frame matroids.

1. Introduction

The terminology used here will follow [1]. In particular, sets X and Y in a
matroid are skew if r(X) + r(Y ) = r(X ∪Y ). A matroid M is unbreakable if
M is connected and, for every flat F ofM , the contractionM/F is connected.
Pfeil [3] showed that a matroid is unbreakable if and only if its dual has no
two skew circuits. Indeed, unbreakable matroids grew out of an attempt to
find a matroid analogue of graphs with no two vertex-disjoint circuits.

Frame matroids, which were introduced by Zaslavsky [7, 8] as bias ma-
troids, are a fundamental class of matroids that are derived from graphs.
Geometrically, such matroids coincide with the restrictions of those matroids
in which each non-loop element lies on a line joining two elements of a fixed
basis. Frame matroids include graphic, bicircular, and signed-graphic ma-
troids. Irene Pivotto gave a good introduction to frame matroids and related
classes of matroids in a three-part blog post [4, 5, 6]. Frame matroids are
also discussed in [1, Section 6.10]. A Θ-graph is a graph consisting of two
vertices that are joined by three internally disjoint paths. A biased graph
(G,Ψ) consists of a graph G and a set Ψ of cycles of G such that if C1

and C2 are in Ψ and the induced graph G[C1 ∪ C2] is a Θ-graph, then the
third cycle in G[C1 ∪C2] is also in Ψ. Such a collection is said to satisfy the
Θ-property. The cycles in Ψ are called balanced ; all other cycles are unbal-
anced. We say that G is balanced if it has no unbalanced cycles; otherwise
G is unbalanced.

A handcuff is a graph that consists either of two cycles that share a single
vertex, or two vertex-disjoint cycles together with a minimal path that meets
each of the cycles in a single vertex. From a biased graph (G,Ψ), we obtain a
matroidM(G,Ψ) whose ground set is E(G) and whose set of circuits consists
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of the members of Ψ together with those Θ-graphs and handcuffs in which
all cycles are unbalanced. A matroid M is a frame matroid if M ∼= M(G,Ψ)
for some biased graph (G,Ψ). Note that M(G,Ψ) is the cycle matroid of
G when Ψ consists of all of the cycles of G, while M(G,Ψ) is the bicircular
matroid of G when Ψ is empty.

The following theorem of Pfeil [3] determines all unbreakable regular ma-
troids. Both of the one-element matroids, U0,1 and U1,1, are unbreakable.

Theorem 1.1. A regular matroid M with at least two elements is unbreak-
able if and only if M is loopless and si(M) is isomorphic to M∗(K3,3), R10,
or the cycle matroid of a complete graph or cycle with at least three vertices.

In particular, this theorem shows that a loopless graphic matroid M is
unbreakable if and only if si(M) is isomorphic to the cycle matroid of a
complete graph or a cycle. The purpose of this paper is to prove the following
generalization of Theorem 1.1.

Theorem 1.2. Let M(G,Ψ) be a 3-connected unbreakable frame matroid
and assume that G has no isolated vertices. Then either |V (G)| ≤ 6, or the
simple graph associated with G is obtained from a complete graph by deleting
the edges of a path of length at most two.

For 3-connected unbreakable bicircular matroids, we can be even more
explicit.

Theorem 1.3. Let M be the bicircular matroid of a graph G having no
isolated vertices. If M is 3-connected and unbreakable, then either |V (G)| ≤
6, or the simple graph associated with G is complete.

This theorem is a consequence of the following more general result, which
is itself a corollary of Theorem 1.2.

Theorem 1.4. Let M(G,Ψ) be a 3-connected unbreakable frame matroid
and assume that G has no isolated vertices. If Ψ contains no 3-cycles, then
either |V (G)| ≤ 6, or the simple graph associated with G is complete.

To see that we cannot sharpen the bound |V (G)| ≤ 6 in the last three
theorems, we consider the bicircular matroid M of the 9-edge graph that is
obtained from a 6-cycle by adding an edge in parallel to every second edge.
Then M∗ is the rank-3 matroid that is obtained from a 3-element basis by
freely adding two points on each line that is spannned by two of the basis
elements. This matroid is clearly 3-connected having no two skew circuits.
Hence M is 3-connected and unbreakable.

In Section 3, we prove a more specific version of Theorem 1.2 when the
underlying graph has a 2-vertex cut. We conclude the proof of Theorem 1.2
and prove Theorem 1.4 in Section 4. In the next section, we note some
preliminaries that will be used in these proofs. In Section 5 of the paper,
we prove the following result, which can be viewed as a partial converse to
Theorem 1.2.
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Theorem 1.5. Let H be a simple graph with at least seven vertices that is
complete or can be obtained from a complete graph by deleting one edge or two
adjacent edges. Then there is a 3-connected unbreakable matroid M(G,Ψ)
such that H is the simple graph associated with G.

2. Preliminaries

This section contains a number of lemmas that we will use in the proofs
of the main results. The first was proved by Pfeil [3].

Lemma 2.1. If M is an unbreakable matroid and F is a flat of M , then
M/F is also unbreakable.

Zaslavsky [9] proved that the class of frame matroids is closed under taking
minors. It will be useful to recall how one shows this. Let M be a frame
matroid, M(G,Ψ), and let e be an edge of G. Then M\e = M(G\e,Ψ\e)
where Ψ\e is the collection of cycles in Ψ that do not contain e. Contraction
is not as easy to describe. Suppose first that {e} is a balanced loop. Then e
is a loop in the matroid M , so M(G,Ψ)/e = M(G,Ψ)\e. Next, let {e} be
an unbalanced loop at the vertex v. Then M(G,Ψ)/e = M(G′,Ψ′) where
G′ and Ψ′ are constructed as follows. First delete e from G and declare all
remaining loops at v to be in Ψ′. Then, for every edge joining v to some
other vertex u, replace that edge by a loop at u and declare that this loop is
not in Ψ′. Finally, take each cycle in Ψ that avoids v and add it to Ψ′. The
last possibility for the edge e is that it joins distinct vertices u and v of G.
In that case, M(G,Ψ)/e = M(G/e,Ψ′′) where Ψ′′ consists of the minimal
sets of the form C − e where C ∈ Ψ.

In a biased graph, (G,Ψ), a subgraph H of G is balanced if every cycle in
H is balanced. Zaslavsky [9] proved the following result.

Proposition 2.2. Let (G,Ψ) be a biased graph and X be a subset of E(G).
Then

(i) X is independent in M(G,Ψ) if and only if G[X] has no balanced
cycles and no component with more than one cycle; and

(ii) the rank of X in M(G,Ψ) is given by r(X) = |V (G[X])| − k′(G[X])
where k′(G[X]) is the number of balanced components of G[X].

The next result is a straightforward consequence of the previous result.

Lemma 2.3. Let (G,Ψ) be a biased graph and L be its set of balanced loops.
If U ⊆ V (G), then E(G[U ]) ∪ L is a flat of M(G,Ψ).

We conclude this section with four lemmas that will be useful in the proof
of Theorem 1.2.

