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Abstract

A normal (phylogenetic) network with k reticulations displays 2k phylogenetic trees. In this
paper, we establish an analogous result for tree-child (phylogenetic) networks with no underlying
3-cycles. In particular, we show that a tree-child network with k ≥ 2 reticulations and no
underlying 3-cycles displays at least 2

k/2 phylogenetic trees if k is even and at least 3
2
√
2
2
k/2 if k

is odd. Moreover, we show that these bounds are sharp and characterise the tree-child networks
that attain these bounds.
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1 Introduction

Understanding the evolutionary history of a collection of present-day species is a central goal in
biology, and rooted phylogenetic trees have traditionally been used for this purpose. However,
evolution is not always strictly tree-like. Reticulate evolutionary events, such as hybridisation and
lateral gene transfer, violate the assumptions underlying phylogenetic trees and instead require a
more general model, (rooted) phylogenetic networks, to accurately represent evolutionary history.

Although species-level evolution can be non-tree-like, the evolution of individual genes is typi-
cally assumed to follow a tree-like pattern. As a result, a phylogenetic network is often viewed as
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an amalgamation of gene trees. This viewpoint leads to the notion of a rooted phylogenetic tree
displayed (intuitively, embedded) by a phylogenetic network. Several algorithms have been imple-
mented to compute a phylogenetic network that displays a given collection of rooted phylogenetic
trees. These algorithms include the Autumn algorithm [7], TreeKnit [1], ALTS [16], FHyNCH [3],
and PhyloFusion [17]. Relatedly, there has been substantial work on questions such as whether a
phylogenetic network is (uniquely) determined by its displayed rooted phylogenetic trees [6, 9, 14],
whether a particular rooted phylogenetic tree is displayed by a phylogenetic network [8, 13], and
whether the number of rooted phylogenetic trees displayed by a given phylogenetic network can be
computed in polynomial time [11]. It is the last of these questions that is the attention of this paper.
In general, it is #P-complete to count the number of rooted binary phylogenetic trees displayed
by a rooted binary phylogenetic network [11] and, despite some recent progress [2], it remains an
open problem on whether this computational hardness extends to counting the number of rooted
binary phylogenetic trees displayed by a tree-child network, a particular, but well studied, type of
phylogenetic network. In this paper, we focus on obtaining a sharp lower bound for the number of
rooted binary phylogenetic trees displayed by a tree-child network. We complete the introduction
by stating the main result of the paper. Formal definitions are given in the next section.

Let N be a rooted binary phylogenetic network on X, and suppose that N has k reticulations.
It is well-known that if N is normal, then N displays exactly 2k rooted binary phylogenetic X-
trees [13, 15]. (This is the maximum possible number of rooted binary phylogenetic trees displayed
by N .) However, if N is tree-child and we allow N to have underlying 3-cycles, then N could
have many reticulations but still display only one rooted binary phylogenetic X-tree. What can we
say if N is tree-child and has no underlying 3-cycles? The number of rooted binary phylogenetic
trees displayed can still be strictly less than 2k. But how much less? In this paper, we establish
the following theorem, the main result of the paper. In the statement of the theorem, note that a
rooted binary tree-child network with n leaves has at most n− 1 reticulations and an octopus is a
particular type of tree-child network that we describe in the next section. Also, for a rooted binary
phylogenetic network N , we let T (N ) denote the set of (distinct) rooted binary phylogenetic trees
displayed by N .

Theorem 1.1. Let N be a rooted binary tree-child network with n leaves, 0 ≤ k ≤ n − 1 reticu-
lations, and no underlying 3-cycles. If k = 0, then |T (N )| = 1, while if k = 1, then |T (N )| = 2.
Furthermore, if k ≥ 2, then

(i) |T (N )| ≥ 2k/2 if k is even, and

(ii) |T (N )| ≥ 3
2
√
2
2k/2 if k is odd.

Moreover, for all k ≥ 2, we have that |T (N )| = 2k/2 and k is even (respectively, |T (N )| = 3
2
√
2
2k/2

and k is odd) if and only if N is an octopus.

The paper is organised as follows. In the next section, we give some necessary definitions that
clarify the terminology in the statement of Theorem 1.1 and are used throughout the rest of the
paper. Section 3 establishes some preliminary lemmas, while Section 4 consists of the proof of
Theorem 1.1.
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2 Preliminaries

Throughout the paper X denotes a non-empty finite set.

