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Abstract

A normal (phylogenetic) network with k reticulations displays 2* phylogenetic trees. In this
paper, we establish an analogous result for tree-child (phylogenetic) networks with no underlying
3-cycles. In particular, we show that a tree-child network with k > 2 reticulations and no
underlying 3-cycles displays at least 2"/> phylogenetic trees if k is even and at least 2%/52’“/ 2if k
is odd. Moreover, we show that these bounds are sharp and characterise the tree-child networks
that attain these bounds.
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1 Introduction

Understanding the evolutionary history of a collection of present-day species is a central goal in
biology, and rooted phylogenetic trees have traditionally been used for this purpose. However,
evolution is not always strictly tree-like. Reticulate evolutionary events, such as hybridisation and
lateral gene transfer, violate the assumptions underlying phylogenetic trees and instead require a
more general model, (rooted) phylogenetic networks, to accurately represent evolutionary history.

Although species-level evolution can be non-tree-like, the evolution of individual genes is typi-
cally assumed to follow a tree-like pattern. As a result, a phylogenetic network is often viewed as
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an amalgamation of gene trees. This viewpoint leads to the notion of a rooted phylogenetic tree
displayed (intuitively, embedded) by a phylogenetic network. Several algorithms have been imple-
mented to compute a phylogenetic network that displays a given collection of rooted phylogenetic
trees. These algorithms include the Autumn algorithm [7]|, TreeKnit [1|, ALTS [16], FHyNCH |[3],
and PhyloFusion [17|. Relatedly, there has been substantial work on questions such as whether a
phylogenetic network is (uniquely) determined by its displayed rooted phylogenetic trees [6, 9, 14],
whether a particular rooted phylogenetic tree is displayed by a phylogenetic network [8, 13|, and
whether the number of rooted phylogenetic trees displayed by a given phylogenetic network can be
computed in polynomial time [11]. It is the last of these questions that is the attention of this paper.
In general, it is #P-complete to count the number of rooted binary phylogenetic trees displayed
by a rooted binary phylogenetic network [11] and, despite some recent progress 2], it remains an
open problem on whether this computational hardness extends to counting the number of rooted
binary phylogenetic trees displayed by a tree-child network, a particular, but well studied, type of
phylogenetic network. In this paper, we focus on obtaining a sharp lower bound for the number of
rooted binary phylogenetic trees displayed by a tree-child network. We complete the introduction
by stating the main result of the paper. Formal definitions are given in the next section.

Let AV be a rooted binary phylogenetic network on X, and suppose that N has k reticulations.
It is well-known that if A/ is normal, then A displays exactly 2 rooted binary phylogenetic X-
trees [13, 15]. (This is the maximum possible number of rooted binary phylogenetic trees displayed
by N.) However, if N is tree-child and we allow N to have underlying 3-cycles, then N could
have many reticulations but still display only one rooted binary phylogenetic X-tree. What can we
say if A is tree-child and has no underlying 3-cycles? The number of rooted binary phylogenetic
trees displayed can still be strictly less than 2. But how much less? In this paper, we establish
the following theorem, the main result of the paper. In the statement of the theorem, note that a
rooted binary tree-child network with n leaves has at most n — 1 reticulations and an octopus is a
particular type of tree-child network that we describe in the next section. Also, for a rooted binary
phylogenetic network N, we let T'(N) denote the set of (distinct) rooted binary phylogenetic trees
displayed by N.

Theorem 1.1. Let N be a rooted binary tree-child network with n leaves, 0 < k < n — 1 reticu-
lations, and no underlying 3-cycles. If k = 0, then |T(N)| = 1, while if k = 1, then |T(N)| = 2.
Furthermore, if k > 2, then

(i) |[T(N)| > 2" if k is even, and

(ii) |T(N)| > 27352% if k is odd.

Moreover, for all k > 2, we have that |T(N)| = 2" and k is even (respectively, |T(N)| = %2’“/2

and k is odd) if and only if N is an octopus.

The paper is organised as follows. In the next section, we give some necessary definitions that
clarify the terminology in the statement of Theorem 1.1 and are used throughout the rest of the
paper. Section 3 establishes some preliminary lemmas, while Section 4 consists of the proof of
Theorem 1.1.



2 Preliminaries

Throughout the paper X denotes a non-empty finite set.

Phylogenetic networks. A rooted binary phylogenetic network on X is a rooted acyclic directed
graph with no parallel arcs such that

(i) the (unique) root has in-degree zero and out-degree two,
(ii) the set of vertices of out-degree zero is X,

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and out-degree
one.

For technical reasons, if |X| = 1, then we allow A to consist of the single vertex in X. The set
X is call the leaf set of N'. The vertices of in-degree one and out-degree two are tree vertices,
while the vertices of in-degree two and out-degree one are reticulations. The arcs directed into a
reticulation are called reticulation arcs; otherwise, an arc is a tree arc. If (u,v) is a reticulation
arc in N and there is a directed path from u to v distinct from the path consisting of (u,v), then
(u,v) is a shortcut. A reticulation v normal if neither reticulation arc directed into v is a shortcut.
A 2-connected component of N is a maximal (underlying) subgraph of N that is connected and
cannot be disconnected by deleting exactly one of its vertices. We call a 2-connected component
trivial if it consists of a single edge, and non-trivial otherwise. Furthermore, for brevity, we call
an underlying 3-cycle of N a 3-cycle. A rooted binary phylogenetic X -tree T is a rooted binary
phylogenetic network on X with no reticulations. Since all phylogenetic networks and phylogenetic
trees in this paper are rooted and binary, we will refer to a rooted binary phylogenetic network and
a rooted binary phylogenetic tree as a phylogenetic network and a phylogenetic tree, respectively.