Lemma 2.4. Let M(G,Ψ) be a simple frame matroid. Let H be a vertex-
induced subgraph of G and let C be a shortest unbalanced cycle in H. If
|C| ≥ 3, then C is induced.
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Proof. Suppose G[C]\E(C) has an edge e. When C ∪ e contains a 2-cycle,
since M(G,Ψ) is simple, this 2-cycle must be unbalanced, a contradiction.
Thus, in the Θ-graph G[C ∪ e], one of the cycles containing e is unbalanced
and violates the choice of C. �

For a vertex z in a graph G, we denote by Ez the set of edges meeting z.

Lemma 2.5. Let (G,Ψ) be a biased graph and C be an unbalanced cycle of G.
If w is in V (G)− V (C) and w is adjacent to at least two vertices of C, then
there is an unbalanced cycle Cw with w ∈ V (Cw) and E(Cw) ⊆ E(C) ∪ Ew.

Proof. Let H be the subgraph of G induced by C∪{f, g} where f and g join
w to distinct vertices of C. Then H is a Θ-graph containing the unbalanced
cycle C. Thus, at least one of the cycles using w is unbalanced, so the lemma
holds. �

Lemma 2.6. Let (G,Ψ) be a biased graph and C be an unbalanced cycle
of G with |C| ≥ 3. If G has a vertex w that is adjacent to each vertex of
V (C) − w, then there is an unbalanced 3-cycle Cw with w ∈ V (Cw) and
E(Cw) ⊆ E(C) ∪ Ew.

Proof. If w /∈ V (C), then, by Lemma 2.5, we have an unbalanced cycle C ′

with w ∈ V (C ′) and E(C ′) ⊆ E(C) ∪ Ew. If w ∈ V (C), let C ′ = C. Let
u and v be the neighbours of w in the subgraph C ′. Let H be a subgraph
of G induced by a set of edges consisting of C ′ along with exactly one edge
between w and each vertex in V (C ′) − {u, v, w}. Let Cw be a shortest
unbalanced cycle that uses w and is contained in H. Clearly |Cw| ≥ 3. As
H is simple, M(G,Ψ)|E(H) is simple, so, by Lemma 2.4, Cw is an induced
cycle of H. As w is adjacent to every vertex of V (C ′) − w, it follows that
Cw is a 3-cycle. �

Lemma 2.7. Let M be a frame matroid M(G,Ψ) where G is a connected
graph. Let C be an unbalanced cycle and let T be a tree in G such that
V (C) ⊆ V (T ) and G− V (T ) is disconnected. Then M is not unbreakable.

Proof. If we contract the edges of T from G, then the composite vertex that
results by identifying all of the vertices of T is a cut vertex in the resulting
graph, and this vertex meets at least one unbalanced loop. Contracting such
a loop yields a biased graph with more than one component having an edge.
We deduce that M/E(G[V (T )]) is disconnected. This implies that M is
not unbreakable for this is certainly true if M has any balanced loops and
otherwise holds by Lemma 2.3 since E(G[V (T )]) is a flat of M(G,Ψ). �

3. Beginning the Proof of the Main Theorem

The purpose of this section is to prove the first of two theorems the com-
bination of which yields the main result of the paper. It is commonplace in
matroid theory to use si(M) to denote the simple matroid associated with a
matroid M . It will be convenient here to use the same notation for graphs.
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Focusing for the moment on graphs rather than biased graphs, for a graph
G, denote by si(G) the graph that is obtained from G by deleting all the
loops of G, deleting any isolated vertices of G, and deleting all but one edge
from each parallel class of G. As with matroids, we will not be concerned
with the edges labels on si(G) but only with the isomorphism type of this
graph. Paths and cycles will occur frequently in the proof. If D is a path or
cycle, we will frequently use D to denote its edge set E(D). Its vertex set
will be denoted by V (D).

Throughout this and the next section, we shall assume that M is a 3-
connected unbreakable frame matroid M(G,Ψ) and that G has no isolated
vertices. We shall also assume that M is not graphic since the case where M
is graphic is dealt with by Theorem 1.1. Then G has at least one unbalanced
cycle. Moreover, |E(G)| ≥ 4 so M has no 1- or 2-circuits. Thus we have the
following result.

Lemma 3.1. All 1- and 2-cycles in G are unbalanced.

Because M is connected, G is certainly connected. Thus, by Proposi-
tion 2.2(ii), r(M) = |V (G)|.

Lemma 3.2. G has no vertex that meets fewer than three edges.

Proof. Suppose G has a vertex u for which the set Eu of edges meeting u has
size at most two. Then rM (E(G) − Eu) ≤ |V (G − u)| = |V (G)| − 1, so Eu

contains a cocircuit of M . This contradicts the fact that M is 3-connected
having at least four elements. �

Next we show the following.

Lemma 3.3. G is 2-connected.

Proof. Suppose that G has a cut vertex v. Let A1 be a component of G− v.
Let A be the graph induced by the vertex set V (A1) ∪ v, and let B be the
graph induced by the edge set E(G) − E(A). By Proposition 2.2, r(M) =
|V (G)| = |V (A)|+ |V (B)|−1. As r(E(A)) ≤ |V (A)| and r(E(B)) ≤ |V (B)|,
we see that r(E(A))+r(E(B))−r(M) ≤ |V (A)|+|V (B)|−(|V (A)|+|V (B)|−
1) = 1. By Lemma 3.2, we deduce that (E(A), E(B)) is a 2-separation of
M , a contradiction. �

Lemma 3.4. If si(G) is a cycle, then |V (G)| ≤ 6.

Proof. By Lemmas 3.1 and 3.2, every vertex x of G must meet an unbalanced
cycle Cx of size at most two. Fix a vertex v of G and such an unbalanced
cycle Cv. If |V (G)| ≥ 7, then there is a vertex u that has distance at least
three from each of the vertices in Cv. Then, for each choice of Cu, the
matroid M/cl(Cv ∪ Cu) is disconnected, a contradiction. �

The proof of Theorem 1.2 will distinguish the cases when G is 3-connected
and when it is not, beginning with the latter.
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Theorem 3.5. Let M(G,Ψ) be a 3-connected unbreakable frame matroid,
M , and assume that G is 2-connected, but not 3-connected. Then G has at
most six vertices.

Proof. Assume that |V (G)| ≥ 7. Let {u, v} be a vertex cut in G. Let A1

and B1 be disjoint non-empty graphs each a disjoint union of components
of G − {u, v} such that A1 ∪ B1 = G − {u, v}. Let (A,B) be a partition
of E(G) with A ⊆ G[V (A1) ∪ {u, v}] and B ⊆ G[V (B1) ∪ {u, v}]. Hence,
each edge joining u and v, and each unbalanced loop incident to u or v
can lie in A or B. Assume initially that each such edge lies in B. Because
M is 3-connected, Proposition 2.2(ii) implies that G[A] is unbalanced. By
symmetry, we deduce that each of A and B contains an unbalanced cycle
that contains no edge joining u and v and is not an unbalanced loop incident
to u or v.

Next we show the following.

