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Abstract. Agreement forests continue to play a central role in the compari-

son of phylogenetic trees since their introduction more than 25 years ago. More

specifically, they are used to characterise several distances that are based on
tree rearrangement operations and related quantifiers of dissimilarity between

phylogenetic trees. In addition, the concept of agreement forests continues to

underlie most advancements in the development of algorithms that exactly
compute the aforementioned measures. In this paper, we introduce agreement

digraphs, a concept that generalises agreement forests for two phylogenetic

trees to two phylogenetic networks. Analogous to the way in which agreement
forests compute the subtree prune and regraft distance between two phyloge-

netic trees but inherently more complex, we then use agreement digraphs to
bound the subnet prune and regraft distance between two tree-child networks

from above and below and show that our bounds are tight.

1. Introduction

Phylogenetic trees and networks play an important role in areas of biology that
investigate the relationships between biological entities such as species, viruses, and
cells. A central task in the analysis of phylogenetic trees and networks is the quan-
tification of the dissimilarity between them. Distances between phylogenetic trees
that provide a measure of dissimilarity can be broadly classified into distances that
are based on tree vector representations and those based on tree rearrangement op-
erations [23]. While many of the former distances can be computed in polynomial
time, the latter distances are typically NP-hard to compute. On the positive side,
tree distances that are based on rearrangement operations provide a framework to
explore and traverse spaces of phylogenetic trees since any tree in a given space
can be transformed into any other tree of the same space by a finite number of
operations such as nearest neighbour interchange (NNI), subtree prune and regraft
(SPR), rooted subtree prune and regraft (rSPR), and tree bisection and reconnec-
tion (TBR) (see [24] for a summary and references therein for more details). In
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particular, the length of a shortest path between two phylogenetic trees in a given
space of trees equals the distance between the two trees under the rearrangement
operation that underlies the space.

Computing distances that are based on tree rearrangement operations and re-
lated dissimilarity measures such as the minimum hybridisation number for two
phylogenetic trees [4] remains an active area of research (e.g. [18, 22, 25]) despite
the NP-hardness of the associated optimisation problems. Indeed, recent algo-
rithmic progress facilitates computations that exactly calculate the aforementioned
measures for data sets of remarkable size [26, 27]. Notably, the concept of agree-
ment forests, which was first introduced by Hein et al. [13], underpins almost all
mathematical and algorithmic advances in this area of research. Intuitively, an
agreement forest of two binary phylogenetic trees T and T ′ is a decomposition of
T and T ′ into smaller and non-overlapping subtrees that have the same topology
in T and T ′. Since the introduction of agreement forests almost 30 years ago,
different variants of agreement forests have been used to characterise the rSPR
distance between two rooted binary phylogenetic trees, the TBR distance between
two unrooted binary phylogenetic trees, and the minimum hybridisation number of
two rooted binary phylogenetic trees, as well as to establish related NP-hardness
results [1, 4, 5]. Subsequent work has focussed on generalising agreement forests
to collections of phylogenetic trees of arbitrary size that are not necessarily binary
and on the development of fixed-parameter tractable and approximation algorithms
(e.g. [8, 17, 21, 22, 28]). Additional developments in the context of agreement forests
include a generalisation of agreement forests to relaxed agreement forests [2] and the
exploitation of agreement forests to establish extremal results on the SPR, rSPR,
and TBR distances [3, 9]. Part of the success of agreement forests is due to the
fact that they replace the computation of a measure of dissimilarity between two
phylogenetic trees T and T ′ with the more static computation of an agreement for-
est such that the sought-after measure equates to the size of an optimal agreement
forest for T and T ′. Moreover, agreement forests enable rigorous mathematical
arguments that operate only on T and T ′ without knowing the topology of any
intermediate tree that lies on a shortest path between T and T ′ in an associated
space of trees.

Since phylogenetic trees are somewhat limited in the type of biological pro-
cesses that they can represent, rooted phylogenetic networks are increasingly being
adopted to represent evolutionary relationships between biological entities whose
past does not only include divergence events such as speciation but also convergence
events such as lateral gene transfer or hybridisation. Inspired by tree rearrangement
operations, several network rearrangement operations have recently been developed.
For example, the subnet prune and regraft (SNPR) operation generalises rSPR to
two rooted binary phylogenetic networks [6]. An SNPR operation either adds or
deletes a reticulation edge (i.e., an edge that is directed into a vertex of in-degree
two), or prunes and regrafts a subnetwork in the spirit of rSPR. Other network re-
arrangement operations for rooted phylogenetic networks have been developed and
analysed in [11, 12, 14, 15, 16]. While a slightly modified framework of agreement
forests can be used to compute the SNPR distance between a rooted binary phy-
logenetic tree and a rooted binary phylogenetic network [20], very little is known
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about how to compute distances that result from network rearrangement operations
between two arbitrary rooted binary phylogenetic networks.

In this paper, we generalise agreement forests for two rooted binary phyloge-
netic trees to agreement digraphs for two rooted binary phylogenetic networks N
and N ′ that capture the commonalities between them. Focussing on the class of
tree-child networks [7] and using this novel framework of agreement digraphs and
their extensions (formal definitions are given Section 2), we bound the SNPR dis-
tance dtc(N ,N ′) between two tree-child networks N and N ′ from above and below,
where not only N and N ′ are tree-child but also each intermediate network in an
associated sequence. Both bounds are tight and within small constant factors of
the minimum number mtc(N ,N ′) of edges in N and N ′ that are not contained
in an embedding of the agreement digraph and an extension, where the minimum
is taken over all agreement digraphs for N and N ′ and their extensions. More
specifically, the main result of this paper is the following theorem.

Theorem 1.1. Let N and N ′ be two binary tree-child networks on X. Then

1

2
mtc(N ,N ′) ≤ dtc(N ,N ′) ≤ mtc(N ,N ′).

Our work relates to that of Klawitter [19], who has developed an alternative
generalisation for two rooted binary phylogenetic networks. This generalisation for
rooted networks gives rise to collections of agreement subgraphs that, in comparison
with our generalisation, may have unlabelled leaves of in-degree one or two and that
consequently do not resemble phylogenetic networks. In the same paper, Klawitter
established bounds on the SNPR distance d∗SNPR(N ,N ′) between two rooted binary
phylogenetic networks N and N ′ in terms of collections of agreement subgraphs
whose number of unlabelled vertices of degree one is minimised. Without going into
detail, this minimum number is referred to as dAD(N ,N ′). In particular, Klawitter
established the following theorem.

Theorem 1.2. [19, Corollary 5.5] Let N and N ′ be two rooted binary phylogenetic
networks on X. Then

dAD(N ,N ′) ≤ d∗SNPR(N ,N ′) ≤ 6dAD(N ,N ′).

While Theorem 1.2 applies to all rooted binary phylogenetic networks, it remains
unknown whether or not the bounds are tight. Comparing Theorems 1.1 and 1.2,
we note that d∗SNPR(N ,N ′) in Theorem 1.2 refers to the minimum number of SNPR
operations that are necessary to transformN intoN ′, while the quantity dtc(N ,N ′)
in Theorem 1.1 does not only count SNPR operations but, additionally, weights
them. More precisely, each SNPR operation that adds or deletes a reticulation edge
is weighted one and each SNPR operation that prunes and regrafts a subnetwork is
weighted two. Hence, dtc(N ,N ′) equates to the minimum sum of weights of SNPR
operations that are needed to transform N into N ′. Lastly, we note that although
Klawitter’s generalisation and our definition of an agreement digraph differ, both
definitions generalise agreement forests in the sense that, when applied to two
rooted binary phylogenetic trees, they can be used to exactly compute their rSPR
distance ([19, Proposition 4.2] and Proposition 6.6 of the present paper).
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The paper is organised as follows. In Section 2, we present basic notation and
terminology for rooted phylogenetic networks. This is followed by an introduction
of the new concepts of phylogenetic digraphs, which is the main definition building
up to agreement digraphs, and their extensions in Section 3. Section 4 establishes
several basic properties of extensions. Subsequently, in Section 5, we introduce
the tree-child SNPR distance between two tree-child networks N and N ′ and a
maximum agreement tree-child digraph for N and N . Finally, in Section 6, we
establish Theorem 1.1 and show that our bounds are tight.

2. Preliminaries

This section provides notation and terminology that is used in the remainder
of this paper. Throughout the paper, X denotes a non-empty finite set. It is
also worth noting that, except for rooted phylogenetic networks, general digraphs
considered in this paper are not necessarily connected.

Digraphs. Let D be a digraph and let v be a vertex in D. We denote the edge set
of D by ED and say that v is a tree vertex if v has in-degree one and out-degree
one or two, and that v is a reticulation if v has in-degree two and out-degree one.
Furthermore, an edge (u, v) in D is a reticulation edge if v is a reticulation and,
otherwise, (u, v) is a tree edge. Lastly, for two vertices u and v in D, we say that u
is a parent of v and v is a child of u precisely if there is an edge (u, v) in D.

Phylogenetic networks. A rooted binary phylogenetic network on X is a rooted
acyclic directed graph that satisfies the following properties:

(i) the unique root ρ has in-degree zero and out-degree one,
(ii) vertices with out-degree zero have in-degree one, and the set of vertices with

out-degree zero is X, and
(iii) all other vertices have either in-degree one and out-degree two, or in-degree

two and out-degree one.

In keeping with the literature on distances between two phylogenetic networks, we
allow parallel edges in rooted binary phylogenetic networks. Since all phylogenetic
networks in this paper are rooted and binary, we simply refer to a rooted binary
phylogenetic network on X as a phylogenetic network on X. Now, let N be a
phylogenetic network on X. The vertices of out-degree zero, that is the elements
in X, are called leaves and X is referred to as the leaf set of N . If a phylogenetic
network N has no reticulations, we call N a phylogenetic X-tree. Moreover, if N
is a phylogenetic X-tree and X contains exactly three elements, say X = {a, b, c},
then we refer to N as a triple and denote it by (a, b, c) or, equivalently, (b, a, c), if
the underlying path joining the root of N and c is vertex-disjoint from that joining
a and b.

Now, let N and N ′ be two phylogenetic networks on X with vertex and edge
sets V and E, and V ′ and E′, respectively. We say that N is isomorphic to N ′ if
there is a bijection ϕ : V → V ′ such that ϕ(x) = x for all x ∈ X, and (u, v) ∈ E if
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and only if (ϕ(u), ϕ(v)) ∈ E′ for all u, v ∈ V . If N and N ′ are isomorphic, then we
denote this by N ∼= N ′.

Tree-child networks. Let N be a phylogenetic network on X. We say that
N is tree-child if each non-leaf vertex has a child that is a tree vertex or a leaf.
Moreover, we say that N contains a stack if there exist two reticulations that are
joined by an edge and that N contains a pair of sibling reticulations if there exist
two reticulations that have a common parent. The following well-known equivalence
now follows from the definition of a tree-child network and will be freely used
throughout the remainder of the paper.

Lemma 2.1. Let N be a phylogenetic network. Then N is tree-child if and only if
it has no stack, no sibling reticulations, and no pair of parallel edges.

The next lemma was established in [10, Lemma 7] and shows that the deletion
of a reticulation edge of a tree-child network results in another tree-child network.

Lemma 2.2. Let N be a tree-child network on X, and let e = (u, v) be a reticulation
edge of N . Then the network obtained from N by deleting e and suppressing u and
v is a tree-child network on X.