A phylogenetic network N on X is tree-child if each non-leaf vertex is the parent of a tree vertex
or a leaf. Equivalently, a phylogenetic network N is tree-child precisely if no tree vertex is the
parent of two reticulations and no reticulation is the parent of another reticulation [12]. As an
immediate consequence of the definition, if u is a vertex of a tree-child network N, then there is a
directed path from u to a leaf £ of N such that except for £ and possibly u, every vertex on the path
is a tree vertex. We call such a path a tree path (for u). As a result of this tree-path property, if
N is a tree-child network with n leaves, then N has at most n — 1 reticulations, and this bound is
sharp [4]. Also observe that if C is a 3-cycle of a tree-child network, then the arc set of C' consists of
two reticulation arcs directed into the same reticulation, one of which is a shortcut, and a tree arc.
A tree-child network is normal if it has no shortcuts. To illustrate, in Fig. 1(i), N is a tree-child
network, but it is not normal as the arc (u,v) is a shortcut. As with all other figures in the paper,
arcs are directed down the page. It is directly because of shortcuts that the number of phylogenetic
trees displayed by a tree-child network with & reticulations is not necessarily 2.

A lemma that we will frequently and freely use is the following [5].

Lemma 2.1. Let N be a tree-child network with root p and let e = (u,v) be a reticulation arc of
N. Then the phylogenetic network obtained from N by deleting e and either
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Fig. 1: (i) A tree-child network N" on X = {x1, 2, 3,74} and (ii) a phylogenetic X-tree T displayed by
N.

(i) suppressing the two resulting vertices of in-degree one and out-degree one if u # p, or

(ii) suppressing the resulting vertex of in-degree one and out-degree one, and deleting u if u = p
is tree-child.

To ease reading, for a tree child network A and reticulation arc e of A/, we denote by AN \e the
operation of deleting e and appropriately applying either (i) or (ii) of Lemma 2.1. We next describe
two particular types of tree-child networks that are central to this paper.

Tight caterpillar ladders and octopuses. Let N be a tree-child network with vertex set
{lo, 01,2, 3} U {ui, uf,v; i € {1,2,3}}. We call N a 3-tight caterpillar ladder if the arc set of N is

{(ugbué)’ (UIQ,Ug), (u3vu/1)’ (ulla u2)v (u27u1)7 (ul,fo)} U {(ugvvi)v (uivvi)v (Uivgi) S {1’ 2’ 3}}

Note that {£o, {1, 02, {3} is the leaf set of N'. The reticulation arcs (u1,v1), (ug,v2), (u},v1), (us, v3),
(uh, v2), and (uh, v3) are the rungs of the 3-tight caterpillar ladder. Under this ordering, we refer to
these rungs as the i-th rung so that, for example, (u1,v1) and (uj,v3) are the first and last rungs
of N, respectively. Furthermore, a tree-child network is a 2-tight caterpillar ladder if it can be
obtained from a 3-tight caterpillar by deleting, in this instance, uj, vs, and ¢3, and suppressing the
resulting vertex of in-degree one and out-degree one. Here, for example, the first and last rungs are
the arcs (u1,v1) and (u, ve), respectively. For illustration, a 2-tight and a 3-tight caterpillar ladder
are depicted in Fig. 2.

Let k € {2,3}. The core of a k-tight caterpillar ladder consists of its non-pendant arcs. Fur-
thermore, let N be a k-tight caterpillar ladder and let N’ be a tree-child network. We say that N
is a k-tight caterpillar ladder of N' if, up to isomorphism, the core of N can be obtained from N’
by deleting vertices and arcs.

Now let A be a tree-child network on X with n leaves and k reticulations, where k # 1. We
call N an octopus if either k is even and every non-trivial 2-connected component of N is the core
of a 2-tight caterpillar ladder, or k is odd, exactly one non-trivial 2-connected component of A is
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Fig. 2: A 2-tight (left) and a 3-tight (right) caterpillar ladder.
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Fig. 3: Two octopuses A/ and N’ with 10 leaves and 7 reticulations.
the core of a 3-tight caterpillar ladder, and every other non-trivial 2-connected component of A is

the core of a 2-tight caterpillar ladder. To illustrate, in Fig. 3, AV and N’ are both octopuses with
10 leaves and 7 reticulations.



Displaying. Let N be a phylogenetic network on X and let 7 be a phylogenetic X-tree. We
say that N displays T if a subdivision of 7 can be obtained from N by deleting vertices and arcs.
Such a subdivision is an embedding of T in N. If N is a tree-child network and 7 is a phylogenetic
tree displayed by N, then every embedding of 7 contains all of the tree arcs of NV and, for each
reticulation v, exactly one reticulation arc of N directed into v. Conversely, if F' is a subset of
the arcs of N that consists of all tree arcs and, for each reticulation v, exactly one reticulation arc
directed into v, then F is an embedding of a phylogenetic tree displayed by A/ [12]. Thus to describe
an embedding of 7 in A it suffices to specify the reticulation arcs of N in the embedding. Such arcs
are used by T. Also, as a reminder to the reader, we use T'(N') to denote the set of phylogenetic
X-trees displayed by N. To illustrate the notion of display, in Fig. 1, N displays 7, where an
embedding of 7 in N is shown as solid arcs. Note that there is one other distinct embedding of T

in V.

Now let A/ be a phylogenetic network on X. An arc e of N is non-essential if, for every
phylogenetic X-tree T in T'(N), there is an embedding of 7 in A that avoids e. The next lemma
is a special case of a more general result established in [10].

Lemma 2.2. Let N be a tree-child network with n leaves and k reticulations, where k € {2,3}, and
let e be an arc of N. Then e is non-essential if and only if e is either the first or last rung of a 2-
or 3-tight caterpillar ladder of N.

Phylogenetic trees. Let 7 be a phylogenetic X-tree, and let X’ be a subset of X. The minimal
subtree of T connecting the elements in X’ is denoted by 7 (X'). Furthermore, the restriction of T
to X' is the phylogenetic X’-tree obtained from 7 (X’) by suppressing vertices of in-degree one and
out-degree one. A subtree of T is pendant if it can be obtained by deleting an edge of 7, in which
case the leaf set of this pendant subtree is a cluster of 7. Furthermore, two phylogenetic X-trees
T1 and T3 are isomorphic if there is a map ¢ : V(71) — V(T2) such that, for all x € X, we have
o(r) = x and, if (u,v) is an arc of Ty, then (¢(u), p(v)) is an arc of Ts.