3.5.1. Suppose B has a path PB joining u and v that does not use all of
the vertices of B. Let CA be an unbalanced cycle in A, and let P u and P v

be internally disjoint paths from u and v to CA with each such path using a
single vertex of CA. Then

(i) P u and P v each have at most one edge;
(ii) V (CA) ∪ {u, v} = V (A);
(iii) |V (A)− {u, v}| ≤ 2; and
(iv) if |V (A)− {u, v}| = 2, then no edge in P u or P v is in a 2-cycle.

Parts (i) and (ii) will follow from Lemma 2.7. When CA uses both u and
v, we let T consist of all but one edge of CA. By Lemma 2.7, G − V (T )
must be connected, so V (CA) = V (A). When CA contains v but not u, let
T be a tree whose edges consist of PB and all but one edge of CA. Then
V (CA)∪{u} = V (A), so P u has just one edge. Finally, suppose CA contains
neither u nor v. Let T be a tree whose edge set consists of PB, P u, and all
but one edge of CA. Then V (A) = V (CA) ∪ V (P u) ∪ {v}. Thus P v consists
of a single edge. By symmetry, P u also consists of a single edge. Hence
V (A)− {u, v} = V (CA). Thus (i) and (ii) hold.

To prove (iii), we add the assumption that CA is a shortest unbalanced
cycle in A and assume that |V (A)−{u, v}| ≥ 3. Then, by (ii), |CA| ≥ 3. Let
x and y be the vertices in V (CA)∩V (P u) and V (CA)∩V (P v), respectively,
and choose w in V (CA)−{x, y}. Then, by Lemma 3.2, w is incident with an
edge f not in CA. By Lemma 2.4, the other endpoint of f is not in V (CA).
Hence, by (ii), it is in {u, v}, and, without loss of generality, we may assume
that it is u. Thus u 6= x, so Pu has a single edge.

Consider the Θ-graph H with edge set CA∪P u∪f and let D be the cycle
in this Θ-graph avoiding y. As the next step towards proving 3.5.1(iii), we
show that

3.5.2. D is balanced.
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Suppose first that y = v. Then |D| ≤ |CA|, so, by minimality, D is
balanced unless equality holds here. In the exceptional case, the neighbours
of v on CA are w and x. Since |V (CA)−{u, v}| = |V (A)−{u, v}| ≥ 3, there
is an internal vertex t of the (x,w)-path in CA avoiding v. As t does not
have degree two and CA has no chords, A has an edge joining t and u. Thus
u is adjacent to every vertex of V (D) − u. It follows that D is balanced,
otherwise, by Lemma 2.6, G has an unbalanced 3-cycle containing u and
avoiding v. This contradicts the choice of CA.

We may now assume that y 6= v. If D is unbalanced, then, using it as
the unbalanced cycle in (ii), we obtain a contradiction since D avoids y. We
conclude that 3.5.2 holds.

Because D is balanced but CA is not, the third cycle, J , in the Θ-graph
H must be unbalanced. Taking the subgraph of G whose edge set is J ∪
PB ∪P v gives us a Θ-graph containing cycles J ′ and J ′′ that avoid x and w,
respectively. Consider a tree that is obtained from J ′ by deleting an edge.
By Lemma 2.7, J ′ is balanced. Similarly, J ′′ is balanced, so J is balanced, a
contradiction. Thus 3.5.1(iii) holds.

To prove 3.5.1(iv), assume that V (A) − {u, v} = {s, t}. Suppose that
there are at least two edges joining x and u. Let T be a tree consisting of
one of these edges together with the path PB. Then, by Lemma 2.7, M is
not unbreakable, a contradiction. We deduce that there is at most one edge
between x and u. By symmetry, there is at most one edge between y and v.
Hence 3.5.1(iv) holds. This completes the proof of 3.5.1.

Previously, for a 2-vertex cut {u, v} in G, we defined subgraphs A and
B whose union is G. If both A and B contain (u, v)-paths that do not use
all of their vertices, then, by 3.5.1(iii), |V (G)| ≤ 6. If each of si(A) and
si(B) is a path, then si(G) is a cycle, so, by Lemma 3.4, |V (G)| ≤ 6, a
contradiction. Thus we may assume that exactly one of si(A) and si(B)
is a path. It follows that we may also assume that G has no edge joining
u and v. Now, we choose the vertex cut {u, v} and the subgraphs A and
B such that si(A) is not a path and |V (A)| is a minimum subject to this
requirement. Then si(B) is a path. Let CA and CB be shortest unbalanced
cycles in A and B, respectively, such that neither cycle uses an edge joining
u to v and neither cycle is an unbalanced loop incident to u or v. Subject to
this, choose |V (CA) ∩ {u, v}| to be a maximum. By 3.5.1(iii), |V (B)| ≤ 4.
Let P u

A and P v
A be disjoint paths from CA to u and v, respectively, chosen

so that |P u
A| + |P v

A| is a minimum. Let x and y be the vertices of CA that
are also in P u

A and P v
A, respectively. Next we note that

3.5.3. V (A) = V (CA) ∪ V (P u
A) ∪ V (P v

A).

To see this, note that if V (A) 6= V (CA) ∪ V (P u
A) ∪ V (P v

A) and T is a
tree whose edge set is P u

A ∪ P v
A together with all but one edge of CA, then

G− V (T ) is disconnected, a contradiction to Lemma 2.7. Thus 3.5.3 holds.
Next we show that

3.5.4. CA does not use both u and v.
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Suppose otherwise. Then, since G has no edge joining u and v, the cycle
CA has a vertex not in {u, v}. By Lemma 3.2, this vertex has degree at least
three, so the cycle CA is not an induced cycle of G[A], a contradiction to
Lemma 2.4. Hence 3.5.4 holds.

3.5.5. If u 6∈ V (CA), then P u
A has a single edge.

Suppose not, letting u′ be the neighbour of u on the path P u
A. Observe

that {u′, v} cannot be a vertex cut of G otherwise si(A − u) is a path and
so si(A) is a path, a contradiction. Thus u is adjacent to some vertex w of
V (A)− {u′, v}. By the choice of P u

A, we see that w ∈ V (P v
A). The union of

an edge joining u and w with the edge set of P v
A and all but one edge of CA is

a tree T such that G− V (T ) is disconnected, a contradiction to Lemma 2.7.
We conclude that 3.5.5 holds.

3.5.6. |CA| ≥ 3.

This follows by 3.5.3, 3.5.5, and symmetry, otherwise |V (G)| ≤ 6.
The choice of CA implies that A has no unbalanced 2-cycles and no un-

balanced loops. Hence, by Lemma 3.2, we have the following.

3.5.7. Every vertex of CA must be adjacent to a vertex outside of V (CA).

By 3.5.4, we may now assume that u 6∈ V (CA). As the next step towards
proving Theorem 3.5, we now show the following.

3.5.8. For |CA| ≥ 4, suppose s and t are distinct vertices of CA that are
neighbours of u in G. Then CA has an edge joining s and t.