3. Phylogenetic digraphs and their extensions

In this section, we provide formal definitions of the concepts of phylogenetic
digraphs and their extensions. As we will see in Section 5, these definitions gen-
eralise agreement forests for two phylogenetic trees to two phylogenetic networks.
We start by providing some high-level ideas for the upcoming definitions that may
guide the reader in developing some intuition. Essentially, a phylogenetic digraph D
of a phylogenetic network N on X is a collection of acyclic digraphs whose vertices
of out-degree zero are bijectively labelled with the elements in X and for which
there is a vertex-disjoint embedding of its components in N . Let M be such an
embedding of D in N , and let v be a vertex of M that either has in-degree zero,
or is a reticulation of N and has in-degree one and out-degree one. We obtain an
extension R of M by starting at v and extending M towards the root by adding
edges of N in a certain algorithmic way and then repeating this process for all such
vertices ofM. As suggested by the phrase extension ofM, R contains all edges of
M. Although D may have several embeddings in N , each embedding is anchored
at the leaves of N due to the requirement that the leaves of D bijectively map to
the elements in X. As we will see in Section 4, for the purpose of computing the
minimum number of edges in N that are not contained in an extension relative to
a given phylogenetic digraph D of N , where the minimum is taken over all em-
beddings of D in N and their extensions, it is sufficient to consider only a single
extension of D.

Phylogenetic digraphs. Let D be a connected directed graph, and let Y be a
non-empty finite set. We say that D is a leaf-labelled acyclic digraph on Y if it has
at most one vertex ρ of in-degree zero and out-degree one, its leaves with in-degree
one and out-degree zero are bijectively labelled with the elements in Y , and all other
vertices have in-degree zero and out-degree two, in-degree one and out-degree two,
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or in-degree two and out-degree one. If |Y | = 1, then the isolated vertex labelled
with the element in Y is also considered to be a leaf-labelled acyclic digraph on Y .
Similar to the leaf set of a phylogenetic network, we refer to Y as the leaf set of
D and denote it by L(D). In contrast to a phylogenetic network, a leaf-labelled
acyclic digraph D may have more than one vertex with in-degree zero. Moreover,
for a vertex w in D that has two parents v and v′, there does not necessarily exist
a vertex u such that there are edge-disjoint directed paths from u to v and from u
to v′ in D.

Let N be a phylogenetic network on X with root ρ, and let D be a leaf-labelled
acyclic digraph on Y with Y ⊆ X ∪ {ρ}. We say that N displays D if there exists
a subgraph of N that is isomorphic to D up to suppressing vertices with in-degree
one and out-degree one, in which case we call the subgraph an embedding M of D
in N and view the edge set of M as a subset of the edge set of N . More generally,
for a collection D = {D1, D2, . . . , Dk} of leaf-labelled acyclic digraphs, we say that
N displays D if there exists an embedding Mi of Di in N for each i ∈ {1, 2, . . . , k}
such that Mj and Mj′ are vertex disjoint for all distinct j, j′ ∈ {1, 2, . . . , k}, in
which case we refer to M = {M1,M2, . . . ,Mk} as an embedding of D in N . Now
let M be an embedding of D in N . Recalling that we allow tree vertices in M
to have in-degree and out-degree one, we say that M is tree-child if each non-leaf
vertex of M has a child that is a tree vertex or a leaf.

Let N be a phylogenetic network on X. Let D = {Dρ, D1, D2, . . . , Dk} be a
collection of leaf-labelled acyclic digraphs. Then D is called a phylogenetic digraph
of N if the following three properties are satisfied:

(i) the leaf sets L(Dρ),L(D1),L(D2), . . . ,L(Dk) partitionX∪{ρ} and ρ ∈ L(Dρ),
(ii) ρ is either an isolated vertex in D or the unique vertex in D with in-degree

zero and out-degree one, and
(iii) there exists an embedding M = {Mρ,M1,M2, . . . ,Mk} of D in N .

Lastly, a phylogenetic digraph D of N is called a tree-child digraph of N if each
non-leaf vertex of D has a child that is a leaf or a tree vertex.

Extensions and root extensions. Let N be a phylogenetic network on X.
Furthermore, let M = {Mρ,M1,M2, . . . ,Mk} be an embedding of a phylogenetic
digraph D = {Dρ, D1, D2, . . . , Dk} of N . We obtain an extension R of D in N from
M by initially setting R = M and then repeatedly applying one of the following
two operations until no further such operation is possible:

(E1) For a vertex v of R with in-degree zero, add (u, v) to R if u /∈ R.
(E2) For a vertex v of R with in-degree one and out-degree one and v being a

reticulation in N , add (u, v) to R if u /∈ R.

Observe that R contains exactly k + 1 connected components and that there is a
natural bijection between these components and the components in D. We therefore
set R = {Rρ, R1, R2, . . . , Rk} and call Ri an extension of Di in N for each i ∈
{ρ, 1, 2, . . . , k}. It follows from the construction of R that there is no vertex of
out-degree two in R that is not also a vertex of out-degree two inM. Moreover, by
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Figure 1. Two phylogenetic networks N and N ′ and three phy-
logenetic digraphs D1, D2, and D3 for N and N ′. For each
i ∈ {1, 2, 3}, Ri is an extension of Di in N and R′i is an extension
of Di in N ′, where the edges of the extensions are indicated by
thick lines in N and N ′, respectively. Note that R3 is not a root
extension of D3 in N .

construction, any underlying cycle in R is also an underlying cycle in M. Lastly,
we define R to be tree-child precisely if M is tree-child, and refer to M as the
embedding of D that underlies R.
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We next introduce a special type of extension. We call an extension R of D in
N a root extension of D in N if it can be obtained from M by initially setting
R =M and then repeatedly applying (E1) only until no further such operation is
possible. Now let R = {Rρ, R1, R2, . . . , Rk} be a root extension of D in N . Similar
to the terminology for an extension, we call Ri a root extension of Di in N for each
i ∈ {ρ, 1, 2, . . . , k}. Let r be a vertex of in-degree zero and out-degree zero or two
in D, and let P be the unique maximal length directed path in R that starts at a
vertex u of in-degree zero and ends at r. We refer to P as the root path of r. Note
that P may have no edge in which case u = r. If u 6= r, then u has in-degree zero
and out-degree one in R. Figure 1 illustrates the concepts of phylogenetic digraphs,
extensions, and root extensions.

To ease reading throughout the remainder of the paper, we often consider a phy-
logenetic network N , a phylogenetic digraph D of N , and an extension R of D in
N . In this case, we view the vertex and edge set of R (as well as the vertex and
edge set of any embedding of D in N ) as a subset of the vertex and edge set of N ,
respectively. Furthermore, for clarity, the in-degree (resp. out-degree) of a vertex
v in R refers to the number of edges in R that are directed into (resp. out of) v.
Lastly, let D = {Dρ, D1, D2, . . . , Dk} be a phylogenetic digraph of a phylogenetic
network N . Then there exists an embedding M = {Mρ,M1,M2, . . . ,Mk} of D in
N such that Mi and Mj are vertex disjoint for all distinct i, j ∈ {ρ, 1, 2, . . . , k}
and an extension R = {Rρ, R1, R2, . . . , Rk} of D in N such that Ri and Rj are
vertex disjoint for all distinct i, j ∈ {ρ, 1, 2, . . . , k}. It follows that each edge in D
corresponds to a unique directed path inM (resp. R) whose non-terminal vertices
all have in-degree one and out-degree one in M (resp. R), and each vertex in D
corresponds to a unique vertex in M (resp. R). Reversely, each edge in M corre-
sponds to a unique edge in D. We will freely use this correspondence throughout
the paper.

4. Properties of extensions

In this section we establish several results for extensions that will be useful in the
subsequent sections. Let D be a phylogenetic digraph of a phylogenetic network N .
Given the algorithmic definition of an extension, different orderings of the elements
in D may result in different extensions even for a fixed underlying embedding. Also,
if R and R′ are extensions of D in N with distinct underlying embeddings, then R
and R′ are different.

Lemma 4.1. Let D be a phylogenetic digraph of a phylogenetic network N on X
with root ρ, and let R be an extension of D in N . Then the following hold:

(i) If v is a vertex in N that is not in X ∪{ρ}, then there is an edge (v, w) in N
that is in R.

(ii) Each vertex in N is contained in R.

Proof. Let D = {Dρ, D1, D2, . . . , Dk}, and let R = {Rρ, R1, R2, . . . , Rk}. To see
that (i) holds, recall that R does not contain any vertex with out-degree zero that is
not in X∪{ρ}. To complete the proof, we establish (ii). By definition of D, the root
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and each leaf of N is contained in R. Towards a contradiction, we may therefore
assume that there is a tree vertex or a reticulation in N that is not contained in R.
Let v be a vertex of N that is not in R such that every vertex that is distinct from
v and lies on a directed path from v to a leaf in N is in R. Furthermore, let w be a
child of v. If w is a tree vertex or leaf in N , then there exists a component Ri with
i ∈ {ρ, 1, 2, . . . , k} such that w has in-degree zero in Ri, thereby contradicting that
Ri is an extension of Di as we can apply (E1). Otherwise, if w is a reticulation in
N , then it follows from (i) that there exists a component Ri with i ∈ {ρ, 1, 2, . . . , k}
such that w has in-degree zero, or in-degree one and out-degree one in Ri, thereby
again contradicting that Ri is an extension of Di as we can apply either (E1) or
(E2), respectively. �

Lemma 4.2. Let N be a phylogenetic network on X. Furthermore, let M be an
embedding of a phylogenetic digraph D of N , and let R be an extension of D such
thatM underlies R. Then the following hold for each tree vertex v in N .

(i) If v is inM, then no edge directed out of v is in R and not inM.
(ii) If v is not inM, then exactly one of the two edges directed out of v is contained

in R.

Proof. Let u be the parent of v, and let w and w′ be the two children of v in N .
Furthermore, let R = {Rρ, R1, R2, . . . , Rk}. We first show that (i) holds. Since M
does not contain any vertex of out-degree zero that is not in X∪{ρ}, it follows that
at least one of (v, w) and (v, w′) is inM. Without loss of generality, we may assume
that (v, w) ∈M. If (v, w′) ∈M, then the result clearly holds. On the other hand,
if (v, w′) /∈M, then it follows from the definition of an extension that (v, w′) /∈ R,
thereby establishing (i). We now turn to (ii). It follows from Lemma 4.1(ii) that
v ∈ R. Since R does not contain any vertex with out-degree zero that is not in
X ∪ {ρ}, at least one of (v, w) and (v, w′) is contained in R. Moreover, again by
the definition of an extension, at most one of (v, w) and (v, w′) is contained in R.
The lemma now follows. �

Let D be a phylogenetic digraph of a phylogenetic network N on X. The next
proposition shows that the number of edges that are in N but not in an extension
of D does not depend on the extension.

Proposition 4.3. Let N be a phylogenetic network on X, and let R and R′ be two
extensions of a phylogenetic digraph D of N . Then

|EN − ER| = |EN − ER′ |.

Proof. Let M and M′ be the embeddings of D in N that underlie R and R′,
respectively. First assume that M = M′. Since |EN − EM| = |EN − EM′ | and
each iteration of (E1) or (E2) in the construction of R and R′ either adds a new
edge (v, w) such that w is already in R and v is not already in R or a new edge
(v′, w′) such that w′ is already in R′ and v′ is not already in R′, the result follows
from Lemma 4.1(ii). Second assume that M 6= M′. Consider an edge e = (v, w)
of N . If v = ρ, then, as ρ has out-degree one in N , either e ∈ R and e ∈ R′, or
e /∈ R and e /∈ R′. Furthermore, if v is a reticulation in N , then it follows from
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Lemma 4.1(i) that e ∈ R and e ∈ R′. We next consider all edges in N that are
directed out of a tree vertex. Let v be a tree vertex of N , and let e = (v, w) and
e′ = (v, w′) be the two edges directed out of v. We next consider four cases that
will subsequently be used for a counting argument.