A caterpillar is a phylogenetic tree whose leaf set can be ordered z1,zo,...,z, so that x; and
x9 have the same parent and, for all i € {3,4,...,n}, the parent of x;_; is a child of the parent of
x;. We denote such a caterpillar by (z1,x2,...,2,). A double caterpillar is a phylogenetic tree such
that its maximal pendant subtrees are both caterpillars. If (x1,22,...,2;) and (y1,¥2,...,y;) are
two such caterpillars, then we denote the double caterpillar by {(xl, To, ..., i), (Y1, Y2, ... ,yj)}.

3 Some lemmas

In this section we establish some lemmas that will be used in the proof of Theorem 1.1. For the
first lemma, recall that a tree-child network with n leaves has at most n — 1 reticulations. Let n > 1



and 0 < k < n — 1 be two non-negative integers. For all n and k, set

1, if k= 0;

Hn k) = 2, if k= 1;
)= 2k if k> 2 and k is even;
23f2k/2 if k> 3 and k is odd.

Observe that, for all n and k, the value ¢(n, k) is the bound given in the statement of Theorem 1.1.
The next lemma establishes some basic properties of the numbers t(n, k). These properties are
repeatedly used in the proof of Theorem 1.1.

Lemma 3.1. The following identities hold:

) For all n > 2, we have t(n,1) =2 -t(n,0) and, for all n > 3, we have t(n,2) =2 - t(n,0).
) For all n > 4, we have t(n,3) =t(n,2) +t(n,0) < 2-t(n,1) =t(n,2) +t(n,1).

(i) For alln >4 and 2 < k <n — 2, we have t(n,k) < t(n,k+ 1).

) Foralln >4 and 3 <k <n—1, we have t(n,k) < 4-t(n,k—3).

) Foralln>5and4<k<n-1,

t(n,k) =2-t(n,k —2) <t(n,k—1)+t(n,k—2).

(vi) Foralln>4 and3 <k <n-—1, and k is odd,
t(n, k) =t(n,k—1)+t(n,k—3)
while, for alln >5 and 4 <k <n—1, and k is even,

t(n,k) <t(n,k—1)+t(n,k—3).

Proof. The proof of (i) is trivial. For the proof of (ii), if n > 4, then

t(n,3) = 5252% =3 =t(n,2) + t(n,0) <4 =2-1(n,1) = {(n,2) + t(n,1).

For the proof of (iii), if n > 4,2 < k <n —2, and k is even, then

%219-/2.\/5_ 2}2(k+1)/2_ (n,k—i—l)

while if n >4, 2 <k <n — 2, and k is odd, then

tn, k) =2"* < 3.2 =

t(n, k) = 2;}2% 3.20792 g 9TV Z "V gy 4 1),

Now consider (iv). If n > 4 and k = 3, then ¢(n,3) =3 <4 =4-t(n,0) and, if n > 5 and k = 4,
then t(n,4) =4 <8 =4-t(n,1), so we may assume that n > 6 and 5 < k < n—1. If k is odd, then

t(n k) = 2=2"2 = 3. 2% 792 <4 9"V 4 t(n k- 3),

2\/



while if £ is even, then

tn k) =2 =220 <320 7R =4 B9t TIR — 4 y(n, k- 3).

For the proof of (v), if n > 5,4 <k <n—1, and k is even, then, by (iii),
tn, k) =27 =2.2" 722 =9 t(n,k —2) < t(n,k —1) +t(n, k — 2).
Ifn>54<k<n-—1,and k is odd, then, by (iii),

t(n, k) = ;3=2"" =2,

> 39" DR — 9. t(n,k—2) < t(n,k—1)+t(n,k—2).

2V2

Lastly, consider (vi). If n > 4 and k = 3, then
t(n,k —1)+t(n,k —3) =t(n,2) + t(n,0) = t(n,3).
Furthermore, if n > 6, 3 <k <n—1, and k is odd, then, as kK — 1 and k — 3 are even,
tnk—1) +t(n,k —3) = 2% V2 20 =2 — 9t =92 (9 4 1)

_ 3
—3.90k=3f _ 2\7@?/2 = t(n, k).

Ifn>54<k<n-—1,and k is even, then, as k — 1 and k — 3 are odd,

k= 1) e = 3) = 552" g2 = 2R )
3 —
> 23»2(19 3 _ k/2 — (n, k)

O

The next lemma establishes the number of distinct phylogenetic trees displayed by an octopus.

Lemma 3.2. Let N be an octopus with n leaves and k # 1 reticulations. Then |T'(N)| = t(n, k).

Proof. The proof is by induction on k. Evidently, if & = 0, then |T'(N)| = 1 = ¢(n,0). Furthermore,
if k = 2, then N\ contains precisely one non-trivial 2-connected component which is the core of a
2-tight caterpillar ladder and it is easy to verify that |T'(N)| = 2 = t(n,2). Similarly, if k¥ = 3, then
N contains precisely one non-trivial 2-connected component which is the core of a 3-tight caterpillar
ladder and |T'(N)| = 3 = ¢(n, 3). Thus the lemma holds for k € {0, 2, 3}.

Now suppose that k£ > 4, in which case n > 5, and the lemma holds for all octopuses with at
most k — 1 reticulations. Let v be a reticulation of N' with the property that all paths starting at
v are tree paths, that is, there are no other reticulations among the descendants of v. As N is an
octopus, v is a reticulation of either a 2-tight or 3-tight caterpillar ladder, say A, of N/.

Assume that N’ is a 2-tight caterpillar ladder of N'. Let N7 be the tree-child network obtained
from N by deleting the third and last rungs of A/, and let N5 be the tree-child network obtained



from N by deleting the first and last rungs of N’. Clearly, A7 and N5 are octopuses with n leaves
and k — 2 reticulations. Moreover, observe that T'(N7) N T(N2) is empty and, if 7 € T(N), then
either T € T(N7) or T € T(N2). Thus, by induction and Lemma 3.1(v),

IT(N)| = [ TN+ |[T(N2)| = t(n, k —2) + t(n, k —2) = t(n, k).