Let f and g be edges joining u to s and t, respectively. Then, in the Θ-
graphH with edge set CA∪{f, g}, at least one cycle meeting u is unbalanced.
Let C ′A be such an unbalanced cycle. As |C ′A| ≤ |CA|, equality must hold, so
there is an (s, t)-path P st in CA of length two such that the edge set of C ′A is
{f, g}∪(CA−P st). Note that v ∈ V (CA), otherwise, as C ′A is an unbalanced
cycle in A of length |CA| that uses u, we have a contradiction to the choice
of CA. By replacing CA by C ′A in 3.5.4, we deduce that v 6∈ V (C ′A). Thus v
is the internal vertex of P st. As the 4-cycle C ′′A with vertex set {f, g} ∪ P st

uses u and v, it must be balanced. By Lemma 3.2 and 3.5.3, every vertex
in V (CA) − {v, s, t} is adjacent to u. Then, as u is also adjacent to s and
t, Lemma 2.6 gives us an unbalanced 3-cycle in A, a contradiction. We
conclude that 3.5.8 holds.

Suppose v ∈ V (CA). Then, by 3.5.7, every vertex of V (CA)−v is adjacent
to u. Thus, by 3.5.8, |V (CA)| ≤ 3, so |V (G)| ≤ 6, a contradiction. We
may now assume that V (CA) avoids {u, v}. By 3.5.3 and 3.5.5, V (CA) =
V (A)− {u, v}. We show next that

3.5.9. |V (B)− {u, v}| = 1.

Recall that |V (B)| ≤ 4. Suppose that |V (B) − {u, v}| = 2. By 3.5.1(i)
and 3.5.1(iv), with the roles of A and B reversed, we see that |CB| > 1 so
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CB is a 2-cycle that is vertex-disjoint from {u, v}. Then cl(CB) consists of
all of the edges that are parallel in G to an edge of CB, and cl(CA ∪ CB) =
CA ∪ cl(CB). Now, contracting the edges of CA ∪ cl(CB) from G produces a
2-vertex disconnected graph in which each of u and v meets an unbalanced
loop. We deduce that M/cl(CA∪CB) is disconnected, a contradiction. Thus
3.5.9 holds.

As |V (G)| ≥ 7, we deduce that |CA| ≥ 4. By 3.5.7, every vertex of CA

must be adjacent to u or v. Moreover, by symmetry, 3.5.8 holds when u is
replaced by v. Using 3.5.8 for both u and v, we deduce that |CA| = 4, and
two consecutive vertices of CA are adjacent to u, but not v, while the other
two are adjacent to v, but not u. Also, by 3.5.8, no vertex of CA is adjacent
to both u and v.

We may assume that either CB meets u or that CB is an unbalanced loop
incident to neither u nor v. In the former case, G has a tree T that uses
one edge of CB and otherwise consists of a path, in A, of length three that
uses u, exactly one of the neighbours of u in CA, and both of the neighbours
of v on CA. Deleting the vertices of T from G disconnects the graph, a
contradiction to Lemma 2.7. In the latter case, contracting the edges in CA

and CB yields a graph that has three unbalanced loops at each of u and v.
Since E(CA)∪E(CB) is a flat, this completes the proof of Theorem 3.5. �

4. Finishing the Proof of the Main Theorem

In this section, we shall complete the proof of Theorem 1.2 by dealing with
the case when G has no 2-vertex cut. In particular, we prove the following.

Theorem 4.1. Let M(G,Ψ) be a 3-connected unbreakable frame matroid
where G is 3-connected and |V (G)| ≥ 7. Then si(G) can be obtained from a
complete graph by deleting the edges of a path of length at most two.

We begin with some preparatory results.

Lemma 4.2. Let M be a 3-connected unbreakable frame matroid M(G,Ψ)
where G is 3-connected and unbalanced. Then the following hold for any pair
{x, y} of nonadjacent vertices of G.

(i) G− {x, y} is balanced.
(ii) Every unbalanced cycle in G uses at least one of x and y.
(iii) There is at least one unbalanced cycle in G that avoids x and at least

one unbalanced cycle that avoids y.
(iv) If Cy is a shortest unbalanced cycle in G containing y and avoiding

x, and |Cy| ≥ 3, then Cy is an induced subgraph of G.

Proof. To show (i), suppose G − {x, y} has an unbalanced cycle C. Let T
be a spanning tree of G − {x, y} using all but one edge of C. Then, as x
and y are nonadjacent, G−V (T ) is disconnected, contradicting Lemma 2.7.
Thus (i) holds. Part (ii) is a restatement of (i), and (v) is an immediate
consequence of (ii).
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To prove part (iii), assume that G− x is balanced. Then the edge set W
of G− {x, y} is a flat of M . The graph G/W has three vertices including a
cut vertex that results from identifying all the vertices in W . In G/W , all
the cycles incident with y are balanced, so this cut vertex actually induces
a separation in M/W , a contradiction. Thus (iii) holds.

Part (iv) follows from Lemma 2.4 applied to H = G − x. To see this,
note that Cy is a shortest unbalanced cycle of H since, by (i), G− {x, y} is
balanced. �

The following is an immediate consequence of the last lemma.

Lemma 4.3. Let M be a 3-connected unbreakable frame matroid M(G,Ψ)
where G is 3-connected. Then si(G−V (C)) is complete for every unbalanced
cycle C in G.

For the rest of the section, u and v will denote a fixed pair of non-adjacent
vertices of G, and W will denote E(G− {u, v}). By Lemma 4.2(iii), we can
choose shortest unbalanced cycles Cu and Cv avoiding v and u, respectively.
By Lemma 4.2(ii), Cu and Cv contain u and v, respectively. Our strategy
will be to show that such cycles are small and to exploit the fact that si(G−
V (Cu)) and si(G−V (Cv)) are complete graphs to show that si(G) is almost
a complete graph.

Lemma 4.4. Let M be a 3-connected unbreakable frame matroid M(G,Ψ)
where G is 3-connected and has at least one unbalanced cycle. Suppose that
|Cu| ≥ |Cv|.

(i) Suppose that |Cu| ≥ 4 and C is an unbalanced cycle of G that avoids
u. Then C uses all but at most one vertex of V (Cu)− u. Moreover,
if there is a vertex in (V (Cu)− u)− V (C), then it must be adjacent
to u.

(ii) |Cu| ≤ 4.
(iii) Either |Cv| ∈ {1, 2}, or the subgraph of G induced by Cu ∪Cv is one

of the graphs shown in Figure 1.
(iv) If w ∈ V (G) is in an unbalanced cycle of size at most three, then w

is nonadjacent to at most two other vertices.
(v) Every vertex w of G is nonadjacent to at most three other vertices.
(vi) If |Cu| = 4, then |V (G)| ≤ 6 and si(G) has at most seven edges fewer

than the complete graph on |V (G)| vertices.
Proof. As noted above, Cu and Cv use u and v, respectively. To see (i),
suppose that |Cu| ≥ 4. First observe that, by Lemma 4.3, the subgraph
of si(G) induced by V (G) − V (C) must be complete. Thus, all vertices in
Cu − u are either adjacent to u or in C. By Lemma 2.4, G[V (Cu)] must
be a cycle. Let u′ and u′′ be the neighbours of u in Cu. As u′ and u′′ are
nonadjacent, by Lemma 4.2(ii), {u′, u′′}∩V (C) 6= ∅ and, since all the vertices
in V (Cu)− {u, u′, u′′} are in V (C), it follows that (i) holds.