(1) Suppose that both of e and e′ are contained in one of M and M′, and neither
e nor e′ is contained in the other embedding. Without loss of generality, we
may assume that both of e and e′ are contained inM and, therefore, in R. As
M′ does not contain a vertex with out-degree zero that is not in X ∪ {ρ}, it
follows that v /∈M′. Thus, by Lemma 4.2(ii), exactly one of e and e′ is in R′.

(2) Suppose that exactly one of e and e′ is contained in one of M and M′ and
neither e nor e′ is contained in the other embedding. Without loss of generality,
we may assume that M contains e and does not contain e′, and that M′
contains neither e nor e′. Evidently e ∈ R and, by the definition of an extension,
e′ /∈ R. Moreover, as v /∈M′ it follows from Lemma 4.2(ii) that exactly one of
e and e′ is in R′.

(3) Suppose that exactly one of e and e′ is contained in each ofM andM′. Again
by Lemma 4.2(i), exactly one of e and e′ is contained in each of R and R′.

(4) Suppose that both of e and e′ are contained in one of M and M′, and exactly
one of e and e′ is contained in the other embedding. Without loss of generality,
we may assume that both of e and e′ are contained inM and, therefore, in R.
Then, by Lemma 4.2(i), exactly one of e and e′ is contained in R′.

It follows that, if Case (2) or (3) applies to v, then exactly one of e and e′ is an
element in EN−ER and exactly one of e and e′ is an element in EN−ER′ . We next
turn to Cases (1) and (4). Let V (resp. V ′) denote the set that contains precisely
each tree vertex of N whose two outgoing edges are both in M (resp. M′). Since
M and M′ are embeddings of D in N , we have |V | = |V ′| and, consequently,
|V − V ′| = |V ′ − V |. Hence, the number of tree vertices in N for which both
outgoing edges are in R and exactly one outgoing edge is in R′ is equal to the
number of tree vertices in N for which both outgoing edges are in R′ and exactly
one outgoing edge is in R. This completes the proof of the proposition. �

The last proposition motivates the following terminology. Let D be a phyloge-
netic digraph of a phylogenetic network N on X, and let R be an extension of D
in N . We set cD = |EN − ER| and refer to cD as the cut size of D in N . By
Proposition 4.3, cD is well defined.

The next two results consider cut sizes of root extensions in tree-child networks.

Lemma 4.4. Let D be a phylogenetic digraph of a tree-child network N on X, and
let R be an extension of D in N with cut size cD. Then there also exists a root
extension of D in N with cut size cD.

Proof. Let M be the embedding of D in N that underlies R. If R is not a root
extension of D in N , then there exists a reticulation edge (u, v) in N such that
(u, v) ∈ R and (u, v) /∈ M. Since N is tree-child, u is a tree vertex. Let v′ be
the child of u in N with v 6= v′. Clearly, v′ is a tree vertex or a leaf in N , and
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Figure 2. A phylogenetic network N , a phylogenetic digraph D
of N , and two root extensions R and R′ (indicated by thick lines)
of D in N with |EN − ER| = 6 6= 5 = |EN − ER′ |.

(u, v′) /∈ R. Let Rv be the component in R that contains v, and let Rv′ be the
component in R that contains v′. If Rv and Rv′ are distinct, obtain R′v from Rv
by deleting each vertex s for which there exists a directed path from s to u, and
obtain R′v′ from Rv′ by adding (u, v′) and each edge of Rv that is contained in a
directed path ending at u and, if Rv and Rv′ are not distinct, obtain R′v from Rv
by deleting (u, v) and adding (u, v′). Then R′ = (R− {Rv, Rv′}) ∪ {R′v, R′v′} is an
extension of D in N with cut size cD. It is straightforward to check that M is the
embedding of D in N that underlies R′ and that R′ has one reticulation edge less
than R. If R′ is not a root extension of D in N , then repeat the construction for a
reticulation edge in N that is in R′ but not inM until no such edge remains. This
completes the proof of the lemma. �

We end this section by noting that Proposition 4.3 does not hold for two root
extensions of arbitrary phylogenetic networks (see Figure 2 for an example). Nev-
ertheless, we have the following result for tree-child networks. Its proof is similar
to that of Proposition 4.3 and is omitted.

Proposition 4.5. Let N be a tree-child network on X, and let R and R′ be two
root extensions of a phylogenetic digraph D of N . Then

|EN − ER| = |EN − ER′ |.

5. Measures of dissimilarity between two tree-child networks

In this short section, we formally define the tree-child SNPR distance between
two tree-child networks and a measure that is associated with an extension of a
phylogenetic digraph common to two tree-child networks. This measure bounds
the SNPR distance between two tree-child networks from above and below.

Let N and N ′ be two tree-child networks on X. Let D = {Dρ, D1, D2, . . . , Dk}
be a collection of leaf-labelled acyclic digraphs. If D is a phylogenetic digraph of
N and N ′, we refer to D as an agreement digraph of N and N ′. Now let D be an
agreement digraph for N and N ′. If D is tree-child, we say that D is an agreement
tree-child digraph for N and N ′. In the remainder of this paper, we are particularly
interested in agreement digraphs of N and N ′ whose cut size is minimum. To this
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end, let D be an agreement tree-child digraph for N and N ′, and let cD and c′D be
the cut size of D in N and N ′, respectively. Then D is called a maximum agreement
tree-child digraph for N and N ′ if the sum cD + c′D is minimum over all agreement
tree-child digraphs for N and N ′, in which case we denote this minimum number
by mtc(N ,N ′). To calculate mtc(N ,N ′), it follows from Proposition 4.3 that it is
sufficient to consider a single extension of each agreement digraph for N and N ′.
Referring back to Figure 1, observe that each of the three phylogenetic digraphs
D1, D2, and D3 is in fact an agreement digraph for the two tree-child networks N
and N ′ that are shown in the same figure.

Let N and N ′ be two tree-child networks, let D be an agreement tree-child
digraph for N and N ′, and let R and R′ be an extension of D in N and N ′,
respectively. We note that, similar to the elements of an agreement forest, the
elements in D can be embedded in N and N ′. Intuitively, they can be thought of
as subnetworks that are common to N and N ′. On the other hand, the digraphs
induced by the edges in ER−EM and ER′−EM′ , whereM andM′ is the embed-
ding that underlies R and R′, respectively, are not necessarily the same. Although
each connected component in such a digraph is a rooted tree whose (unique) root
is a vertex of M and M′, respectively, and whose edges are directed towards the
root, one digraph may contain directed rooted trees with a small total number of
unlabelled leaves and the other one may contain directed rooted trees with a much
larger total number of unlabelled leaves.

Now, let N be a phylogenetic network on X, and let e = (u, v) be an edge in N .
We consider the following three operations applied to N :

SNPR± If u is a tree vertex, then delete e, suppress u, subdivide an edge that is
not a descendant of v with a new vertex u′, and add the new edge (u′, v).

SNPR− If u is a tree vertex and v is a reticulation, then delete e, and suppress u
and v.

SNPR+ Subdivide e with a new vertex v′, subdivide an edge in the resulting
network that is not a descendant of v′ with a new vertex u′, and add the new edge
(u′, v′).

By definition of a tree vertex, u 6= ρ if we apply an SNPR±. If it is not important
which of SNPR−, SNPR+, and SNPR± has been applied to N we simply refer
to it as an SNPR. By [6, Proposition 3.1], the operation is reversible, i.e. if N ′
is a phylogenetic network on X that can be obtained from N by a single SNPR,
then N can also be obtained from N ′ by a single SNPR. Lastly, we note that the
well-known rSPR operation is an application of SNPR± to a phylogenetic tree.

Let N and N ′ be two phylogenetic networks on X. An SNPR sequence σ for N
and N ′ is a sequence

σ = (N = N0,N1,N2, . . . ,Nt = N ′)

of phylogenetic networks on X such that, for all i ∈ {1, 2, . . . , t}, we have Ni is
obtained from Ni−1 by a single SNPR in which case, we say that σ connects N and
N ′. We refer to t as the length of σ. Let t± be the number of phylogenetic networks
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in {N1,N2, . . . ,Nt} that have been obtained by an SNPR± and, similarly, let t−

and t+ be the number of phylogenetic networks in {N1,N2, . . . ,Nt} that have been
obtained by an SNPR− and SNPR+, respectively. Clearly, t± + t− + t+ = t. We
set

w(σ) = 2t± + t− + t+

and refer to w(σ) as the weight of σ. Intuitively, each deletion or addition of
an edge contributes one to w(σ). Thus, since an SNPR± deletes an edge and,
subsequently adds a new edge, such an operation adds two to w(σ). It was shown
in [6, Proposition 3.2] that any two phylogenetic networks N and N ′ on the same
leaf set are connected by an SNPR sequence. If N and N ′ are tree-child, then, by
the same proposition, there also exists an SNPR sequence that connects N and N ′
such that each network in the sequence is tree-child. We refer to such an SNPR
sequence as a tree-child SNPR sequence. Moreover, we define the tree-child SNPR
distance dtc(N ,N ′) between two tree-child networks N and N ′ as the minimum
weight of any tree-child SNPR sequence connecting N and N ′. If N and N ′ are
two phylogeneticX-trees, then drSPR(N ,N ′) denotes the minimum number of rSPR
operations needed to transform N into N ′.

Global assumption. Let σ = (N0,N1,N2, . . . ,Nt) be an SNPR sequence that
connects the two phylogenetic networks N0 and Nt on X. Throughout the re-
mainder of the paper, we assume that there exists no i ∈ {1, 2, . . . , t}, such that
Ni can be obtained from Ni−1 by an SNPR± that deletes a reticulation edge
in Ni−1. Indeed, if such an i exists, then there exists an SNPR sequence σ′ =
(N0,N1,N2, . . . ,Ni−1,N ′i ,Ni,Ni+1, . . . ,Nt) such that N ′i can be obtained from
Ni−1 by an SNPR− and Ni can be obtained from N ′i by an SNPR+. Since we are
interested in SNPR sequences of minimum weight and w(σ′) = w(σ), no generality
is lost.

6. Bounding the tree-child SNPR distance

In this section, we establish Theorem 1.1 and show that the bounds are tight.
Let N and N ′ be two tree-child networks, and let R be an extension of a tree-child
digraph D of N . We first show that, if N , N ′, and R satisfy certain properties,
then there exists an extension of D in N ′ such that the cut sizes of D in N and N ′
differ by at most one.

Lemma 6.1. Let N and N ′ be two tree-child networks on X, let D be a tree-child
digraph of N , and let R be an extension of D in N .

(i) Let (u, v) be a reticulation edge of N such that (u, v) /∈ R. If N ′ can be
obtained from N by an SNPR− that deletes (u, v) and suppresses u and v,
then D is a tree-child digraph of N ′ and there exists an extension R′ of D in
N ′ such that

|EN − ER| − 1 = |EN ′ − ER′ |.

(ii) Let e = (u,w) and e′ = (u′, w′) be two distinct tree edges of N . If N ′ can
be obtained from N by an SNPR+ that subdivides e and e′ with a new vertex
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v and v′, respectively and adds the new reticulation edge (v′, v), then D is a
tree-child digraph of N ′ and there exists an extension R′ of D in N ′ such that

|EN − ER|+ 1 = |EN ′ − ER′ |.