Now assume that N is a 3-tight caterpillar ladder of A/, in which case, k is odd and so k > 5.
Let N1, Na, and N3 be the octopuses on k — 3 reticulations obtained from N by deleting the third,
fifth, and last rungs of A, the first, fifth, and last rungs of N/, and the second, third, and last
rungs of A7, respectively. It is easily verified that T'(N;) N T(N;) = 0 for all distinct 4,5 € {1, 2, 3}.
Furthermore, if 7 € T(N), then T € T(N1) UT(N2) UT(N3). Therefore, as k is odd, it follows by
induction that

TN = TN+ ITN2)] + [T (N5))
=t(n,k—3)+t(n,k—3)+t(n,k—3)
=3.2%7 92 = %2’“/2 = t(n, k).

This completes the proof of the lemma. O

For the proof of Theorem 1.1, we need to understand what happens if we delete a reticulation
arc of a tree-child network and create a 3-cycle. The next three lemmas consider tree-child networks
and 3-cycles.

Lemma 3.3. Let N be a tree-child network with no 3-cycles, and let e be a reticulation arc of N.
Suppose that N'\e has a 3-cycle with reticulation arcs f and f'. Then each of N\{e, f} and N'\{e, f'}

is tree-child and has no 3-cycles.

Proof. Consider N'\e and denote the arcs of the 3-cycle of M\e as f = (u1,v), f’' = (uz,v), and
h = (u1,u2). In particular, v is a reticulation, and f is a shortcut of N' and A'\e. Note that N
and N\e contain the arcs f and f’, but A/ does not contain h. Instead, N contains two arcs, say
hi = (u1,s) and hy = (s,us2), such that e = (s,t) is the reticulation arc that is deleted to obtain
M\e from N. We now argue that both N'\{e, f} and N'\{e, f'} are tree-child and have no 3-cycles.

First, consider M'\{e, f} and suppose that it contains a 3-cycle, say C'. Then C contains the arc
(p,u2), where p is the unique parent of u; in A/. The two remaining arcs of C' are reticulation arcs,
say (p,r) and (ug,r), where r # v is a reticulation in A'\{e, f} and also in N. Since there is also
an arc (uz,v) in N and v is a reticulation, this implies that both children of us are reticulations,
contradicting the fact that N is tree-child. Thus NM\{e, f} is tree-child and has no 3-cycle.

Next, consider N'\{e, f'} and suppose that it contains a 3-cycle, say C’. Then C’ contains the
arc (u1,w), where w # v is a child of ug in N. As N is tree-child, w is a tree vertex. Thus the
two remaining arcs of C” are reticulation arcs incident with the same reticulation, say 7’ # v. But
then (u1,7’) is an arc of C’ and so, as 1’ is a reticulation of N, the vertex u; is the parent of two
reticulations in N, a contradiction as N is tree-child. Therefore M\{e, f’} is tree-child and has no
3-cycles, thereby completing the proof of the lemma. O



Lemma 3.4. Let N be a tree-child network with no 3-cycles, and let e = (u,v) be a reticulation
arc of N such that, amongst all reticulation arcs of N', w has minimum distance to the root of N .
Then N\e is tree-child and has no 3-cycles.

Proof. If N'\e has a 3-cycle, then the parent p of u in N has a child that is a reticulation. But then
p is closer to the root of A than u, a contradiction. Hence A/\e has no 3-cycles. O

The last lemma in this section is a technical lemma that is used in the inductive proof of
Theorem 1.1. Recall that a reticulation is normal if neither reticulation arc directed into it is a
shortcut.

Lemma 3.5. Let N be a tree-child network with n leaves, k > 2 reticulations, and no 3-cycles.
Suppose that N has a normal reticulation and, for all tree-child networks N with n leaves, k' < k
reticulations, and no 3-cycles, |T(N")| > t(n,k"). Then |T(N)| > t(n, k).

Proof. Let v be a normal reticulation of A/, and let e; and e denote the reticulation arcs directed
into v. The proof is partitioned into three cases depending on whether zero, one, or two of A'\ey
and AM\es has a 3-cycle. We establish the lemma for when each of A'\e; and N'\es has a 3-cycle.
The other two cases are proved similarly, but are less complicated.

Let e; = (u1,v) and e = (u2,v), and let m be a leaf at the end of a tree path starting at v. For
each i € {1,2}, let w; and w!} denote the child of u; that is not v and the parent of u;, respectively.
Since N is tree-child and each of AM\e; and N\e2 has a 3-cycle, for each i, the vertices w; and w]
are tree vertices and the parent of a reticulation v;. For each i, let f; = (w;,v;) and f/ = (w}, v;),
and let m; be a leaf at the end of a tree path starting at v;. Furthermore, let ¢; be a leaf at the end
of a tree path starting at w;. Observe that ¢1, ¢2, m, m1, and mo are distinct as v is normal and
neither e; nor es is a shortcut.

Let T € TW). If T uses {eq, f1,f5} or {es, fi, fa}, then TI|{l1,lo,m,mi,ma} =
{(fl,ml),(m,ﬁg,mg)} and T{l1,la,m,m1,ma} = {(fl,ml),(fg,mg,m)}, respectively. On the
other hand, if 7 uses {e1, f2, f} or {e1, f2, f1}, then T|{l1, €2, m,m1,ma} = {(¢1,m,m1), (l2,m2)}
and T|{l1,le, m,m1, ma} = {(51, my,m), ({2, mz)}, respectively. It now follows that

TN = 1TV e, f1. 2D+ ITWN\ e, f1, 51+ TN\ {ez, fo, fi})] + [TV \{e2, fo, S},

and so, by Lemmas 3.1(iv) and 3.3, and the assumption in the statement of the lemma,
| T(N)| > t(n,k—3) +t(n,k—3)+t(n,k—3)+t(n,k—3) > t(n,k).

This completes the proof of the lemma. O

4 Proof of Theorem 1.1

The proof of Theorem 1.1 is inductive and relies on first showing that the theorem holds for all
k €{0,1,2,3}, the base cases. The next lemma establishes this base case.
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Lemma 4.1. Let N be a tree-child network with n leaves, k € {0,1,2,3} reticulations, and no
3-cycles. Then [T(N)|=1ifk=0,|TN)|=2ifk=1, and

2, ifk=2
TN = L
3, ifk=3.
Furthermore, if |T(N)| =2 and k =2 or [T(N)| =3 and k = 3, then N is an octopus.