Phylogenetic networks. A rooted binary phylogenetic network on X is a rooted acyclic directed
graph with no parallel arcs such that

(i) the (unique) root has in-degree zero and out-degree two,

(ii) the set of vertices of out-degree zero is X,

(iii) all other vertices have either in-degree one and out-degree two, or in-degree two and out-degree
one.

For technical reasons, if |X| = 1, then we allow N to consist of the single vertex in X. The set
X is call the leaf set of N . The vertices of in-degree one and out-degree two are tree vertices,
while the vertices of in-degree two and out-degree one are reticulations. The arcs directed into a
reticulation are called reticulation arcs; otherwise, an arc is a tree arc. If (u, v) is a reticulation
arc in N and there is a directed path from u to v distinct from the path consisting of (u, v), then
(u, v) is a shortcut. A reticulation v normal if neither reticulation arc directed into v is a shortcut.
A 2-connected component of N is a maximal (underlying) subgraph of N that is connected and
cannot be disconnected by deleting exactly one of its vertices. We call a 2-connected component
trivial if it consists of a single edge, and non-trivial otherwise. Furthermore, for brevity, we call
an underlying 3-cycle of N a 3-cycle. A rooted binary phylogenetic X-tree T is a rooted binary
phylogenetic network on X with no reticulations. Since all phylogenetic networks and phylogenetic
trees in this paper are rooted and binary, we will refer to a rooted binary phylogenetic network and
a rooted binary phylogenetic tree as a phylogenetic network and a phylogenetic tree, respectively.

A phylogenetic network N on X is tree-child if each non-leaf vertex is the parent of a tree vertex
or a leaf. Equivalently, a phylogenetic network N is tree-child precisely if no tree vertex is the
parent of two reticulations and no reticulation is the parent of another reticulation [12]. As an
immediate consequence of the definition, if u is a vertex of a tree-child network N , then there is a
directed path from u to a leaf ℓ of N such that except for ℓ and possibly u, every vertex on the path
is a tree vertex. We call such a path a tree path (for u). As a result of this tree-path property, if
N is a tree-child network with n leaves, then N has at most n− 1 reticulations, and this bound is
sharp [4]. Also observe that if C is a 3-cycle of a tree-child network, then the arc set of C consists of
two reticulation arcs directed into the same reticulation, one of which is a shortcut, and a tree arc.
A tree-child network is normal if it has no shortcuts. To illustrate, in Fig. 1(i), N is a tree-child
network, but it is not normal as the arc (u, v) is a shortcut. As with all other figures in the paper,
arcs are directed down the page. It is directly because of shortcuts that the number of phylogenetic
trees displayed by a tree-child network with k reticulations is not necessarily 2k.

A lemma that we will frequently and freely use is the following [5].

Lemma 2.1. Let N be a tree-child network with root ρ and let e = (u, v) be a reticulation arc of
N . Then the phylogenetic network obtained from N by deleting e and either
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Fig. 1: (i) A tree-child network N on X = {x1, x2, x3, x4} and (ii) a phylogenetic X-tree T displayed by
N .

(i) suppressing the two resulting vertices of in-degree one and out-degree one if u ̸= ρ, or

(ii) suppressing the resulting vertex of in-degree one and out-degree one, and deleting u if u = ρ

is tree-child.

To ease reading, for a tree child network N and reticulation arc e of N , we denote by N\e the
operation of deleting e and appropriately applying either (i) or (ii) of Lemma 2.1. We next describe
two particular types of tree-child networks that are central to this paper.

Tight caterpillar ladders and octopuses. Let N be a tree-child network with vertex set
{ℓ0, ℓ1, ℓ2, ℓ3}∪

{
ui, u

′
i, vi : i ∈ {1, 2, 3}

}
. We call N a 3-tight caterpillar ladder if the arc set of N is

{(u′3, u′2), (u′2, u3), (u3, u′1), (u′1, u2), (u2, u1), (u1, ℓ0)} ∪
{
(u′i, vi), (ui, vi), (vi, ℓi) : i ∈ {1, 2, 3}

}
.