(iii) Let e = (u, v) be a tree edge of N such that e /∈ R, and let f = (pu′ , cu′) be
an edge in N that is distinct from e. If N ′ can be obtained from N by an
SNPR± that deletes e, suppresses u, subdivides f with a new vertex u′, and
adds the new edge (u′, v), then D is a tree-child digraph of N ′ and there exists
an extension R′ of D in N ′ such that

|EN − ER| = |EN ′ − ER′ |.

Proof. We first establish (i). Since (u, v) /∈ R and D is a tree-child digraph of N ,
it follows that D is also such a digraph of N ′. Now, let R′ be the digraph obtained
from R by applying the following operation to each vertex w ∈ {u, v}. If w has
in-degree zero and out-degree one in R, then delete w and, if w has in-degree one
and out-degree one in R, then suppress w. As (u, v) 6∈ R, it follows by Lemma 4.1
that each of u and v has either in-degree zero and out-degree one, or in-degree
one and out-degree one in R. Thus, R′ is well defined. It now follows from the
construction that R′ is an extension of D in N ′ with |EN −ER|−1 = |EN ′ −ER′ |.

To see that (ii) holds, observe first that since D is a tree-child digraph of N , it
follows from the construction of N ′ from N that D is also such a digraph of N ′.
Reversing the construction of R′ in (i), let R′ be the digraph obtained from R by
applying the following operations. If e /∈ R, then add (v, w) and, if e ∈ R, then
subdivide e with v. Similarly, if e′ /∈ R, then add (v′, w′) and, if e′ ∈ R, then
subdivide e′ with v′. It is now straightforward to check that R′ is an extension of
D in N ′ with |EN − ER|+ 1 = |EN ′ − ER′ |.

We now turn to (iii). Let pu be the parent of u, and let cu be the child of u that
is not v. Since u is a tree vertex, pu and cu are well defined. Furthermore, let M
be the embedding of D in N that underlies R. By Lemma 4.1(i), (u, cu) ∈ R. If
(pu, u) /∈ R, then the degree constraints of the vertices in D imply that (u, cu) /∈M.
On the other hand, if (pu, u) ∈ R, then (u, cu) ∈ R and, in turn, either both of
(pu, u) and (u, cu) are in M or neither. Now obtain M′ from M by replacing
(pu, u) and (u, cu) with (pu, cu) if (pu, u) and (u, cu) are in M, and replacing f
with (pu′ , u

′) and (u′, cu′) if f ∈ M. Thus, as M is the embedding of D in N
that underlies R, it follows from the construction of N ′ from N thatM′ is also an
embedding of D in N ′. Hence, D is a tree-child digraph of N ′. To complete the
proof, let R′ be the digraph obtained from R by applying the following operations.
If u has in-degree zero in R, then delete u and, if u has in-degree one in R, then
suppress u. Moreover, if f /∈ R, then add (u′, cu′) and, if f ∈ R, then subdivide
(pu′ , cu′) with u′. Again, by Lemma 4.1, u has either in-degree zero and out-degree
one, or in-degree one and out-degree one in R and, so, R′ is well defined. As R is
an extension of D in N with e /∈ R and (u′, v) /∈ R′, it now follows that R′ is an
extension of D in N ′ with |EN − ER| = |EN ′ − ER′ |. �

The next lemma and corollary show that there always exists a tree-child SNPR
sequence connecting two tree-child networks with certain desirable properties. These
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properties will be leveraged later to establish one of the two inequalities of Theo-
rem 1.1.

Lemma 6.2. Let (N0,N1,N2, . . . ,Nt) be a tree-child SNPR sequence connecting
two tree-child networks N0 and Nt on X. If there exists an i ∈ {0, 1, 2, . . . , t − 2}
such that Ni+1 is obtained from Ni by an SNPR+ (resp. SNPR±) and Ni+2 is
obtained from Ni+1 by an SNPR−, then one of the following holds:

(i) (N0,N1,N2, . . . ,Ni,Ni+3,Ni+4, . . . ,Nt−1,Nt) is a tree-child SNPR sequence
connecting N0 and Nt of length t− 2,

(ii) (N0,N1,N2, . . . ,Ni,Ni+2,Ni+3, . . . ,Nt−1,Nt) is a tree-child SNPR sequence
connecting N0 and Nt of length t − 1 such that Ni+2 is obtained from Ni by
an SNPR±,

(iii) (N0,N1,N2, . . . ,Ni,Ni+2,Ni+3, . . . ,Nt−1,Nt) is a tree-child SNPR sequence
connecting N0 and Nt of length t − 1 such that Ni+2 is obtained from Ni by
an SNPR−, or

(iv) there exists a tree-child SNPR sequence

(N0,N1,N2, . . . ,Ni,N ′i+1,Ni+2,Ni+3, . . . ,Nt−1,Nt)
connecting N0 and Nt of length t such that N ′i+1 is obtained from Ni by an

SNPR− and Ni+2 is obtained from N ′i+1 by an SNPR+ (resp. SNPR±).

Proof. Suppose that there exists an element i ∈ {0, 1, 2, . . . , t− 2} such that Ni+1

is obtained from Ni by an SNPR+ and Ni+2 is obtained from Ni+1 by an SNPR−.
Let e = (u, v) be the reticulation edge of Ni+1 that is added in obtaining Ni+1 from
Ni. Furthermore, let e′ = (u′, v′) be the reticulation edge in Ni+1 that is deleted
in obtaining Ni+2 from Ni+1. If e = e′, then Ni ∼= Ni+2, and so (i) holds. We may
therefore assume that e 6= e′. If v = v′, let w be the child of v in Ni+1, and let cu
and pu be the child and parent, respectively, of u in Ni+1 such that cu 6= v. Since
u is a tree vertex, cu and pu are well defined. Observe that (u′, w) and (pu, cu)
are tree edges in Ni. It now follows that Ni+2 can be obtained from Ni by the
SNPR± that deletes (u′, w), suppresses u′, subdivides (pu, cu) with a new vertex
u, and adds the edge (u,w), and so (ii) holds. So assume that e 6= e′ and v 6= v′.
As Ni+1 is tree-child, it follows that e′ is not incident with u or v. Thus, e′ is a
reticulation edge of Ni. Let N ′i+1 be the phylogenetic network obtained from Ni
by deleting e′ and suppressing u′ and v′. By Lemma 2.2, N ′i+1 is tree-child. It is
now straightforward to check that Ni+2 can be obtained from N ′i+1 by an SNPR+,
and so (iv) holds.

Next suppose that there exists an element i ∈ {0, 1, 2, . . . , t− 2} such that Ni+1

is obtained from Ni by an SNPR± and Ni+2 is obtained from Ni+1 by an SNPR−.
Let e = (u, v) be the edge of Ni that is deleted in the process of obtaining Ni+1.
Furthermore, let pu be the parent of u and let cu be the child of u that is not v
in Ni. Since u is a tree vertex, pu and cu are well defined. Let f = (pu′ , cu′) be
the edge of the digraph resulting from Ni by deleting e and suppressing u that is
subdivided with a new vertex u′ such that (u′, v) is an edge in Ni+1. If pu′ = pu and
cu′ = cu, then Ni ∼= Ni+1, and so (iii) holds. Hence, we may assume that pu′ 6= pu
or cu′ 6= cu, and so (pu, cu) is an edge in Ni+1. Let e′ be the edge that is deleted
in obtaining Ni+2 from Ni+1. There are three cases to consider. First assume that
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e′ = (pu, cu). Then (u, cu) is a reticulation edge in Ni. Let w be the parent of
cu that is not u in Ni. Obtain N ′i+1 by deleting (u, cu) and suppressing the two
resulting degree-two vertices. By Lemma 2.2, N ′i+1 is tree-child. Moreover, noting
that (pu, v) is an edge in N ′i+1, it follows that Ni+2 can be obtained from N ′i+1 by
an SNPR± that deletes (pu, v), suppresses pu, subdivides (pu′ , cu′) if cu 6= pu′ (resp.
subdivides (w, cu′) if cu = pu′) with a new vertex u′, and adds the edge (u′, v), and
so (iv) holds. Second assume that e′ = (u′, cu′). Then f is a reticulation edge in
Ni. Noting that pu′ is a tree vertex in Ni, let s be the parent of pu′ , and let t
be the child of pu′ that is not cu′ . Now obtain N ′i+1 from Ni by deleting f and
suppressing the two resulting degree-two vertices. Again by Lemma 2.2, N ′i+1 is
tree-child. Furthermore, (s, t) is an edge in N ′i+1. Then obtain Ni+2 from N ′i+1 by
an SNPR± that deletes (u, v), suppresses u, subdivides (s, t) with a new edge u′,
and adds the edge (u′, v). Again (iv) holds. Third assume that e′ 6= (pu, cu) and
e′ 6= (u′, cu′). Then e′ is an edge of Ni. Let N ′i+1 be the tree-child network obtained
from Ni by deleting e′ and suppressing the two resulting degree-two vertices. Since
e and f are edges of N ′i+1, it now follows that Ni+2 can be obtained from N ′i+1 by
an SNPR± that deletes e, suppresses u, subdivides f with a new vertex u′, and adds
the edge (u′, v). Again, (iv) holds, thereby completing the proof of the lemma. �

Corollary 6.3. Let N and N ′ be two tree-child networks on X. Then there exists
a tree-child SNPR sequence (N = N0,N1,N2, . . . ,Nt = N ′) that connects N and
N ′ such that either Nt is obtained from Nt−1 by an SNPR+ or SNPR±, or Ni is
obtained from Ni−1 by an SNPR− for each i ∈ {1, 2, . . . , t}.

Proof. The corollary follows from repeated applications of Lemma 6.2. �

The proof of Theorem 1.1 is an amalgamation of the next two lemmas.

Lemma 6.4. Let N and N ′ be two tree-child networks on X. Then

dtc(N ,N ′) ≤ mtc(N ,N ′).

Proof. Let D = {Dρ, D1, D2, . . . , Dk} be an agreement tree-child digraph for N
and N ′, and let R = {Rρ, R1, R2, . . . , Rk} and R′ = {R′ρ, R′1, R′2, . . . , R′k} be an
extension of D in N and N ′, respectively. Furthermore, let cD = |EN − ER| and
c′D = |EN ′ − ER′ | be the cut size of D in N and N ′, respectively. By Lemma 4.4,
we may assume that R and R′ is a root extension of D in N and N ′, respectively.
We show by induction on cD + c′D that dtc(N ,N ′) ≤ cD + c′D. The lemma then
follows by choosing D to be an agreement tree-child digraph for N and N ′ such
that cD + c′D = mtc(N ,N ′).

If cD + c′D = 0, then N ∼= N ′ and consequently dtc(N ,N ′) = 0. Hence, the
result follows. Now assume that cD + c′D ≥ 1 and that the result holds for all
pairs of tree-child networks N1 and N ′1 on the same leaf set that have an agreement
tree-child digraph D1 with cut size cD1

and c′D1
of D1 in N1 and N ′1, respectively,

such that cD1
+ c′D1

< cD + c′D.

We first establish the lemma for a case that is easy to deal with. To this end,
assume that there exists a reticulation edge e = (u, v) in N or N ′ that is not
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contained in R or R′, respectively. Without loss of generality, we may assume
that e ∈ N . As N is tree-child, u is a tree vertex. Let N ′′ be the phylogenetic
network obtained from N by an SNPR− that deletes e and suppresses the two
resulting degree-two vertices. By Lemma 2.2, N ′′ is tree-child. Furthermore, by
Lemma 6.1(i), D is a tree-child digraph for N ′′ and there exists a root extension R′′
of D inN ′′ such that cD−1 = c′′D, where c′′D = |EN ′′−ER′′ |. Since c′′D+c′D < cD+c′D,
it now follows from the induction assumption that

dtc(N ′′,N ′) ≤ c′′D + c′D.