Proof. Evidently, if k = 0, then |T'(N)| = 1. Furthermore, as N has no 3-cycles, if k = 1, then
|T(N)| = 2, so the lemma holds for & € {0,1}. For the remainder of the proof, we may assume

without loss of generality that, amongst all tree-child networks with n leaves, k € {2, 3} reticulations,
and no 3-cycles, |T(N)| is minimised, in which case, by Lemma 3.2, |T(N)| < t(n, k).

First, consider when k = 2. Let f = (u,v) be a reticulation arc of A/ such that, amongst all
reticulation arcs of A, the vertex v has minimum distance to the root of N'. By Lemma 3.4, N\ f
is tree-child and has no 3-cycles. Therefore, as A\ f has exactly one reticulation, it follows by the
previous base case that |[T'(N\ f)| = 2. Furthermore, by Lemma 3.2, |T(N)| < t(n,2) = 2, and so

[TN)| = [TN\f)] = 2.

Thus f is non-essential, and, by Lemma 2.2, f is the first or last rung of a 2-tight caterpillar ladder
of N (in fact, by the choice of f, it is the last rung). As k = 2, this implies that A/ is an octopus,
thereby completing the proof for when k& = 2.

Now consider when k = 3. Again, let f = (u,v) be a reticulation arc of A/ such that, amongst all
reticulation arcs of NV, the vertex u has minimum distance to the root of /. Lemma 3.4 implies that
N\ f is tree-child and has no 3-cycles. Furthermore, as '\ f has exactly two reticulations, it follows
by the previous base case that |[T'(N\f)| > 2. Additionally, by Lemma 3.2, |T'(N)| < ¢(n,3) = 3,
and so |T'(N)| € {2,3}.

First, suppose that |T(N)| = 2. Then |T(N)| = [T(N\f)| = 2, and so f is non-essential. By
Lemma 2.2 and the choice of f, we have that f is the last rung of a 2-tight or 3-tight caterpillar
ladder of A, If f is the last rung of a 3-tight caterpillar ladder, then A/ is an octopus and |T'(N)| = 3,
a contradiction as |T'(N)| = 2. Therefore f is the last rung of a 2-tight caterpillar ladder of N with
reticulations, vy and ve say. Let vz denote the third reticulation in A/, and let g; and go be the
reticulation arcs of A directed into vs.

Assume that either A'\g; or N\ gz has no 3-cycle. Without loss of generality, assume N\ g; has
no 3-cycle. By the previous base case, |T'(NM\g1)| > 2 and, by assumption, |T(N)| = 2, implying
that [T(N)| = |T(NM\g1)| = 2, and so ¢; is non-essential. Therefore, by Lemma 2.2, g; is either the
first or last rung of a 2-tight or 3-tight caterpillar ladder of N'. However, as k = 3 and N contains a
2-tight caterpillar ladder with reticulations v; and v, and vg & {ve, v3}, this is not possible. Thus,
for each i € {1, 2}, the tree-child network N'\g; has a 3-cycle. But neither 3-cycle involves v; nor vo
as they are the reticulations of a 2-tight caterpillar ladder of A/, and so this is also not possible. In
summary, we cannot have |T'(N)| = 2, and so |[T(N)| = 3. It remains to show that A is an octopus.
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Suppose that |T'(N)| = 3. By Lemma 3.4, N\ f is tree-child and has no 3-cycles. Furthermore,
by the previous base case, |T(N\f)| > 2 and so, as |T(N)| = 3, we have [T(N\f)| € {2,3}. We
now distinguish two cases depending on [T'(N\ f)|:

(a) If [T(N\f)| = |T(N)| = 3, then f is non-essential and, by Lemma 2.2 and the choice of f, it
is the last rung of a 2-tight or 3-tight caterpillar ladder of N. If f is the last rung of a 3-tight
caterpillar ladder of N, then N is an octopus, and so we may assume that f is the last rung of
a 2-tight caterpillar ladder of N with reticulations v; and v9, and core arcs

{(u/% u/1)7 (u,bu?)v (u2>u1)a (ullavl)7 (ulv U1)7 (u,27v2)7 (u2>v2)}'

Note that f = (u,v) = (uh,v2). Let vs be the third reticulation of A" and let g1 = (us,v3) and
g2 = (uf,v3) denote the reticulation arcs of N directed into vs. For each i € {1,2,3}, let m;
denote a leaf at the end of a tree path starting at v;. Furthermore, let a, b, and ¢ denote a leaf
at the end of a tree path starting at wuq, ug, and uj, respectively. Note that mi # ma # msg,
a #mi, a # ma, b # ms, and ¢ # ms. If a = ms, then there is a tree path from vz to u} to a
in V, contradicting the choice of f. Thus a # mg3. In summary,

a #my # mg # ms, b # ms, and c # mg.

We now consider two subcases:

(i) Assume that b # c¢. By making the appropriate choices of reticulation arcs incident with
v1, v9, and vs, it is easily seen that N displays phylogenetic trees 71, T2, T3, and T3 such
that

7-1‘{@7m1am2} =
7-2|{a7m1am2} =
Tsl{a, m1, ma} =

Tal{a,m1, my} =

a,mi, msa
and T2|{b,c,ms3} =
and T3]{b, c,mz} =
and Ty4|{b,c,m3} =

a, my, m2

a, m2, Mmi

AA/_\/_\
~— ~— ~— —

a, Mz, M1

Since b # ¢, we have that T1, Tz, T3, and Ty are distinct, and so |T'(N)| > 4, a contradiction.

(ii) On the other hand, if b = ¢, then one of g; and g9, without loss of generality say gs, is
a shortcut. As N has no 3-cycles, the vertex uj has a child w that is neither ug nor vs.
Let ¢ be a leaf at the end of a tree path that avoids uz and either starts at w if w is not
a parent of a reticulation or starts at such a reticulation. Observe that ¢ ¢ {b,m3}. By
making the appropriate choices of reticulation arcs incident with v, ve, and vg, it is again
easily seen that N displays phylogenetic trees T/, 75, T4 and T, such that

and T{|{b, ¢, m3} = (ms,b, £),
and T35 |{b, ¢, m3} = (mg, ¢, b)
and T3 |{b, ¢, m3} = (ms3,b, £),
and T/ |{b,¢,m3} = (ms3,£,b).