Note that {ℓ0, ℓ1, ℓ2, ℓ3} is the leaf set of N . The reticulation arcs (u1, v1), (u2, v2), (u′1, v1), (u3, v3),
(u′2, v2), and (u′3, v3) are the rungs of the 3-tight caterpillar ladder. Under this ordering, we refer to
these rungs as the i-th rung so that, for example, (u1, v1) and (u′3, v3) are the first and last rungs
of N , respectively. Furthermore, a tree-child network is a 2-tight caterpillar ladder if it can be
obtained from a 3-tight caterpillar by deleting, in this instance, u′3, v3, and ℓ3, and suppressing the
resulting vertex of in-degree one and out-degree one. Here, for example, the first and last rungs are
the arcs (u1, v1) and (u′2, v2), respectively. For illustration, a 2-tight and a 3-tight caterpillar ladder
are depicted in Fig. 2.

Let k ∈ {2, 3}. The core of a k-tight caterpillar ladder consists of its non-pendant arcs. Fur-
thermore, let N be a k-tight caterpillar ladder and let N ′ be a tree-child network. We say that N
is a k-tight caterpillar ladder of N ′ if, up to isomorphism, the core of N can be obtained from N ′

by deleting vertices and arcs.

Now let N be a tree-child network on X with n leaves and k reticulations, where k ̸= 1. We
call N an octopus if either k is even and every non-trivial 2-connected component of N is the core
of a 2-tight caterpillar ladder, or k is odd, exactly one non-trivial 2-connected component of N is
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Fig. 2: A 2-tight (left) and a 3-tight (right) caterpillar ladder.
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Fig. 3: Two octopuses N and N ′ with 10 leaves and 7 reticulations.

the core of a 3-tight caterpillar ladder, and every other non-trivial 2-connected component of N is
the core of a 2-tight caterpillar ladder. To illustrate, in Fig. 3, N and N ′ are both octopuses with
10 leaves and 7 reticulations.
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Displaying. Let N be a phylogenetic network on X and let T be a phylogenetic X-tree. We
say that N displays T if a subdivision of T can be obtained from N by deleting vertices and arcs.
Such a subdivision is an embedding of T in N . If N is a tree-child network and T is a phylogenetic
tree displayed by N , then every embedding of T contains all of the tree arcs of N and, for each
reticulation v, exactly one reticulation arc of N directed into v. Conversely, if F is a subset of
the arcs of N that consists of all tree arcs and, for each reticulation v, exactly one reticulation arc
directed into v, then F is an embedding of a phylogenetic tree displayed by N [12]. Thus to describe
an embedding of T in N it suffices to specify the reticulation arcs of N in the embedding. Such arcs
are used by T . Also, as a reminder to the reader, we use T (N ) to denote the set of phylogenetic
X-trees displayed by N . To illustrate the notion of display, in Fig. 1, N displays T , where an
embedding of T in N is shown as solid arcs. Note that there is one other distinct embedding of T
in N .

Now let N be a phylogenetic network on X. An arc e of N is non-essential if, for every
phylogenetic X-tree T in T (N ), there is an embedding of T in N that avoids e. The next lemma
is a special case of a more general result established in [10].

Lemma 2.2. Let N be a tree-child network with n leaves and k reticulations, where k ∈ {2, 3}, and
let e be an arc of N . Then e is non-essential if and only if e is either the first or last rung of a 2-
or 3-tight caterpillar ladder of N .

Phylogenetic trees. Let T be a phylogenetic X-tree, and let X ′ be a subset of X. The minimal
subtree of T connecting the elements in X ′ is denoted by T (X ′). Furthermore, the restriction of T
to X ′ is the phylogenetic X ′-tree obtained from T (X ′) by suppressing vertices of in-degree one and
out-degree one. A subtree of T is pendant if it can be obtained by deleting an edge of T , in which
case the leaf set of this pendant subtree is a cluster of T . Furthermore, two phylogenetic X-trees
T1 and T2 are isomorphic if there is a map φ : V (T1) → V (T2) such that, for all x ∈ X, we have
φ(x) = x and, if (u, v) is an arc of T1, then (φ(u), φ(v)) is an arc of T2.

A caterpillar is a phylogenetic tree whose leaf set can be ordered x1, x2, . . . , xn so that x1 and
x2 have the same parent and, for all i ∈ {3, 4, . . . , n}, the parent of xi−1 is a child of the parent of
xi. We denote such a caterpillar by (x1, x2, . . . , xn). A double caterpillar is a phylogenetic tree such
that its maximal pendant subtrees are both caterpillars. If (x1, x2, . . . , xi) and (y1, y2, . . . , yj) are
two such caterpillars, then we denote the double caterpillar by

{
(x1, x2, . . . , xi), (y1, y2, . . . , yj)

}
.