Hence, there exists a tree-child SNPR sequence σ connecting N ′′ and N ′ with
w(σ) ≤ c′′D + c′D. Moreover, since N ′′ can be obtained from N by a single SNPR−,
we have

dtc(N ,N ′) ≤ 1 + c′′D + c′D = cD + c′D,

thereby establishing the lemma under the assumption that such an edge e exists.

To complete the proof, we may now assume that

(A) each reticulation edge of N and N ′ is contained in R and R′, respectively.

Hence, by symmetry, there exists a tree edge e = (u,w) in N that is not in R.
Choose e such that each directed path from w to a leaf in N only consists of edges
in R. Since N is acyclic such an edge exists. Let Di be the element in D with
i ∈ {ρ, 1, 2, . . . , k} such that the root extension Ri of Di in N contains w. By the
choice of e, Ri exists and each edge in N that lies on a directed path from w to
a leaf is an element of Ri. Thus, if u = ρ, then N ∼= N ′ and the result follows as
dtc(N ,N ′) = 0. We may therefore assume that u 6= ρ. The next statement follows
from Lemma 4.1(i), the additional assumption that u 6= ρ, and assumption (A).

6.4.1. In N , the vertex u is a tree vertex, and w is either a tree vertex or a leaf.

By the choice of e, observe that the root path of w consists only of w. In turn,
w has in-degree zero and out-degree zero or two in Ri. Hence, w corresponds to
a unique vertex, say wD, of Di. Let rw′ be the vertex in N ′ that wD corresponds
to. Now consider the root extension R′i of Di in N ′. Let w′ be the first vertex of
the root path of rw′ . By (A), we have that w′ is a leaf, or has in-degree one and
out-degree two in N ′. Let v′ be the parent of w′ in N ′. The next statement follows
from Lemma 4.1(i).

6.4.2. In N ′, the edge e′ = (v′, w′) is a tree edge, and v′ is either ρ or a tree vertex
in N ′.

Let Dj be the element in D with j ∈ {ρ, 1, 2, . . . , k} such that the root extension
R′j of Dj in N ′ contains v′. By Lemma 4.1(ii), R′j exists. We may have i = j. We
next construct a digraph D′ from D and a network N ′′ from N . After detailing the
construction, we show that N ′′ is a tree-child network that can be obtained from
N by a single SNPR±, and that D′ is an agreement tree-child digraph for N ′′ and
N ′. Guided by the second part of (6.4.2) and noting that, if v′ = ρ, then ρ is a
singleton component in D, there are three cases to consider:
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(C1) Suppose that v′ is not a vertex of a root path of a vertex in R′. Clearly v′ 6= ρ.
Then v′ has in-degree one and out-degree one in R′j . Recall that each edge
in Dj corresponds to a unique directed path in R′j that connects the two end
vertices of that edge. Let (sD, tD) be the edge in Dj that corresponds to a
directed path in R′j that contains the two edges incident with v′. Obtain D′ij
from Di and Dj by subdividing (sD, tD) with a new vertex pD and adding
the edge (pD, wD). Turning to N , let f be an edge that lies on the directed
path in Rj that corresponds to the edge (sD, tD) in Dj . Obtain N ′′ from N
by deleting e, suppressing u, subdividing f with a new vertex p, and adding
the edge (p, w).

(C2) Suppose that v′ 6= ρ and that v′ is a vertex of a root path P of R′. Let rv′

be the last vertex of P in N ′. Noting that rv′ corresponds to a vertex vD of
in-degree zero in Dj , obtain D′ij from Di and Dj by adding the two edges
(pD, vD) and (pD, wD), where pD is a new vertex. Turning to N , let rv be
the vertex in Rj that vD corresponds to, and let v be the first vertex of the
root path of rv. As v′ 6= ρ and D is an agreement digraph for N and N ′,
we have v 6= ρ. Moreover, it follows from (A) that v is not a reticulation in
N . Thus, v has a unique parent, say t, in N . Then, obtain N ′′ from N by
deleting e, suppressing u, subdividing the edge f = (t, v) with a new vertex
p, and adding the edge (p, w).

(C3) Suppose that v′ = ρ. As ρ has out-degree one in N and N ′, each of Dj and
R′j consist of the isolated vertex ρ only. Then obtain D′ij from Di and Dj

by adding a new edge (ρ, wD). Moreover, obtain N ′′ from N by deleting e,
suppressing u, subdividing the edge f that is directed out of ρ with a new
vertex p, and adding the edge (p, w).

As N ′ does not contain a directed cycle, it follows from the construction that D′ij
is acyclic in all three cases. Hence, as D is a phylogenetic digraph for N ′,

D′ = (D − {Di, Dj}) ∪ {D′ij}

is a phylogenetic digraph of N ′. Let E′i and E′j be the edge set of R′i and R′j
respectively, and let R′ij be the subgraph of N ′ induced by the edge set E′i ∪ E′j ∪
{{v′, w′}}. Since R′ is a root extension of D in N ′, it again follows from the
construction that

(R′ − {R′i, R′j}) ∪ {R′ij}
is a root extension of D′ in N .

We next turn to D′ and show that D′ is tree-child. Since D is tree-child, it
follows from the definition that R′ is tree-child. Moreover, since w′ has in-degree
zero in R′i, it follows that w′ has in-degree one in R′ij . It is now straightforward to
check that (R′ − {R′i, R′j}) ∪ {R′ij} is tree-child. Hence, again by definition, D′ is
also tree-child.

The following statement is now an immediate consequence of the construction.

6.4.3. The cut size of D′ in N ′ is c′D − 1.

Next, we establish that N ′′ is a tree-child network on X.
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6.4.4. The network N ′′ is acyclic.

Proof. Using the same notation as in the construction of N ′′ from N , recall that
e = (u,w) is the edge in N that is deleted and that f is the edge in N that is
subdivided with p in the process of obtaining N ′′. To ease reading, let f = (pp, cp)
regardless of which of (C1)–(C3) applies. Since N is acyclic, any directed cycle in
N ′′ contains p. If N ′′ has been obtained from N as described in (C3), then N ′′ is
acyclic because p has in-degree one and out-degree two in N ′′ and is adjacent to ρ.
Hence, we may assume that N ′′ has been obtained as described in (C1) or (C2).
Towards a contradiction, assume that N ′′ contains a directed cycle. Then there
exists a directed path P from w to cp in N whose last edge is f . If N ′′ has been
obtained from N as described in (C2), then f ∈ N and f /∈ R, a contradiction
because P contains an edge not in R, which is not possible by the choice of e as
described in the paragraph following the statement of assumption (A). On the other
hand, if N ′′ has been obtained from N as described in (C1), then, again by the
choice of e and the existence of P , we have Ri = Rj . Since D is an agreement
digraph for N and N ′, it follows that the edge (sD, tD) in Di can be reached from
wD, thereby contradicting that D′ij is acyclic. �

It now follows from the construction of N ′′ from N and (6.4.4) that N ′′ is a phy-
logenetic network on X. For the remainder of the proof, let Du be the element in
D with u ∈ {ρ, 1, 2, . . . , k} such that the root extension Ru of Du in N contains u.
By Lemma 4.1(ii), Ru exists.

6.4.5. The phylogenetic network N ′′ is tree-child.

Proof. Again using the same notation as in the construction of N ′′ from N , it
follows from (6.4.1) that the newly added edge (p, w) in N ′′ is a tree edge. Noting
that u is a tree vertex by (6.4.1) in N , let pu be the parent of u, and let cu be the
child of u that is not w in N . Observe that (pu, cu) is an edge in N ′′. Now assume
that N ′′ is not tree-child.

First suppose that N ′′ contains a pair of parallel edges. Then (pu, cu), (pu, u),
and (u, cu) are edges of an underlying three-cycle in N . Assumption (A) and
Lemma 4.1(i) imply that all three edges incident with cu are edges in Ru. If
(pu, u) /∈ Ru, then u has in-degree zero and out-degree one in Ru. It follows that
u is a vertex of R but not a vertex of the embedding of D in N that underlies R.
Hence, the unique child of u in Ru has in-degree one in Ru because R is a root
extension of D, a contradiction as cu has in-degree two in Ru. Thus, (pu, u) ∈ Ru.
It follow that Du contains a pair of parallel edges because e /∈ R, a contradiction
to D being tree-child.

Second suppose that N ′′ contains an edge that is incident with two reticulations.
Then pu and cu are reticulations in N . It follows from (A) and Lemma 4.1(i), that
Ru contains the three edges incident with cu and the three edges incident with pu.
Thus, Du contains an edge that is incident with two reticulations because e /∈ R,
another contradiction.
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Third suppose that N ′′ contains a pair of sibling reticulations. Then cu is a
reticulation and pu is a tree vertex whose child that is not u, say su, is a reticulation
in N . Again by (A) and Lemma 4.1(i), Ru contains all three edges that are incident
with cu and there exists an element Ru′ ∈ R with u′ ∈ {ρ, 1, 2, . . . , k} such that
Ru′ contains all three edges incident with su. If u 6= u′, then (pu, u) /∈ R and, thus,
u has in-degree zero and out-degree one in Ru. It follows that u is a vertex of R
but not a vertex of the embedding of D in N that underlies R. Hence, the unique
child of u in Ru has in-degree one in Ru, a contradiction as cu has in-degree two in
Ru. We may therefore assume that u = u′. But then Ru contains a pair of sibling
reticulations su and cu because e /∈ R, a final contradiction. �

It now follows from (6.4.4) and (6.4.5) and the construction as detailed in (C1)–
(C3) that N ′′ is a tree-child network on X that can be obtained from N by a single
SNPR±. We next show that D′ is a phylogenetic digraph for N ′′. To this end, we
construct a root extension of D′ in N ′′.

If N ′′ has been obtained from N as described in (C1), obtain a root extension
Rij of D′ij from Ri and Rj by subdividing f in Rj with a new vertex p and adding
the edge (p, w). Otherwise, if N ′′ has been obtained from N as described in (C2)
or (C3), obtain Rij from Ri and Rj by adding the edge (p, v), where p is a new
vertex, and adding the edges (p, v) and (p, w). Then, as R is a root extension of D
in N and u is a tree vertex in N by (6.4.1), it follows that the digraph obtained
from

R′′ = (R− {Ri, Rj}) ∪ {Rij}
by suppressing (resp. deleting) u if it has in-degree one (resp. zero) in R′′ is a root
extension of D′ in N ′′. Thus, D′ is an agreement tree-child digraph for N ′′ and N ′.

The next statement is again an immediate consequence of the construction of
R′′.

6.4.6. The cut size of D′ in N ′′ is cD − 1.

By combining (6.4.3) and (6.4.6), it now follows from the induction assumption
that

dtc(N ′′,N ′) ≤ cD − 1 + c′D − 1.

Hence, there exists a tree-child SNPR sequence σ connecting N ′′ and N ′ with
w(σ) ≤ cD − 1 + c′D − 1. Since N ′′ can be obtained from N by a single SNPR±,
we have

dtc(N ,N ′) ≤ 2 + cD − 1 + c′D − 1 = cD + c′D.