T{{a,m1,ma} = (a,my, ma

(
T51{a,mi,ma} = (a,m1, ma
(
(

)
7E’>/|{aa may, m2} =

7:1/|{a/7 m17m2} = a,mao, M1

a,ma, mi

~— — ~— ~—

Since b, ¢, and mg are distinct, it follows that |T'(N')| > 4, another contradiction.
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Hence if |T(N\f)| = |T(N)| = 3, then N is an octopus.

If |T(N\f)| = 2, then, by the previous base case, N\ f is an octopus. In particular, N\ f
contains a 2-tight caterpillar ladder, say N”.

Assume that N is not a 2-tight caterpillar ladder of M. Then f = (u,v) is incident with one
of the core arcs of N7 in N/. If the head v of f is incident with such an arc, then N is not
tree-child, a contradiction. If instead the tail u of f is incident with one of the core arcs of N’
in NV, then this contradicts the choice of f. So N’ is a 2-tight caterpillar ladder of A" and f is
not a core arc of this ladder.

Let v; and vy denote the reticulations of the 2-tight caterpillar ladder N’ of N, and assume
that its core arcs are given by

{(UIQ, u/1)7 (u/17u2)7 (UQ,U1), (ullvvl)7 (uh Ul)? (u/2702)7 (u27v2)}'

Furthermore, let v3 be the third reticulation of N and let g1 = (us,v3) and g2 = (uj,v3) denote
the reticulation arcs of N directed into vs. For each i € {1,2,3}, let m; denote a leaf at the end
of a tree path starting at v;, and let a, b, and ¢ denote a leaf at the end of a tree path starting
at uy, us, and uh, respectively.

If a # ma3, we can apply the same arguments as in Cases (a)(i) and (a)(ii) to conclude that
|T(N)| > 4, a contradiction. So we may assume that a = mg, in which case, by the choice
of f, there is a tree path from vs to uf to @ in N'. We now make a few observations. First,
m1 # me # a. Second, if b = my, the path from vy to m contains a reticulation, contradicting
the fact that it is a tree path. Therefore b # mq and, similarly, b # mo, b # mg, ¢ # mq,
¢ # my, and c¢3 # m3. In summary,

mi # ma # m3, b & {m1,ma,ms}, ¢ & {mi, ma, ms}, and a = ms.
As in Case (a), we consider two subcases:
(i) If b # ¢, then, as b,c ¢ {a,m1,mo}, it follows as in Case (a)(i) that |T(N)| > 4, a

contradiction.

(ii) On the other hand, if b = ¢, then, one of g; and g2, without loss of generality say gs, is
a shortcut. Since N has no 3-cycles, the vertex uj has a child w that is neither ug nor
vs. Let £ be a leaf at the end of a tree path avoiding u/, and either starting at w if w is
not the parent of a reticulation or starting at such a reticulation. Observe that such a leaf
exists and ¢ ¢ {b, m3}. By the placement of v3, we have ¢ ¢ {a,m1,ma}. It is now easily
checked that A displays phylogenetic trees T{", 75', 73" and T’ such that

7-1//’{%m17m2} =
75//’{@7m17m2} =
75//’{@7m17m2} =

H,’{avml?mQ} =

a,my,ms) and T{"|{a,b,¢} = (a,b,?),
a,my,ms) and T5'|{a,b,¢} = (b, 4, a),
a,mg,my) and T3 |{a,b,¢} = (a,b, 1),
) (b,4,a).

~~ I~/

a,mg,my) and T}'[{a,b, ¢} = (b,
Since a, b, and £ are distinct, it follows that |T'(N')| > 4, a contradiction.

Hence |T'(N\f)| # 2.
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This completes the proof of the lemma. O

Proof of Theorem 1.1. Without loss of generality, we may assume that, amongst all tree-child net-
works with n leaves, k reticulations, and no 3-cycles, |T'(N)| is minimised, in which case, by
Lemma 3.2, |T(N)| < ¢(n,k). By Lemma 4.1, the theorem holds for £ € {0,1,2,3}. Now sup-
pose that k > 4, and so n > 5, and the theorem holds for all tree-child networks with n leaves, at
most k — 1 reticulations, and no 3-cycles.

Let pg be a tree vertex of A/ that is a parent of a reticulation, say p4, so that, amongst all
such tree vertices, pg has maximum distance to the root. Let A and B denote the leaf sets of the
pendant subtrees of N obtained by deleting the outgoing arc of p4 and the outgoing arc of pg that
is not (pp,pa), respectively. By maximality, A and B are well defined. Let a € A and b € B, and
let e; and e denote the reticulation arcs of N directed into p4, where ey = (pp, pa). Note that e; is
not a shortcut. Let g4 denote the parent of p4 that is not pp, that is e = (¢a,pa). By Lemma 3.5
and the minimality and induction assumptions, p4 is not normal and so e is a shortcut. With this
setup, the remainder of the proof is to show that e; is the first rung of a 2-tight or 3-tight caterpillar
ladder of A/, and then use induction to show that N is an octopus.

Let P, = qa,ui,us,...,u,, pg be a directed path from g4 to pg in A. Since AN has no 3-cycles,
we have r > 1. We next show that, for all ¢ € {1,2,...,r}, the vertex u; is a tree vertex and the
parent of a reticulation. Note that this will imply that P, is the unique directed path from g4 to
pp. In fact, we eventually show that r = 1.

Consider ui. Since N is tree-child, uq is not a reticulation. Assume that there is a tree path
from wu; to a leaf £ avoiding pp. Let T € T(N). Then T uses e; if and only if T|{a,b, ¢} = (a,b,?),
and 7 uses ey if and only if either T|{a,b, ¢} = (a,£,b) or T|{a,b,¢} = (b,¢,a). In particular, if 77,
T2 € T(N), and Tq uses e; and Tz uses ey, then T and T3 are not isomorphic (an argument that
we use repeatedly throughout the proof). Thus

TN = IT(NM\e2)| + [T(N\e1)].