To show part (ii), suppose that |Cu| ≥ 5 and that u1, u2, u3, and u4
are distinct vertices in Cu − u, with u1 adjacent to u and u2, and with u4
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Figure 1. The possibilities for G[Cu ∪ Cv] in Lemma 4.4(iii).

adjacent to u and u3. We note that u2 is not necessarily adjacent to u3.
By (i), we may suppose that V (Cu) − {u, u1} ⊆ V (Cv). Now, as G is 3-
connected, u3 must have a neighbour w with w 6∈ V (Cu). As u3 and both
of its neighbours in Cu are also in Cv, Lemma 2.4 implies that w 6∈ V (Cv).
Now, as {w, u} avoids Cv, by Lemma 4.2(i), w is adjacent to u. Consider
the Θ-graph H formed from Cu along with edges joining w to u3 and to u.
As Cu is a shortest unbalanced cycle using u and avoiding v, the cycle in
H with vertex set {u, u4, u3, w} is balanced. Let C ′u be the cycle in H that
avoids u4. It must be unbalanced. Clearly, |Cu| = |C ′u|. Thus C ′u is also a
shortest unbalanced cycle using u and avoiding v. Hence, by Lemma 2.4, C ′u
has no chords.

We now note that u1 ∈ V (Cv); otherwise, by Lemma 4.2(ii), u1 is adjacent
to w, so C ′u had a chord, a contradiction. Now, let w′ be a vertex adjacent
to u2 with w′ 6∈ V (Cu). By symmetry with w, we see that w′ 6∈ V (Cv), and
w′ is adjacent to u. As C ′u has no chords, w 6= w′. Since Cv avoids w and
w′, we deduce by Lemma 4.3 that these vertices must be adjacent. Now,
C ′u together with edges joining w′ to u2 and to w forms a Θ-graph H ′. The
cycle in H ′ using u3 and w′ avoids both u and v so must be balanced. Thus
the third cycle C ′′u in H ′, whose vertex set is {u, u1, u2, w′, w}, is unbalanced.
But this cycle has an edge joining u and w′ as a chord. As |C ′′u | = 5 ≤ |Cu|,
we deduce by Lemma 2.4 that C ′′u is balanced, a contradiction. We conclude
that (ii) holds.

Part (iii) follows from parts (i) and (ii) by straightforward case checking.
Next we show (iv). Let S be the set of vertices that are not adjacent to
w. Assume that |S| ≥ 3. By Lemma 4.2(iii), there is a shortest unbalanced
cycle Cs avoiding w. As w ∈ V (G)− V (Cs), by Lemma 4.3, S ⊆ V (Cs), so
|V (Cs)| ≥ 3. Choose a vertex s in V (S). Let Cw be a shortest unbalanced
cycle avoiding s. Any cycle containing {w, s} has size at least four, and, by
hypothesis, w is in some cycle of size at most three. Hence Cw is a shortest
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cycle containing w, so |Cw| ≤ 3 ≤ |Cs|. Thus, taking (s, w) = (u, v), we
deduce from (ii) that |Cs| ≤ 4.

Suppose that |Cs| = 4. Then, by (i), |Cw| ≥ 3, so |Cw| = 3. Then, by
(iii), G[Cs ∪ Cw] is isomorphic to the graph in Figure 1(a). Since all of the
vertices nonadjacent to w are in Cs but w is adjacent to two of the vertices
of Cs, we obtain the contradiction that |S| ≤ 2.

We may now suppose that |Cs| < 4, so S = V (Cs) and |Cs| = 3. As
|Cw| ≤ 3, we see that V (Cs) ∩ V (Cw) = ∅. Suppose t ∈ V (G) − (V (Cs) ∪
V (Cw)). By Lemma 4.3, si(G − V (Cw)) is complete, so t is adjacent to
every vertex of Cs. By Lemma 2.6, there is an unbalanced 3-cycle C ′s with
t ∈ V (C ′s) ⊆ V (Cs) ∪ {t}. By Lemma 4.3 again, si(G− V (C ′s)) is complete.
Thus the vertex of V (Cs) − V (C ′s) is adjacent to w, a contradiction. We
deduce that V (G) = V (Cs) ∪ V (Cw). By definition, no vertex of Cs is
adjacent to w. By Lemma 3.2, w has degree at least three, so G[V (Cw)] has
at least three edges incident with w. By Lemma 4.2, if |Cw| ≥ 3, then Cw

is induced, a contradiction. Thus |Cw| ≤ 2, so w is adjacent to at most one
vertex. Hence G is not 3-connected, a contradiction. We conclude that (iv)
holds.

Now, we show part (vi). Since |V (Cu)| = 4, by (i), there can be no
unbalanced cycles of G of size less than three because any such unbalanced
cycle must avoid u and so must use at least two vertices of Cu as well as v.
Thus G is simple.

4.4.1. No vertex w in V (G)− V (Cu) is adjacent to u and each of its neigh-
bours in Cu.

By Lemma 4.2(iv), Cu has no chords, so u is adjacent to exactly two
vertices, u′ and u′′, of Cu. Suppose w is adjacent to each of the vertices in
{u, u′, u′′}. By definition of Cu, every 3-cycle with vertex set in V (Cu)∪w is
balanced. In particular, the cycles with vertex sets {w, u, u′} and {w, u, u′′}
are balanced. Hence so is the cycle with vertex set {w, u′, u, u′′}. As Cu is
unbalanced, the cycle with vertex set w ∪ (V (Cu) − u) is unbalanced. But
this cycle avoids {u, v}, a contradiction to Lemma 4.2(ii). Thus 4.4.1 holds.

By symmetry, if |Cv| = 4, then no vertex of V (G)− V (Cv) is adjacent to
v and both of its neighbours in Cv.

We complete the proof of (vi) by considering the cases in (iii) where |Cu| =
4. First suppose that G[Cu ∪ Cv] is as shown in Figure 1(d). As x and z
are nonadjacent, a shortest unbalanced cycle Cx avoiding z must contain x.
By Lemma 4.3, G− V (Cx) is complete, so x′ ∈ V (Cx) and two members of
{u, v, y} are in V (Cx), as the subgraph induced by {u, v, y} has no edges.
Thus, by symmetry, we may assume that V (Cx) is {x, x′, u, v} or {x, x′, u, y}.
Suppose G has a vertex w that is not in V (Cu)∪V (Cv). By Lemma 4.3, each
of G − V (Cu), G− V (Cv), and G − V (Cx) is complete. Thus w is adjacent
to u, x, and z, a contradiction to 4.4.1. We conclude that V (G) = V (Cu) ∪
V (Cv), so |V (G)| = 6. Hence G is obtained from the complete graph on
{u, x, y, z, x′, v} by deleting the edges (u, v), (u, y), (v, y), (x, x′), (z, x), and
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(z, x′) as well as possibly (x, v). We note that each of the choices of V (Cx)
has (u, x′) as an edge. Hence, when G[Cu ∪ Cv] is as shown in Figure 1(d),
G is simple, |V (G)| = 6, and G has at most seven fewer edges than K6.