The lemma now follows. �

Figure 3 shows two tree-child networks for which the inequality established in
Lemma 6.4 is strict. However, the next lemma shows that, for two tree-child net-
works N and N ′, the difference mtc(N ,N ′)−dtc(N ,N ′) cannot be arbitrary large.
In preparation for the lemma, we need an additional definition. Let D be a phy-
logenetic digraph of a phylogenetic network N on X. Furthermore, let R be an
extension of D in N , and letM be the embedding that underlies R. Now consider
a directed path P in M. Let V = {v1, v2, . . . , vn} be the subset of reticulations in
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Figure 3. Example of two tree-child networks N and N ′ and
an agreement tree-child digraph D for N and N ′ with 6 =
dtc(N ,N ′) < mtc(N ,N ′) = 8. An extension of D in N and N ′ is
indicated by thick lines.

N that lie on P . Then the path extension of P contains precisely all edges of P and,
additionally, each edge of a maximal length directed path in N that only consists
of edges in ER − EM and ends at a vertex in V . Note that the path extension of
P may contain each edge of P and no additional edge, even if V 6= ∅.

Lemma 6.5. Let N and N ′ be two tree-child networks on X. Then
1

2
mtc(N ,N ′) ≤ dtc(N ,N ′).

Proof. Let σ = (N = N0,N1,N2, . . . ,Nt = N ′) be a tree-child SNPR sequence
connecting N and N ′ such that Ni−1 and Ni are non-isomorphic for each i ∈
{1, 2, . . . , t}. It follows from [6, Proposition 3.2] that σ exists. By Corollary 6.3,
we may assume that Nt can be obtained from Nt−1 by an SNPR+ or an SNPR±,
or Ni can be obtained from Ni−1 by an SNPR− for each i ∈ {1, 2, . . . , t}. If the
latter holds, then, by the reversibility of SNPR, (N ′ = Nt, . . . ,N2,N1,N0 = N ) is
a tree-child SNPR sequence connecting N and N ′ and Ni is obtained from Ni+1

by an SNPR+ for each i ∈ {t − 1, t − 2, . . . , 0}. Hence, we may assume without
loss of generality that Nt can be obtained from Nt−1 by either an SNPR+ or
an SNPR±. We show by induction on t that there exist an agreement tree-child
digraph D for N and N ′ and extensions R and R′ of D in N and N ′, respectively,
such that 1

2mtc(N ,N ′) ≤ w(σ). The lemma then follows by choosing σ such that
w(σ) = dtc(N ,N ′).

If t = 1, then there are two cases to consider. First assume that N ′ can be
obtained from N by an SNPR+. Then w(σ) = 1, and N is an agreement tree-
child digraph for N and N ′. Trivially, there is an extension R of N in N and
an extension R′ of N in N ′ such that |EN − ER| + |EN ′ − ER′ | = 1 and, thus,
1
2mtc(N ,N ′) ≤ 1

2 · 1 < w(σ). Second assume that N ′ can be obtained from N
by an SNPR± in which case w(σ) = 2. Recalling the global assumption stated at
the end of Section 5, let e = (u, v) be the tree edge in N that is deleted in the
process of obtaining N ′ from N . Let pu be the parent of u, and let cu be the child
of u in N that is not v. Since u is a tree vertex, pu and cu are well defined. If
pu is a tree vertex, let s be the child of pu in N that is not u. Furthermore, if
cu is a reticulation, let s′ be the parent of cu in N that is not u. If s and cu are
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both reticulations, let D be the leaf-labelled acyclic digraph D obtained from N by
deleting e and (s′, cu), and suppressing u, cu, and s′. Otherwise, if at least one of
s and cu is not a reticulation, let D be the leaf-labelled acyclic digraph D obtained
from N by deleting e and suppressing u. In both cases, D is an agreement digraph
of N and N ′. We next show that D is tree-child. If D contains a pair of parallel
edges or a stack, then N ∼= N ′, a contradiction to the choice of σ. On the other
hand, if D contains a pair of sibling reticulations, then s and cu are reticulations in
N . By construction, it follows that there is no reticulation in D that corresponds
to cu. Hence, D is tree-child. Moreover, there are extensions R of D in N and R′ of
D in N ′ such that |EN −ER|+ |EN ′ −ER′ | ≤ 2 + 2 = 4, where the first inequality
becomes an equality only if s and cu are both reticulations in N . It now follows
that 1

2mtc(N ,N ′) ≤ 1
2 · 4 = w(σ). This completes the proof of the base case.

Now suppose that t > 1 and that the lemma holds for all pairs of tree-child
networks for which there exists a tree-child SNPR sequence connecting the two
networks of length less than t. Let

σ1 = (N0,N1,N2, . . . ,Nt−1) and σ2 = (Nt−1,Nt).

By Corollary 6.3, we may again assume that Nt−1 can be obtained from Nt−2 by
an SNPR+ or an SNPR±, or Ni can be obtained from Ni−1 by an SNPR− for
each i ∈ {1, 2, . . . , t − 1}. Observe that w(σ) = w(σ1) + w(σ2). By the induction
assumption, we have

1

2
mtc(N0,Nt−1) ≤ w(σ1).

Hence, there exist a maximum agreement tree-child digraph D′ for N0 and Nt−1
and extensions R′0 and R′t−1 of D′ in N0 and Nt−1, respectively, such that

(1)
1

2
mtc(N0,Nt−1) =

1

2
(|EN0

− ER′0 |+ |ENt−1
− ER′t−1

|) ≤ w(σ1).

Let M′0 (resp. M′t−1) be the embedding of D′ in N0 (resp. Nt−1) that underlies
R′0 (resp. R′t−1).

Assume thatNt can be obtained fromNt−1 by an SNPR+, in which case w(σ2) =
1. Let (u,w) and (u′, w′) be the two edges in Nt−1 that are subdivided with a new
vertex v and v′, respectively, in obtaining Nt. Since Nt is tree-child, (u,w) and
(u′, w′) are tree edges. Furthermore, either (v, v′) or (v′, v) is a reticulation edge in
Nt. Without loss of generality, we may assume that (v′, v) is a reticulation edge in
Nt. It now follows from Lemma 6.1(ii) that D′ is also a tree-child digraph for Nt
and there exists an extension R′t of D′ in Nt such that

|ENt−1
− ER′t−1

|+ 1 = |ENt
− ER′t |.

Hence, we have

1

2
mtc(N ,N ′) ≤ 1

2
(|EN0 − ER′0 |+ |ENt − ER′t |)

=
1

2
(|EN0 − ER′0 |+ |ENt−1 − ER′t−1

|+ 1)

< w(σ1) + w(σ2) = w(σ),

where the last inequality follows from Equation (1) and the fact that w(σ2) = 1.
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Figure 4. The two cases in the construction of Rcu′ from R′cu′ .

Red indicates vertices and edges of Rcu′ and R′cu′ .

For the remainder of the proof, we may therefore assume that Nt is obtained
from Nt−1 by an SNPR± in which case w(σ2) = 2. Let e = (u, v) be the edge in
Nt−1 that is deleted in obtaining Nt from Nt−1. By the definition of SNPR± and
the global assumption, u and v are both tree vertices. Let pu be the parent of u,
and let cu be the child of u with cu 6= v in Nt−1. Observe that (pu, cu) is an edge in
Nt. Furthermore, let (pu′ , cu′) be the edge in Nt−1 that is subdivided with a new
vertex u′ in obtaining Nt. Then (u′, v), (pu′ , u

′), and (u′, cu′) are edges in Nt.

First assume that e /∈ R′t−1. It follows from Lemma 6.1(iii) that D′ is also a
tree-child digraph for Nt and there exists an extension R′t of D′ in Nt such that

|ENt−1 − ER′t−1
| = |ENt − ER′t |

and, therefore, again by Equation (1),

1

2
mtc(N ,N ′) ≤ 1

2
(|EN0

− ER′0 |+ |ENt
− ER′t |)

=
1

2
(|EN0

− ER′0 |+ |ENt−1
− ER′t−1

|)

< w(σ1) + w(σ2) = w(σ).

Hence, we may assume that e ∈ R′t−1. Let R′u be the element in R′t−1 that
contains e, let R′cu be the element in R′t−1 that contains cu, and let R′cu′ be the

element in R′t−1 that contains cu′ . Recall that R′u, R′cu , and R′cu′ are not neces-

sarily pairwise distinct. If (pu′ , cu′) ∈ R′cu′ , then set Rcu′ to be the directed graph

obtained from R′cu′ by subdividing (pu′ , cu′) with a new vertex u′. Otherwise, if

(pu′ , cu′) /∈ R′cu′ , then set Rcu′ to be the directed graph obtained from R′cu′ by

adding (u′, cu′). The construction is shown in Figure 4. Intuitively, Rcu′ is an
extension of a component of a phylogenetic digraph in Nt. Lastly, if R′u = R′cu′ ,

then reset R′u = Rcu′ and, if R′cu = R′cu′ , then reset R′cu = Rcu′ .

Assume that e /∈ M′t−1. Then (u, cu) /∈ R′t−1. It again follows from the con-
struction of Nt from Nt−1 that D′ is a phylogenetic digraph of Nt. Guided by
R′t−1, we next construct an extension of D′ in Nt. Let W be the subset of vertices
of Nt−1 that lie on a directed path from a vertex with in-degree zero to u in R′u.



24 STEVEN KELK, SIMONE LINZ, AND CHARLES SEMPLE

(R1) If u is the only element in W and R′u 6= R′cu , then obtain Ru from R′u by
deleting u, and set Rcu = R′cu .

(R2) If W contains u and |W | ≥ 2, and R′u 6= R′cu , then obtain Ru from R′u by
deleting each vertex in W , and obtain Rcu from R′cu by adding (pu, cu) and
each edge of R′u that joins two vertices in W − {u}.

(R3) If u is the only element in W and R′u = R′cu , then obtain Ru from R′u by
deleting u.

(R4) If W contains u and |W | ≥ 2, and R′u = R′cu , then obtain Ru from R′u by
deleting u and adding (pu, cu).

As an aside, recall that we are dealing with extensions (and not with the more
restricted root extensions). Indeed, if cu is a reticulation in Nt−1 and a vertex
with in-degree one and out-degree one in R′cu , then Rcu is an extension and not a
root extension. Now, regardless of which of (R1)–(R4) applies, let R′t = (R′t−1 −
{R′u, R′cu , R

′
cu′
}) ∪ {Ru, Rcu , Rcu′}. It is easily checked that R′t is an extension of

D′ in Nt with

|ENt−1
− ER′t−1

| = |ENt
− ER′t |,

and thus,

1

2
mtc(N ,N ′) ≤ 1

2
(|EN0

− ER′0 |+ |ENt
− ER′t |)

=
1

2
(|EN0

− ER′0 |+ |ENt−1
− ER′t−1

|)

< w(σ1) + w(σ2) = w(σ).

We complete the proof of the lemma by assuming that e ∈ M′t−1. Let eD′ =
(uD′ , vD′) be the unique edge in D′ that e corresponds to. If uD′ has in-degree two
in D′, let pD′ and p′D′ be the two parents of uD′ . Furthermore, if uD′ has out-degree
two, let v′D′ be the child of uD′ that is not vD′ and, if v′D′ is a reticulation, let p′′D′
be the parent of v′D′ that is not uD′ . Since D′ is tree-child, observe that each of
pD′ , p

′
D′ , and p′′D′ has, if it exists, in-degree at most one, and that there exists a

directed path from each of pD′ , p
′
D′ , and p′′D′ to a leaf in D′ that does not traverse

a reticulation. Lastly, since D′ is tree-child, at most one of uD′ , vD′ , and v′D′ is a
reticulation. Noting that uD′ 6= ρ, because u 6= ρ by the definition of SNPR±, we
next obtain a digraph D from D′ in one of the following five ways. The setup of D′
in each case is illustrated in Figure 5.