If M\eg has a 3-cycle and f is a reticulation arc of this 3-cycle, then, by Lemma 3.3, A'\{ea, f} has
no 3-cycles. Therefore, as N'\ej has no 3-cycle, it follows by induction and Lemma 3.1(v) that

IT(N)| > t(n,k — 1) + t(n, k — 2) > t(n, k),

a contradiction to the minimality of |T'(N)|. Thus there is no such tree path from wu;. Instead,
as N is tree-child, all tree paths from wu; to a leaf traverse pp. This implies that P, has no
reticulations and, for all ¢ € {1,2,...,r}, the vertex u; is a parent of a reticulation, v; say. For
each i € {1,2,...,r}, let m; denote a leaf at the end of a tree path starting at v; and observe
that m; ¢ AU B. Furthermore, let u; denote the second parent of v;, and let f; = (u;,v;) and
[l = (u},v;). By Lemma 3.5 and the minimality and induction assumptions, v; is not normal for all
i, and so either f; or f/ is a shortcut.

4.1.1. For alli € {1,2,...,r}, the arc f] is a shortcut and there is a directed path from u} to qa.
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Assume that, for some 4, both u; and ] lie on P,. Let T € T(N). If T uses ej, then
Tl{a,b,m;} = (a,b,m;). But, if T uses eq, then T |{a,b, m;} = (b,m;,a). Therefore

TN = I T(NM\e2)| + [T(NM\e1)]-

Noting that A'\es may contain a 3-cycle, in which case, by Lemma 3.3, deleting one further arc
results in a tree-child network with no 3-cycles, it follows by induction and Lemma 3.1(v) that

T(N)| > t(n,k—2)+t(n,k—1) > t(n, k).

Hence, for all i € {1,2,...,r}, the vertex u; does not lie on P, and so, as v; is not normal, (u},v;)
is a shortcut and there is a directed path from ) to g4 for all . This proves (4.1.1).

4.1.2. r =1.

Assume that r > 2. Let T € T(N). If T uses e, then AU B is a cluster of 7. Also, if
T uses {eq, f1, f3} or {eq, f{, f2}, then T|{a,b,mi,ma} = (b,my,a,ma) and T|{a,b,mi,ma} =
(b, ma, a, my), respectively. Observing that if 7|{a,b,m1, ma} is isomorphic to either (b, mi,a, ma)
or (b,mg,a,my), then AU B is not a cluster of T, it follows that

TN = | T(M\e2)| + TN \{ex, f1, 2] + TN \{er, fi, f2})].

Say N \e2 has no 3-cycle. If k > 6, then, as N'\{ey, f1} and M\{ey, fo} have no 3-cycles, it follows
by induction and Lemmas 3.1(v) and 3.3 that

T(N)| > t(n,k—1)+t(n,k—4) 4+ t(n, k —4)
=t(n,k—1)+t(n,k—2)
> t(n, k).

Furthermore, if £ = 4, then

|IT(N)| > t(n,3) +t(n,0) +t(n,0) =3+1+1>4=1t(n,4)
while, if £ =5, then

IT(N)| > t(n,4) +t(n,1) +t(n,1) =44+2+2> 6 =t(n,5).

On the other hand, if A\ ez has a 3-cycle, then, by construction, this 3-cycle contains the reticulation
arcs f1 and f, and so N\ f] has no 3-cycles. Thus, if £ > 6, then, by induction and Lemmas 3.1(v)
and 3.3,

ITN)| > t(n,k—2)+t(n,k —3) +t(n,k—4)
>t(n,k—2)+tn,k—2)
=t(n, k).

Also, if k£ = 4, then

IT(N)| > t(n,2) +t(n,1) +t(n,0) =2+2+4+1>4=t(n,4)
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while, if £ =5, then
IT(N)| > t(n,3) +t(n,2) +t(n,1) =3+2+2>6=1t(n,5).
These contradictions to the minimality of |T(N)| imply that » = 1, thereby proving (4.1.2).

To simplify notation, set u = uy, v’ =}, v =v1, my =my, fu = fi1, and f, = f].

4.1.3. If (v/,q4) is an arc of N, then N is an octopus.

Assume that (u/,q4) is an arc of N. Let T € T(N). If T uses {e1, fu}, then T|{a,b,m,} =
(a,b,my), while if T uses {ea, f,}, then T|{a,b,my,} = (b, my,a). So

IT(N)| > TN \{ez, fu})| + TN \{e1, fu})I-
By induction and Lemma 3.1(v) and 3.3,
IT(N)| > t(n,k—2)+t(n,k—2) =t(n,k).
Therefore, as |[T'(N)| < t(n, k),
IT(N)| =2-t(n,k —2) =t(n, k). (1)

We now show that A is an octopus. Since {v, g4, u,pp,pa, v} induces the core of a 2-tight caterpillar
ladder of AV, it follows by Lemma 2.2 that f! is non-essential. Thus

TN = [TN\fo)l-
In turn, it is now easily checked that
[ T(N)| = 2IT(N\{f, e2})]
and so, by (1),
[ TN\{ [ e2})| = t(n, k — 2).

Therefore, by induction, N\{f,,es} is an octopus, and so, by construction, N is an octopus. This
proves (4.1.3).

Now assume that (u’,qa) is not an arc of N'. Let P, = o/ t1,ta,...,ts,qa be a directed
path from u' to g4 in N. Similar to before, we will show that s = 1 and ¢; is the parent
of a reticulation. Consider ¢;. Since N is tree-child, ¢; is not a reticulation. Say that there
is a tree path from ¢; to a leaf ¢ avoiding ga. Let T € T(N). If T uses {ei, fu}, then
Tl{a,b,my, £} = (a,b,my, £). If T uses either {eq, f,,} or {ea, fI}, then T|{a, b, my, l} = (b, my,a,l)
and T |{a,b,my, €} € {(a,b,€,my),{(a,b), (my, L)} }, respectively. So

TNV 2 1TV \ez2, £ 1)+ ITW\{ex, LDl + 1TV \{ex, fu})]-

Now N\ez has no 3-cycle as v is not the parent of g4. Therefore, if k& > 5, it follows by induction
and Lemmas 3.1(v) and 3.3 that

T(N)| > t(n,k—3) +t(n,k —3)+t(n,k—2)
=t(n,k—1)+tn,k—2)
> t(n, k),
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a contradiction. Furthermore, if £ = 4, then
IT(N)| > t(n,1) +t(n,1) +t(n,2) =2+ 2+2 >4 = t(n, k),

another contradiction. Thus there is no such tree path from ¢1, and so all tree paths from t; to
a leaf traverse q4. In turn, this implies that P, has no reticulations, and so P, consists of tree
vertices and, for all i € {1,2,...,s}, the vertex t; is a parent of a reticulation, w; say. For each
i€{1,2,...,s}, let m; denote the leaf at the end of a tree path starting at w;. Also let ¢; denote
the second parent of w;, and let g; = (¢;, w;) and g} = (¢;,w;). By Lemma 3.5, and the minimality
and induction assumptions, either g; or ¢} is a shortcut for all .