Now suppose that G[Cu ∪Cv] is as shown in Figure 1(a). By Lemma 4.3,
G− V (Cv) is complete. Thus every vertex of G not in V (Cu)∪ V (Cv) must
be adjacent to u. As u has degree at least three, there is such a vertex w.
Moreover, w is adjacent to x. Suppose w is adjacent to z. The choice of Cu

means that the cycles with vertex sets {u,w, z} and {u,w, x} are balanced.
Hence so is the cycle with vertex set {w, x, u, z}. As Cu is unbalanced, so is
the cycle with vertex set {w, x, y, z}. This is a contradiction since this cycle
avoids {u, v}. We deduce that w is not adjacent to z.

Next we show that w is not adjacent to y. Assume the contrary. Let Cw

be a shortest unbalanced cycle avoiding z. Then V (Cw) contains w. Also,
by Lemma 4.3, V (Cw) must contain x together with either u or {v, y}. The
cycle with vertex set {u,w, x} avoids v and so is balanced. By Lemma 2.4,
Cw has no chords, so V (Cw) cannot contain {w, x, u}. Thus it contains
{w, x, y, v}. But the cycle with vertex set {w, x, y} implies that Cw has a
chord, a contradiction. Hence w is not adjacent to y.

Now let Cw be a shortest unbalanced cycle avoiding y. Then w ∈ V (Cw).
Also, by Lemma 4.3, u ∈ V (Cw) and either x or z is in V (Cw). As Cw is
chordless and |V (Cu)| = 4, we deduce that {w, u, x} 6⊆ V (Cw). By (ii), as
|Cw| ≤ 4 and w and z are nonadjacent, V (Cw) = {u, z, w,w′} for some w′.
Since (w, z) is not an edge of G, the edges of Cw are (u, z), (z, w′), (w′, w),
and (w, u). As Cw has no chords, u and w′ are not adjacent. If w′ 6= v,
then, as w′ 6∈ V (Cv), we get w′ is adjacent to u, a contradiction. Thus
V (Cw) = {u, z, v, w}. Then, by (iv), y must be adjacent to every vertex in
V (G)−{u,w}. But w was an arbitrarily chosen vertex in V (G)− ((V (Cu)∪
V (Cv)) and we showed that y is not adjacent to w. We deduce that V (G) =
V (Cu)∪V (Cv)∪w, so |V (G)| = 6. Moreover, since G has (w, v) as an edge,
G has at most six edges fewer than the complete graph on {u, x, y, z, v, w}.

Next assume thatG[Cu∪Cv] is as shown in Figure 1(b). Then y is adjacent
to a vertex w not in V (Cu) ∪ V (Cv). By Lemma 4.3, we may assume that
w is adjacent to u and then, by symmetry, that the cycle with vertex set
{u,w, y, z} is unbalanced. Replacing Cu by this cycle reduces us to the case
when G[Cu ∪ Cv] is as shown in Figure 1(d), which was dealt with above.

Next suppose that G[Cu ∪ Cv] is as shown in Figure 1(e). Assume first
that u and v′ are not adjacent. Observe that, because Cu is a shortest
unbalanced cycle avoiding v, it is also a shortest unbalanced cycle avoiding
v′ otherwise there is an unbalanced 3-cycle using v and not v′ that, because
it cannot use u, violates the choice of Cv. As Cv is a shortest unbalanced
cycle avoiding u, by interchanging the labels on v and v′, we reduce to the
previously considered case in Figure 1(d). We may now assume that u and
v′ are adjacent. By symmetry, v and x are also adjacent. Now let D be
a shortest unbalanced cycle avoiding z. Then, by Lemma 4.3, v ∈ V (D)
and x ∈ V (D). Moreover, y or u is in V (D). The former does not occur
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as V (D) 6= {x, y, v} and D has no chords. Thus y 6∈ V (D), so u ∈ V (D).
Also, by Lemma 4.3, v′ ∈ V (D). Since |D| ≤ 4, we deduce that V (D) =
{u, x, v, v′}. Suppose G has a vertex w that is not in V (Cu)∪ V (Cv). Then,
as each of G−V (Cu), G−V (Cv), and G−V (D) is complete, w is adjacent to
u, x, y, and z. By Lemma 2.6, G has an unbalanced 3-cycle Cw using w and
two vertices in {u, x, y, z}. Then Cw violates the choice of Cu. We deduce
that V (G) = V (Cu) ∪ V (Cv). Moreover, |E(G)| ≥ 9. We conclude that (vi)
holds.

To prove (v), again we let S be the set of vertices that are not adjacent
to w. Suppose that |S| ≥ 4. Take s in S, and let C and D be shortest
unbalanced cycles avoiding s and w, respectively. Then S ⊆ V (D), so |D| ≥
4. Moreover, w ∈ C. By (iv), we may assume that |C| ≥ 4. By (ii),
|D| = 4 = |C|. Then, by (iii) and (vi), |V (G)| ≥ 6. But w is adjacent to
some vertex in D, so |S| ≤ 3, a contradiction. Thus (v) holds and the proof
of the lemma is complete. �

We can now complete the proof of the main theorem of this section.

Proof of Theorem 4.1. We begin by proving the following.

4.4.1. Let H be a simple 3-connected graph on at least seven vertices. Let
u, v1, v2, and v3 be distinct vertices of H such that H has none of the edges
(u, v1), (u, v2), and (u, v3). Then H 6= si(G).

Assume the contrary. Let Cv be a shortest unbalanced cycle avoiding u.
Then, by Lemma 4.3, {v1, v2, v3} ⊆ V (Cv). Let Cu be a shortest unbalanced
cycle avoiding v1. Then u ∈ V (Cu). By Lemma 4.4(vi), as |V (G)| ≥ 7,
neither |Cv| nor |Cu| is 4. Thus |Cv| = 3 and |Cu| ≤ 3. Then V (Cu) ∩
V (Cv) = ∅ as u is not adjacent to some vertex in {v1, v2, v3}. Moreover,
there is a vertex y that is not in V (Cu)∪V (Cv). By Lemma 4.3, y is adjacent
to each vertex of G − V (Cu). In particular, y is adjacent to each vertex of
Cv. by Lemma 4.3, si(G−V (Cy)) is complete. But this is a contradiction as
Cy avoids u and at least one of v1, v2, and v3. We conclude that 4.4.1 holds.

Next we show the following.

4.4.2. Suppose that H is a simple 3-connected graph with at least seven
vertices. If, for distinct vertices u, v, s, and t, neither (u, v) nor (s, t) is an
edge of H, then si(G) 6= H.

Suppose that si(G) = H. Let Cu, Cv, Cs, and Ct be shortest unbalanced
cycles avoiding, respectively, v, u, t, and s. By Lemma 4.3, these cycles use,
respectively, u, v, s, and t. Moreover, by Lemma 4.4(ii) and (vi), all of these
cycles have at most three edges. Hence each of Cu and Cv meets exactly one
vertex of {s, t}, and each of Cs and Ct meets exactly one vertex of {u, v}. We
would like circuits C1 and C2 in {Cu, Cv, Cs, Ct} with {u, v, s, t} ⊆ C1 ∪C2.
Now Cu uses u and avoids v, while Cv uses v and avoids u. Both Cu and
Cv use exactly one vertex of {s, t}. We can take C1 = Cu and C2 = Cv

unless, by symmetry, Cu and Cv both contain s. Now Ct uses u or v but not
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both. Taking C2 = Ct, we let C1 be Cv or Cu, respectively. By potentially
relabelling s and t, we may assume that V (C1) and V (C2) meet {u, v, s, t}
in {u, s} and {v, t}, respectively.