(D1) Suppose that uD′ has in-degree zero and out-degree two (resp. in-degree one
and out-degree two), and that neither vD′ nor v′D′ is a reticulation. Then
obtain D from D′ by deleting eD′ and deleting (resp. suppressing) uD′ .

(D2) Suppose that uD′ has in-degree zero and out-degree two (resp. in-degree
one and out-degree two), and that vD′ is a reticulation. Then obtain D
from D′ by deleting eD′ , suppressing vD′ , and deleting (resp. suppressing)
uD′ .

(D3) Suppose that uD′ is a reticulation. Then obtain D from D′ by applying the
following three steps in order. First, delete (pD′ , uD′), suppress uD′ , and
delete the resulting edge (p′D′ , vD′). Second, if pD′ has in-degree zero and
out-degree two (resp. in-degree one and out-degree two) in D′, delete (resp.
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Figure 5. The setup of D′ in all five cases (D1)–(D5) in the con-
struction of D from D′ as detailed in the proof of Lemma 6.5.
Dashed edges may or may not exist in D′.

suppress) pD′ . Third, if p′D′ has in-degree zero and out-degree two (resp.
in-degree one and out-degree two) in D′, delete (resp. suppress) p′D′ .

(D4) Suppose that uD′ has in-degree zero and out-degree two, and that v′D′
is a reticulation. Then obtain D from D′ by deleting eD′ and uD′ , and
suppressing v′D′ .

(D5) Suppose that uD′ has in-degree one and out-degree two, and that v′D′ is
a reticulation. Then obtain D from D′ by deleting eD′ , suppressing uD′ ,
deleting (p′′D′ , v

′
D′), suppressing v′D′ , and if p′′D′ has in-degree zero and out-

degree two (resp. in-degree one and out-degree two) in D′, deleting (resp.
suppressing) p′′D′ .

By construction, it follows that D neither contains any vertex with in-degree zero
and out-degree one except for ρ nor a vertex with in-degree one and out-degree one.
Hence, D is a collection of leaf-labelled acyclic digraphs whose union of leaf sets is
X. We next show that D is an agreement tree-child digraph for N0 and Nt.

6.5.1. D is an agreement digraph for N0 and Nt.

Proof. Since D is a collection of leaf-labelled acyclic digraphs whose union of leaf
sets is X, Properties (i) and (ii) in the definition of a phylogenetic digraph are
satisfied. Observe that in each of (D1)–(D5), D is obtained from D′ by an ordered
sequence S of edge deletions, and vertex suppressions and deletions. Furthermore,
by construction, a vertex is only suppressed (resp. deleted) if it has in-degree one and
out-degree one (resp. in-degree zero and out-degree one) after an incident edge has
been deleted. Following the order of operations in S, obtain an embeddingM0 of D
in N0 fromM′0 as follows. For each edge fD′ that is deleted in obtaining D from D′,
delete each non-terminal vertex of the directed path inM′0 that corresponds to fD′

and, for each vertex that is deleted in obtaining D from D′, delete the corresponding
vertex inM′0 and each resulting vertex that has in-degree zero and out-degree one
(relative to the embedding) until no such vertex exists. As D′ is a phylogenetic
digraph of N0, it follows from the construction that M0 is an embedding of D in
N0 and that the elements inM0 are pairwise vertex disjoint in N0. Thus, Property
(iii) in the definition of a phylogenetic digraph is satisfied and D is a phylogenetic
digraph of N0.

We complete the proof by showing that there also exists an embedding Mt

of D in Nt. Obtain Mt from M′t−1 by applying the following two steps. First, if
there exists an edge f inM′t−1 that corresponds to the edge (pu′ , cu′) in Nt−1, then
subdivide f with a new vertex u′. Second, following again the order of operations in
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S, for each edge fD′ that is deleted in obtaining D from D′, delete each non-terminal
vertex of the directed path in M′t−1 that corresponds to fD′ and, for each vertex
that is deleted in obtaining D from D′, delete the corresponding vertex in M′t−1
and each resulting vertex that has in-degree zero and out-degree one (relative to
the embedding) until no such vertex exists. To see thatMt is indeed an embedding
of D in Nt, recall that Nt can be obtained from Nt−1 by deleting e, suppressing u,
subdividing (pu′ , cu′) with a new vertex u′, and adding a new edge (u′, v). Since
eD′ is deleted and uD′ is either suppressed or deleted in each of (D1)–(D5), it now
follows from the construction and the fact thatM′t−1 satisfies Property (iii) in the
definition of a phylogenetic digraph that Mt is an embedding of D in Nt and that
the elements of Mt are also pairwise vertex disjoint in Nt. Thus, Property (iii) in
the definition of a phylogenetic digraph is satisfied, and D is a phylogenetic digraph
of Nt. �

6.5.2. D is tree-child.

Proof. Assume D is not tree-child. Since D′ is tree-child, it follows from the con-
struction of D that v′D′ is a reticulation in D′ and D. However, if v′D′ is a reticulation
in D′, then (D4) or (D5) applies and in each case one of the reticulation edges that
are directed into v′D′ is deleted. Thus, v′D′ is not a reticulation in D, a contradic-
tion. �

It now follows from (6.5.1) and (6.5.2) that D is an agreement tree-child digraph
for N0 and Nt.

6.5.3. There exists an extension Rt of D in Nt such that

|ENt − ERt | ≤ |ENt−1 − ER′t−1
|+ 2.

Proof. To ease reading, we view R′t−1 as a collection of edges in Nt−1 and describe
the construction of Rt from R′t−1 by edge deletions and additions only. Let P
be the directed path in Nt−1 that eD′ corresponds to. Clearly e is an edge of P .
Furthermore, let (s, t) be the first edge on P , and let Es be the path extension of
the subpath of P from s to v. Observe that, if s = u, then s is a tree vertex in
Nt−1. Hence, in this case, R′cu = R′u and (u, cu) ∈ R′u. On the other hand, if s 6= u,
then (u, cu) is an edge in ENt−1 − ER′t−1

.

We next obtain Rt from R′t−1. Intuitively, we construct digraphs Ru and Rcu
from R′u and R′cu , respectively, such that Ru and Rcu are extensions of elements in
D in Nt. As we will see, some of the edges in R′u and R′cu that are edges of M′t−1
become edges of Ru and Rcu , respectively, that are not edges of the embedding
that underlies Rt. Now suppose that D has been obtained from D′ by applying the
construction as detailed in (D1) or (D2). Obtain Ru and Rcu from R′u and R′cu ,
respectively, in one of the following four ways:

(R1′) Suppose that s = u and (pu, u) ∈ R′u. Obtain Ru from R′u by deleting
(pu, u), (u, cu), and e, and adding (pu, cu).

(R2′) Suppose that s = u and (pu, u) /∈ R′u. Obtain Ru from R′u by deleting e
and (u, cu).
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Figure 6. An illustration of (R4′) and (R6′) as described in the
proof of (6.5.3). Blue indicates edges and vertices of R′u and Ru,
and green indicates edges and vertices of R′cu and Rcu .

(R3′) Suppose that s 6= u and R′u = R′cu . Obtain Ru from R′u by deleting (s, t),
(pu, u), and e, and if t 6= u, adding (pu, cu).

(R4′) Suppose that s 6= u and R′u 6= R′cu . First obtain Ru from R′u by deleting
each edge in Es. Second if t = u, set Rcu = R′cu . Otherwise if t 6= u, obtain
Rcu from R′cu by adding (pu, cu) and adding each edge in Es except for
(s, t), (pu, u), and e.

While (R3′) and (R4′) are similar in flavour, they are different in the sense that, if
R′u 6= R′cu , then certain edges in R′u that lie on a path extension of a subpath of P
are not edges of Ru and instead get added to Rcu . For an illustration of (R4′), see
the left-hand side of Figure 6.

Next, suppose that D has been obtained from D′ by applying the construction
as detailed in (D3). As uD′ has in-degree two and corresponds to s in Nt−1,
observe that s 6= u. Let P1 (resp. P ′1) be the directed path in Nt−1 that the edge
(pD′ , uD′) (resp. (p′D′ , uD′)) in D′ corresponds to. Furthermore, let (s1, t1) (resp.
(s′1, t

′
1)) be the first edge on P1 (resp. P ′1). Since D′ is tree-child, neither s1 nor

s′1 is a reticulation in Nt−1. Similar to the definition of Es, let E1 (resp. E′1) be
the path extension of P1 (resp. P ′1). Finally, obtain Ru and Rcu from R′u and R′cu ,
respectively, in one of the following two ways:

(R5′) Suppose that R′u = R′cu . Obtain Ru from R′u by deleting (s1, t1), (s′1, t
′
1),

(pu, u), and e, and adding (pu, cu).
(R6′) Suppose that R′u 6= R′cu . First obtain Ru from R′u by deleting each edge in

E1, E′1, and Es. Second obtain Rcu from R′cu by adding each edge in E1

except for (s1, t1), adding each edge in E′1 except for (s′1, t
′
1), adding each

edge in Es except for (pu, u) and e, and adding (pu, cu). The construction
is shown on the right-hand side of Figure 6.
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Figure 7. An illustration of (R8′) and (R11′) as described in the
proof of (6.5.3). Blue indicates edges and vertices of R′u and Ru,
and green indicates edges and vertices of R′cu and Rcu .

Lastly, suppose that D has been obtained from D′ by applying the construction
as detailed in (D4) or (D5). Let Q1 (resp. Q′1) be the directed path in Nt−1
that the edge (uD′ , v

′
D′) (resp. (p′′D′ , v

′
D′)) in D′ corresponds to. Furthermore, let

(s1, t1) (resp. (s′1, t
′
1)) be the first edge on Q1 (resp. Q′1). Note that s1 = s and, if

s = u, then cu = t1. Say first that D has been obtained from D′ by applying the
construction as detailed in (D4). Let F be the subset of edges of Nt−1 that lie on
a directed path of R′u that ends at s. Observe that each edge in F is contained
in ER′t−1

− EM′t−1
. Now obtain Ru and Rcu from R′u and R′cu , respectively, by

applying one of (R1′) and (R2′) if s = u, or by applying one of the following two
ways if s 6= u:

(R7′) Suppose that s 6= u and R′u = R′cu . Obtain Ru from R′u by deleting (s1, t1),
(pu, u), and e, and adding the edge (pu, cu).

(R8′) Suppose that s 6= u and R′u 6= R′cu . First obtain Ru from R′u by deleting
each edge in Es and F , and deleting (s1, t1). Second obtain Rcu from R′cu
by adding each edge in Es except for (pu, u) and e, adding (pu, cu), and
adding each edge in F . See the left-hand side of Figure 7 for an illustration.

On the other hand, if D has been obtained from D′ by applying the construction
as detailed in (D5), then obtain Ru and Rcu from R′u and R′cu , respectively, in one
of the following three ways:

(R9′) Suppose that s = u. Obtain Ru from R′u by deleting (s′1, t
′
1), (pu, u), (u, cu),

and e, and adding (pu, cu).
(R10′) Suppose that s 6= u and R′u = R′cu . Obtain Ru from R′u by deleting (s′1, t

′
1),

(s, t), (pu, u), and e, and, if t 6= u, then adding (pu, cu).
(R11′) Suppose that s 6= u and R′u 6= R′cu . First obtain Ru from R′u by deleting

(s′1, t
′
1) and each edge in Es. Second, if t = u, set Rcu = R′cu . Otherwise,

if t 6= u obtain Rcu from R′cu by adding each edge in Es except for (s, t),
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(pu, u), and e, and adding (pu, cu). See the right-hand side of Figure 7 for
an illustration.