4.1.4. For alli € {1,2,...,s}, the arc g, is a shortcut and there is a directed path from t} to u'.

Assume that, for some 4, both ¢; and ¢, lie on P,. Let T € T(N). If T uses {eq, f,},
then T |{a,b, my,m;} = (a,b,m;,m,). Furthermore, if 7 uses {e1, f,}, then T|{a,b, my,,m;} =
(a,b, my,m;), while if 7 uses {es, fu}, then T|{a,b, m,,m;} = (b, my,a,m;). Thus

TNV 2 1T\ e, ful) + TN\ {e2, fu D] + TN \{ex, £ 1)

Noting that N\ f, may contain a 3-cycle but A'\ea does not contain a 3-cycle, it follows by induction
and Lemmas 3.1(v) and 3.3 that, if £ > 5, then

T(N)| > t(n,k—2)+t(n,k—3)+t(n,k—3)
=t(n,k—2)+tn,k—1)
> t(n, k),

a contradiction. Also, if k = 4, then
IT(N)| > t(n,2) +t(n,1) +t(n,1) =2+2+2>4=1t(n,4),

another contradiction. Thus, for all i € {1,2,..., s}, the vertex ¢, does not lie on P, and so g, is a
shortcut and there is a directed path from ¢} to «’ for all 7. This proves (4.1.4).

4.1.5. s=1.

Assume that s > 2. Let T € T(N). If T uses e, then AU B is a cluster of 7. Also, if T uses
{ea, fu}, then T|{a,b,my,} = (b,my,a). Furthermore, if T uses {ea, fu, 91,95} or {ea, fu, 9,92},
then T |{a,b, my,mi,mo} = (b,my,a, mi,ms) and T|{a,b,my, mi,ma} = (b,my,a,ma,my), re-
spectively. Therefore

TN > [T(M\e2)| + [T(M\{ex, fi})] (2)
and

ITN)| > [T (M\e2)| + TN \{e1, fu, 91, 92| + TN \{ex, fu, 91, 92 - (3)
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If M\f/, has a 3-cycle, then, by construction, this 3-cycle contains g; and g}, in which case, by
Lemma 3.3, neither NM\{f},, g1} nor N\{f},¢|} has a 3-cycle. Moreover, none of N'\ez, N'\g1, and
N\ g2 has a 3-cycle. Therefore, if k is even, then, by (2), induction, and Lemmas 3.1(vi) and 3.3,

|T(N)| > t(n,k—1) +t(n,k—3)
> t(n, k),

a contradiction. If £ > 7 and odd, then, by (3), induction, Lemma 3.1(v) and (vi), and Lemma 3.3,

IT(N)| > t(n,k—1)+t(n,k—4)+t(n,k—5)
>t(n,k—1)+t(n,k—3)
= t(n, k),

while if £ =5, then
IT(N)| > t(n,4) + t(n,1) +t(n,0) =4 +2+2> 6 =t(n,5).
These contradictions imply that s = 1, thereby proving (4.1.5).

To simplify (for the last time) the notation, set t = ¢1, ¢ = ¢}, w = wy, my = m1, g+ = g1, and
91 = 91-
4.1.6. If (t',u) is an arc of N, then N is an octopus.

Assume that (¢/,u') is an arc of N. Let T € T(N). If T uses e1, then AU B is a cluster of T,
while if 7 uses {es, fu}, then T|{a,b, m,} = (b, my,a). So

[T(N)| = [T(M\e2)| + TN \{e1, fi }-
Since M\{es, fI, g;} has no 3-cycles by Lemma 3.3, it follows by induction that
IT(N)| > t(n,k—1) +t(n,k —3).

If k is even, then, by Lemma 3.1(vi), we have |T(N)| > t(n, k), a contradiction. So say k > 5 and
odd. Then, as [T(N)| < t(n, k),

ITN)| =t(n,k—1)+t(n,k—3) =t(n, k).

We now show that A is an octopus. Since {t', v/, t,qa,u, pp, w,v,pa} induces the core of a 3-tight
caterpillar ladder of NV, it follows by Lemma 2.2 that g; is non-essential. Thus

TN = [T(NM\gh)].
In turn, it is easily checked that
TN =3+ [TN\{g}, fu e2}]-
Therefore, by induction,

tn k= 1)+ t(n,k = 3) = [T(N)] = 3- [T\ (g}, o, e2})] > 3+ t(n, & — 3),
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that is, as k > 5, and thus, by Lemma 3.1(v), t(n,k — 1) = 2 - t(n, k — 3), we have

IT(N\{gi, fu e2})| = t(n, k= 3).

Hence, by induction, N'\{g;, f/,, €2} is an octopus with an even number of reticulations. It follows
by construction that N is an octopus, completing the proof of (4.1.6).

Thus we may now assume that (¢',u’) is not an arc. Let 7 € T(N). If T uses ey, then AU B is
cluster of 7, while if T uses {es, f,}, then AU B is not a cluster of 7. Thus

TN = IT(NM\e2)| + [T(N\{ex, £u})].
Since (¢',u’) is not an arc, N'\{eq, f/,} has no 3-cycles and so, by induction and Lemma 3.1(v),
IT(N)| > t(n, k — 1)+ t(n, k —2) > t(n, k).

This last contradiction completes the proof of the theorem. O
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