Continuing with the proof of 4.4.2, we now show the following.
4.4.3. There is a vertex y ∈ V (G)−

(
V (C1∪V (C2)

)
that is adjacent to each

vertex of G− y.
Clearly |V (C1)∩V (C2)| ≤ 1. We may assume that V (C1)∩V (C2) = {w},

say. Then |C1| = 3 = |C2|. As |V (G)| ≥ 7, there are distinct vertices
x1, x2 ∈ V (G) − (V (C1) ∪ V (C2)). Assume that w is adjacent to neither
x1 nor x2. Let Cx be a shortest unbalanced cycle avoiding w. Then, by
Lemma 4.3, {x1, x2} ⊆ V (Cx) and V (Cx) meets each of {u, v} and {s, t}.
Hence |Cx| ≥ 4. Thus, by Lemma 4.4(ii) and (vi), we get the contradiction
that |V (G)| ≤ 6. Hence w is adjacent to x1, say. By Lemma 4.3, x1 is also
adjacent to each vertex in G−V (C1) and to each vertex in G−V (C2). Thus
x1 is adjacent to each vertex of G− x1, so 4.4.3 holds with y = x1.

For a vertex z, recall that Ez is the set of edges meeting z. Let X be the
set of edges that only meet vertices in {u, v, s, t}. We show next that
4.4.4. G\X has all of its cycles balanced.

Suppose that G\X has an unbalanced cycle C. Since y is adjacent to
each vertex of C − y, by Lemma 2.6, G has an unbalanced 3-cycle Cy with
Cy ⊆ C ∪ Ey. Let f be the edge of Cy that is not incident with y. Then
f ∈ C and, by assumption, f does not join two vertices of {u, v, s, t}. Thus
Cy avoids at least three vertices in {u, v, s, t}. But, by Lemma 4.2(ii), Cy

meets both {u, v} and {s, t}, a contradiction. We deduce that 4.4.4 holds.
Since y is adjacent to each vertex of the unbalanced cycle C1, by Lemma 2.6,

there is an unbalanced 3-cycle C ′ using y and exactly two vertices of C1. Be-
cause neither (u, v) nor (s, t) is an edge of G, Lemma 4.2(ii) implies that
V (C ′) contains u and s. Hence V (C ′) = {y, u, s}. By symmetry, there is an
unbalanced cycle C ′′ with vertex set {y, v, t}. Now let F be the flat of M
that is spanned by the edges meeting y and one of u, v, s, and t. The biased
graph G′ corresponding to M/F has unbalanced loops at y corresponding to
the edges (u, s) and (v, t) of G. Any other edge of X either corresponds to
an unbalanced loop at y in G′, or is in F . As G\X has every cycle balanced,
letting X ′ = X − F , we deduce that G′\X ′ has only balanced cycles. Thus
M/F has no circuit that meets both X − F and E(G′\X ′). As the last two
sets are non-empty, this contradicts the fact that M is unbreakable. We
conclude that 4.4.2 holds.

By 4.4.1, the complement of si(G) in Kn has no vertex of degree three or
more and, by 4.4.2, has no two-edge matching. Thus this complement is a
path of length at most two. Hence Theorem 4.1 holds. �

Proof of Theorem 1.2. This follows by combining Theorems 3.5 and 4.1. �

Proof of Theorem 1.4. Assume that |V (G)| ≥ 7. By Theorem 1.2, si(G) is
the complement in Kn of a path of length at most two. But, as every 3-cycle
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of G is unbalanced, by Lemma 4.3, G has no pair of nonadjacent vertices.
Hence si(G) is complete. �

In Theorems 1.2, 1.3, and 1.4, we impose the condition that M is 3-
connected. To extend these results to the case when M is not 3-connected
will require considerably more work. The following two results of Pfeil [3]
will certainly help in this analysis.

Lemma 4.5. If a matroid M has a free element, then M is unbreakable.

Lemma 4.6. For matroids M1 and M2, the 2-sum, M1⊕2M2 is unbreakable
if and only if the basepoint p of the 2-sum is a free element in both M1 and
M2.

5. A Partial Converse to the Main Theorem

In a private communication, Peter Nelson asked how many arbitrary edges
could be removed from the complete graph and still have the simplification
of the underlying graph of some unbreakable 3-connected frame matroid. To
answer Peter’s question, we use Theorems 1.2 and 1.5. The latter is proved
in this section. This proof will use the following result.

Lemma 5.1. Let M = M(G,Ψ). Suppose that M is connected having at
least two elements and that, for each unbalanced cycle C of G, the graph
si(G− V (C)) is complete and C has a vertex that is adjacent to each vertex
of V (G) − V (C). If F is a flat of M containing an unbalanced cycle of G,
then M/F is connected.

Proof. We start by showing the following.

5.1.1. Let H be a graph with no balanced loops such that each vertex meets
an unbalanced loop. If si(H) is complete, then M(H,Ψ) is unbreakable.

First, we note that if e is an edge of H, and H ′ is the graph corresponding
to M(H,Ψ)/cl({e}), then H ′ has no balanced loops, si(H ′) is complete, and
each vertex of H ′ is incident to an unbalanced loop. Because H ′ satisfies the
same hypotheses as H, it suffices to show that M(H,Ψ) is connected. If H
has only one vertex, then r(M(H,Ψ)) = 1, and the statement clearly holds.
Thus assume H has at least two vertices. If e and f are unbalanced loops
at different vertices of H, then there is a circuit consisting of e, f , and a
path connecting the vertices incident to e and f . Thus all of the unbalanced
loops of H are in the same connected component of M(H,Ψ). If f is an edge
incident to the vertices x and y, then as there are unbalanced loops ex and
ey incident to x and y, we have that {ex, ey, f} is a circuit of M(H,Ψ). We
conclude that M(H,Ψ) is connected, so 5.1.1 holds.

Now, asM is connected, G has no balanced loops. Let C be an unbalanced
cycle of G, and let v be a vertex of C that is adjacent to every vertex of
G − V (C). If G′ is the graph corresponding to M/cl(C), then G′ has no
balanced loops, si(G′) is complete, and each vertex of G′ is incident to at
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least one unbalanced loop derived from an edge incident to v. Thus, by
5.1.1, M/cl(C) is unbreakable. Now, let F be a flat containing C. Then
M/F = (M/cl(C))/(F −cl(C)) where F −cl(C) is a flat of M/cl(C). Hence,
M/F is connected. �

Lemma 5.2. Let M = M(G,Ψ) and F be a flat of M that does not contain
any unbalanced cycles. Let the biased graph (G′,Ψ′) correspond to M/F .
Suppose that every cycle using the vertex u of G is unbalanced and that C is
a 3-cycle of G using u. Then C −F is a union of disjoint unbalanced cycles
of G′ at least one of which is incident to u. Furthermore, if C ′ is a 3-cycle
incident to u and edge-disjoint from C, then C ′−F is in the same connected
component of M/F as C − F .