Finally, let Rt = (R′t−1 − {R′u, R′cu , R
′
cu′
}) ∪ {Ru, Rcu , Rcu′}. Since R′t−1 is an

extension of D′ in Nt−1, a careful check shows that Rt is an extension of D in Nt.

Now, let C ′ = ENt−1 − ER′t−1
, and let C = ENt − ERt . To complete the proof

of (6.5.3), we compare the number of edges in C ′ with the number of edges in
C. First, observe that, if (pu′ , cu′) ∈ C ′, then (pu′ , u

′) ∈ C and (u′, cu′) /∈ C.
Furthermore, if (pu′ , cu′) /∈ C ′, then neither (pu′ , u

′) nor (u′, cu′) is in C. We next
list the edges that are in C ′ but not in C and vice versa for each of (R1′)–(R11′).
While C ′ − C contains edges in Nt−1 that are not edges in Nt, the set C − C ′

contains edges in Nt that are not edges in Nt−1. Thus, edges that are common to
Nt−1 and Nt and common to C ′ and C are not considered in the following table.
Moreover, regardless of which of (R1′)–(R11′) applies, we note that C ′−C may or
may not contain (pu′ , cu′) and C − C ′ may or may not contain (pu′ , u

′). However,
C ′ − C contains (pu′ , cu′) if and only if C − C ′ contains (pu′ , u

′), and so we have
also omitted in the table the possibility that C ′ −C may contain (pu′ , cu′) and the
possibility that C − C ′ may contain (pu′ , u

′).

(C ′ − C)− {(pu′ , cu′)} (C − C ′)− {(pu′ , u′)}

(R1′) empty (u′, v)

(R2′) (pu, u) (pu, cu), (u′, v)

(R3′) and t = u (u, cu) (pu, cu), (u′, v)

(R3′) and t 6= u (u, cu) (s, t), (u′, v)

(R4′) and t = u (u, cu) (pu, cu), (u′, v)

(R4′) and t 6= u (u, cu) (s, t), (u′, v)

(R5′) and (R6′) (u, cu) (s1, t1), (s′1, t
′
1), (u′, v)

(R7′) and (R8′) (u, cu) (s1, t1), (u′, v)

(R9′) empty (s′1, t
′
1), (u′, v)

(R10′) and t = u (u, cu) (s′1, t
′
1), (pu, cu), (u′, v)

(R10′) and t 6= u (u, cu) (s′1, t
′
1), (s, t), (u′, v)

(R11′) and t = u (u, cu) (s′1, t
′
1), (pu, cu), (u′, v)

(R11′) and t 6= u (u, cu) (s′1, t
′
1), (s, t), (u′, v)

Since |C − C ′| ≤ |C ′ − C|+ 2 in all cases, this completes the proof of (6.5.3). �

6.5.4. There exists an extension R0 of D in N0 such that

|EN0
− ER0

| ≤ |EN0
− ER′0 |+ 2.

Proof. Again, to ease reading, we view R′0 simply as a collection of edges in N0

and describe the construction of R0 from R′0 by edge deletions only. Let P be
the directed path in N0 that eD′ corresponds to, and let (s, t) be the first edge on
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P . Let R′s be the element in R′0 that contains s. We next construct an extension
R0 of D in N0 by modifying R′s. This construction is similar to the constructions
described in proof of (6.5.3), but much less involved. First, suppose that D has
been obtained from D′ by applying (D1), (D2), or (D4). Then

(R1′′) obtain Rs from R′s by deleting (s, t).

Second, suppose that D has been obtained from D′ by applying (D3). Recall that
s is a reticulation. Let P1 (resp. P ′1) be the directed path in N0 that the edge
(pD′ , uD′) (resp. (p′D′ , uD′)) in D′ corresponds to. Furthermore, let (s1, t1) (resp.
(s′1, t

′
1)) be the first edge on P1 (resp. P ′1). Then

(R2′′) obtain Rs from R′s by deleting (s1, t1) and (s′1, t
′
1).

Third, suppose that D has been obtained from D′ by applying (D5). Let P1 be the
directed path in N0 that the edge (p′′D′ , v

′
D′) in D′ corresponds to. Furthermore, let

(s1, t1) be the first edge on P1. Then

(R3′′) obtain Rs from R′s by deleting (s, t) and (s1, t1).

Now, let R0 = (R′0−{R′s})∪{Rs}. Since R′0 is an extension of D′ in N0, a careful
check shows that R0 is an extension of D in N0. Moreover, since each of (R1′′)–
(R3′′) deletes at most two edges in obtaining Rs from R′s, it follows that (6.5.4)
holds. �

Finally, by combining Equation (1) with (6.5.1)and (6.5.4), we get

1

2
mtc(N ,N ′) ≤ 1

2
(|EN0

− ER0
|+ |ENt

− ERt
|)

≤ 1

2
(|EN0 − ER′0 |+ 2 + |ENt−1 − ER′t−1

|+ 2)

≤ 1

2
(|EN0 − ER′0 |+ |ENt−1 − ER′t−1

|) +
1

2
· 4

≤ w(σ1) + w(σ2)

= w(σ).

This completes the proof of the lemma. �

Proof of Theorem 1.1. The theorem follows from Lemmas 6.4 and 6.5. �

The following result shows how the rSPR distance between two phylogenetic
trees can be computed exactly within the framework of agreement digraphs. In
particular, it shows that agreement digraphs generalise agreement forest.

Proposition 6.6. Let T and T ′ be two phylogenetic X-trees. Then

drSPR(T , T ′) =
1

2
dtc(T , T ′) =

1

2
mtc(T , T ′).
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Proof. The first equality follows from [6, Proposition 7.1] and the fact that each
SNPR± contributes two to the weight of any SNPR sequence connecting T and T ′.
Moreover, to establish the second equality, let σ = (T = T0, T1, T2, . . . , Tt = T ′)
be an SNPR sequence connecting T and T ′. Then it follows from Lemma 6.4 and
a careful inspection of the proof of Lemma 6.5 when applied to two phylogenetic
X-trees that (D1) and, consequently, (R1′)–(R4′) and (R1′) always apply. Hence,
the last set of inequalities in the proof of Lemma 6.5 can be replaced with

mtc(T , T ′) ≤ |ET0 − ER0
|+ |ETt − ERt

|
≤ |ET0 − ER′0 |+ 1 + |ETt−1

− ER′t−1
|+ 1

≤ w(σ1) + w(σ2)

= w(σ),

where σ1 = (T0, T1, T2, . . . , Tt−1) and σ2 = (Tt−1, Tt). �

The next proposition shows that the bound given in Lemma 6.5 is essentially
tight.

Proposition 6.7. For any integer ` with ` > 1, there exist two tree-child networks
N` and N ′` on 3` leaves such that 1

2mtc(N`,N ′`) + 1 = dtc(N`,N ′`).

Proof. Let ` be an integer with ` > 1. Consider the two tree-child networks N` and
N ′` that are shown in Figure 8. Each of N` and N ′` has 3` leaves. Moreover, the
agreement tree-child digraph D` for N` and N ′` that is also shown in Figure 8 has
cut size 2` − 1 in each of N` and N ′` . Thus, mtc(N ,N ′) ≤ 4` − 2. We now show
that mtc(N ,N ′) = 4`− 2. Assume that mtc(N ,N ′) < 4`− 2. Then there exists an
agreement tree-child digraph D∗` = {Dρ, D1, D2, . . . , Dk} whose cut size in N` or N ′`
is strictly less than 2`− 1. Since, for each j ∈ {1, 2, . . . , `− 1}, N` displays the two
triples (3j, 3j+1, 3j+2) and (3j+1, 3j+2, 3j) whereas N ′` only displays the triple
(3j, 3j+2, 3j+1) and no other triple involving 3j, 3j+1, and 3j+2, a careful check
shows that D∗` contains an element that is not a phylogenetic tree. To see this, note
that if D∗` only consists of phylogenetic trees, then each j ∈ {1, 2, . . . , ` − 1}, N`
contributes two to the cut size of D∗` in N` and two to the cut size of D∗` in N ′` .
Thus, there exists an element Di in D∗` for some i ∈ {ρ, 1, 2, . . . , k} that contains
a vertex v of in-degree two and out-degree one. Moreover, as D∗` is an agreement
digraph of N` and N ′` , the child of v is j for some j ∈ {4, 7, . . . , 3` − 5}. First,
assume that there exists a vertex u in Di and two edge-disjoint directed paths P
and P ′ from u to v. Since D∗` is tree-child, at least one of P and P ′ contains a
vertex w such that the edge (w, v) with w 6= u exists. Furthermore, as Di can be
embedded in N` and P and P ′ are edge disjoint, we may assume, that the child
of w that is not v is j − 1 or j + 1. In either case, it is easily seen that there is
no embedding of Di in N ′` , a contradiction. Thus, we may assume that there exist
two vertices u and u′ with in-degree zero in Di and directed paths from each of u
and u′ to v whose only common vertex is v. As Di can be embedded in N`, we
may assume without loss of generality that the child of u is j + 1 or j − 1 which
leads us to the same contradiction as in the previous case because there is no such
embedding of Di in N ′` . Hence, there exists no agreement tree-child digraph whose



32 STEVEN KELK, SIMONE LINZ, AND CHARLES SEMPLE

N` N ′` D`

ρ

2

n− 1n− 3

119

6 8

53

n

1

4

7

n− 2

n− 5

86

n

ρ

n− 1
n− 3

3 5
2

ρ

n

n− 2
n− 1n− 3

11
10

9

6
7

8

5
4

3

2
1

119

n− 21 4 7 10 n− 5

Figure 8. Two phylogenetic networks N` and N ′` on n = 3` leaves
with ` > 1, an agreement tree-child digraph D` for N` and N ′` , an
extension of D` in N` and an extension of D` in N ′` indicated by
thick lines. This example shows that the bound given in Lemma 6.5
is essentially tight. For details, see the proof of Proposition 6.7.

cut size in N` or N ′` is strictly less than 2`− 1. It now follows that

(2) mtc(N ,N ′) = 4`− 2.

Turning to dtc(N`,N ′`), observe that there exists a tree-child SNPR sequence
connecting N` and N ′` that prunes and regrafts the leaves 1, 4, 7, . . . , 3` − 2 in
order. Hence,

(3) dtc(N`,N ′`) ≤ 2`.

By combining Lemma 6.5 with Equations (2) and (3), we have

2`− 1 =
1

2
mtc(N`,N ′`) ≤ dtc(N`,N ′`) ≤ 2`

which, in turn, implies that dtc(N`,N ′`) ∈ {2` − 1, 2`}. Since each of N` and N ′`
has `− 1 reticulations, the weight of any SNPR sequence connecting N` and N ′` is
even. Thus, dtc(N`,N ′`) = 2`, thereby establishing the proposition. �
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[4] M. Baroni, S. Grünewald, V. Moulton, and C. Semple (2005). Bounding the number of

hybridisation events for a consistent evolutionary history. Journal of Mathematical Biology

51:171–182.
[5] M. Bordewich and C. Semple (2005). On the computational complexity of the rooted subtree

prune and regraft distance. Annals of Combinatorics, 8:409–423.



BOUNDING THE SNPR DISTANCE 33

[6] M. Bordewich, S. Linz, and C. Semple (2017). Lost in space? Generalising subtree prune and

regraft to spaces of phylogenetic networks. Journal of Theoretical Biology, 423:1–12.
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