Proof. Since F contains no unbalanced cycles, it follows that G′ ∼= G/F .
Thus, in G′, the set C − F is a disjoint union of cycles. We want each of
these cycles to be unbalanced. Because F is a flat, every loop in C − F
must be unbalanced. Thus the desired result holds unless C − F contains
an balanced 2-cycle, say {a, b}. Consider the exceptional case. Let c be the
third edge of C. Then c 6∈ F , otherwise {a, b} is unbalanced. It follows that
F contains an (s, t)-path P where s and t are the endvertices of c, and P
does not meet the third vertex of C. Then G[C ∪ P ] is a Θ-graph. As the
cycle P ∪{a, b} meets u, it is unbalanced. Thus {a, b} is an unbalanced cycle
of G/P and hence of G/F , a contradiction. We conclude that the first part
of the lemma holds. For the second part, because G[C ′ − F ] is connected
and each cycle of G′ in C − F is unbalanced, the result is immediate. �

Lemma 5.3. Let J be a complete graph with m vertices where m ≥ 5. Let
v be a vertex of J and Φ be the set of cycles that avoid v. Then M(J,Φ) is
a 3-connected frame matroid.

Proof. Clearly Φ is an allowable set of balanced cycles, so M(J,Φ) is a frame
matroid M . Moreover, M is simple and connected. Let (X,Y ) be a 2-
separation of M . As M\Ev is the cycle matroid of Km−1, it is 3-connected,
so we may assume that |Y ∩ (E(M\Ev))| ≤ 1. Thus r(X) ≥ m − 2. If
|X ∩ Ev| ≥ 2, then r(X) = r(M), a contradiction. Thus |X ∩ Ev| = t for
some t in {0, 1}, so |Y ∩ Ev| = m − 1 − t. Hence r(X) = m − 2 + t and
r(Y ) ≥ m− 1− t, so

r(X) + r(Y )− r(M) ≥ m− 2 + t + m− 1− t−m = m− 3 ≥ 2,

a contradiction. Hence M(J,Φ) is 3-connected. �

The previous lemma fails for m = 4 since, in that case, M(J,Φ) is a 6-
element rank-4 matroid with a triangle so it is not 3-connected. Our proof
of Theorem 1.5 will also use the following result of Oxley and Wu [2].

Lemma 5.4. For n ≥ 2, let X and Y be subsets of the ground set of a
matroid M that has no circuits with fewer than n elements. Suppose that
M |X and M |Y are both vertically n-connected and that r(X)+r(Y )−r(X∪
Y ) ≥ n− 1. Then M |(X ∪ Y ) is vertically n-connected.
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We are now ready to prove the main result of this section.

Proof of Theorem 1.5. For some n ≥ 7, we have that H ∈ {Kn,Kn\e,
Kn\{f, g}} where f and g are adjacent edges. The result holds when H =
Kn, as M(Kn) is 3-connected and, by Theorem 1.1, M(Kn) is unbreakable.

Now let H = Kn\e where e joins u and v. Let Ψ be the set of all cycles of
H that avoid {u, v}. It is easily checked that Ψ satisfies the Θ-property. We
show first that M(H,Ψ) is an unbreakable matroid M . Let F be a flat of M .
If F contains an unbalanced cycle, then, by Lemma 5.1, M/F is connected.
Now assume that F contains no unbalanced cycle. Let W = E(H − {u, v}).
Then M/W is a rank-3 matroid consisting of two disjoint (n−2)-point lines,
and one easily checks thatM/W is unbreakable. Thus, if F containsW , then
M/F = (M/W )/(F −W ), and, since F −W is a flat of M/W , it follows
that M/F is connected. We may now assume that F does not contain W .
By Lemma 5.2, for each w in {u, v}, the elements of (Ew ∪W ) − F are in
the same connected component of M/F . Since W −F 6= ∅, the components
containing (Eu∪W )−F and (Ev∪W )−F are the same, soM/F is connected.
We conclude that M is unbreakable.

To see that M is 3-connected, first note that, as G is simple, so is M . By
Lemma 5.3, each of M\Eu and M\Ev is 3-connected. As r(E−Eu)+ r(E−
Ev)− r(E) = n− 1 + n− 1− n ≥ n− 2 ≥ 2, we deduce by Lemma 5.4 that
M is indeed 3-connected.

Finally, we assume that H = Kn\{f, g} where f = (u, v1) and g = (u, v2).
Let Ψ consist of all cycles that avoid both u and the edge h that joins v1
and v2. It is straightforward to check that Ψ satisfies the Θ-property. Let
M = M(H,Ψ) and write E1 and E2 for Ev1 and Ev2 , respectively. Let
W = E(H)− (Eu ∪ E1 ∪ E2).

We show first that M is unbreakable. Consider a flat F of M . By
Lemma 5.1, M/F is certainly connected if F contains an unbalanced cy-
cle. Now M(H,Ψ)/W consists of the following four matroids freely placed
in rank four: an (n − 3)-point line, a point, and two (n − 3)-element par-
allel classes. It is easily checked that M(H,Ψ)/W is unbreakable. Hence if
W ⊆ F , then M/F is connected.

Now, suppose that F does not contain an unbalanced cycle and that W 6⊆
F . Let (H ′,Ψ′) be the biased graph corresponding to M(H,Ψ)/F . As F
does not contain an unbalanced cycle, H ′ = H/F . Then, by Lemma 5.2,
(Eu ∪W ) − F is contained in a connected component of M/F . If h 6∈ F ,
then h is in an unbalanced cycle of H ′ with at most three elements. Since
(Eu ∪W )− F contains an unbalanced cycle, h is in the same component of
M/F as (Eu ∪W )− F .

Let j be an element of M/F that is not in the same component as (Eu ∪
W )−F . Then, without loss of generality, j meets v1. As W 6⊆ F , there is a
3-cycle D in H ′ that contains j and an edge w of W −F and is edge-disjoint
from Eu. As j and w are in different components of M/F , we deduce that
D is unbalanced. There is an unbalanced cycle D′ of H ′ that uses u and is
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edge-disjoint from D. As H ′ is connected, it follows that M/F has a circuit
containing D ∪D′, a contradiction. We conclude that M is unbreakable.

Lastly, we show thatM is 3-connected. CertainlyM is connected and sim-
ple. Both M\(Eu∪E1) and M\(Eu∪E2) are the cycle matroids of complete
graphs so they are 3-connected. As the ground sets of these matroids meet in
W , and (Eu∪E1)∩ (Eu∪E2) = Eu∪h, Lemma 5.4 implies that M\(Eu∪h)
is 3-connected. Moreover, by Lemma 5.3, M\(E1 ∪ E2) is 3-connected. As
(Eu ∪ h) ∩ (E1 ∪ E2) = {h}, Lemma 5.4 implies that M\h is 3-connected.
Hence, as r(M) = r(M\h) and M is simple, M is 3-connected. �
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