3 Some lemmas

In this section we establish some lemmas that will be used in the proof of Theorem 1.1. For the
first lemma, recall that a tree-child network with n leaves has at most n−1 reticulations. Let n ≥ 1
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and 0 ≤ k ≤ n− 1 be two non-negative integers. For all n and k, set

t(n, k) =


1, if k = 0;
2, if k = 1;
2k/2, if k ≥ 2 and k is even;
3

2
√
2
2k/2, if k ≥ 3 and k is odd.

Observe that, for all n and k, the value t(n, k) is the bound given in the statement of Theorem 1.1.
The next lemma establishes some basic properties of the numbers t(n, k). These properties are
repeatedly used in the proof of Theorem 1.1.

Lemma 3.1. The following identities hold:

(i) For all n ≥ 2, we have t(n, 1) = 2 · t(n, 0) and, for all n ≥ 3, we have t(n, 2) = 2 · t(n, 0).

(ii) For all n ≥ 4, we have t(n, 3) = t(n, 2) + t(n, 0) < 2 · t(n, 1) = t(n, 2) + t(n, 1).

(iii) For all n ≥ 4 and 2 ≤ k ≤ n− 2, we have t(n, k) < t(n, k + 1).

(iv) For all n ≥ 4 and 3 ≤ k ≤ n− 1, we have t(n, k) < 4 · t(n, k − 3).

(v) For all n ≥ 5 and 4 ≤ k ≤ n− 1,

t(n, k) = 2 · t(n, k − 2) < t(n, k − 1) + t(n, k − 2).

(vi) For all n ≥ 4 and 3 ≤ k ≤ n− 1, and k is odd,

t(n, k) = t(n, k − 1) + t(n, k − 3)

while, for all n ≥ 5 and 4 ≤ k ≤ n− 1, and k is even,

t(n, k) < t(n, k − 1) + t(n, k − 3).

Proof. The proof of (i) is trivial. For the proof of (ii), if n ≥ 4, then

t(n, 3) = 3
2
√
2
2
3/2 = 3 = t(n, 2) + t(n, 0) < 4 = 2 · t(n, 1) = t(n, 2) + t(n, 1).

For the proof of (iii), if n ≥ 4, 2 ≤ k ≤ n− 2, and k is even, then

t(n, k) = 2
k/2 < 3

2 · 2k/2 = 3
2
√
2
2
k/2 ·

√
2 = 3

2
√
2
2
(k + 1)/2 = t(n, k + 1)

while if n ≥ 4, 2 ≤ k ≤ n− 2, and k is odd, then

t(n, k) = 3
2
√
2
2
k/2 = 3 · 2(k − 3)/2 < 4 · 2(k − 3)/2 = 2

(k + 1)/2 = t(n, k + 1).

Now consider (iv). If n ≥ 4 and k = 3, then t(n, 3) = 3 < 4 = 4 · t(n, 0) and, if n ≥ 5 and k = 4,
then t(n, 4) = 4 < 8 = 4 · t(n, 1), so we may assume that n ≥ 6 and 5 ≤ k ≤ n− 1. If k is odd, then

t(n, k) = 3
2
√
2
2
k/2 = 3 · 2(k − 3)/2 < 4 · 2(k − 3)/2 < 4 · t(n, k − 3),
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while if k is even, then

t(n, k) = 2
k/2 = 2 · 2(k − 2)/2 < 3 · 2(k − 2)/2 = 4 · 3

2
√
2
2
(k − 3)/2 = 4 · t(n, k − 3).

For the proof of (v), if n ≥ 5, 4 ≤ k ≤ n− 1, and k is even, then, by (iii),

t(n, k) = 2
k/2 = 2 · 2(k − 2)/2 = 2 · t(n, k − 2) < t(n, k − 1) + t(n, k − 2).

If n ≥ 5, 4 ≤ k ≤ n− 1, and k is odd, then, by (iii),

t(n, k) = 3
2
√
2
2
k/2 = 2 · 3

2
√
2
2
(k − 2)/2 = 2 · t(n, k − 2) < t(n, k − 1) + t(n, k − 2).

Lastly, consider (vi). If n ≥ 4 and k = 3, then

t(n, k − 1) + t(n, k − 3) = t(n, 2) + t(n, 0) = t(n, 3).

Furthermore, if n ≥ 6, 3 ≤ k ≤ n− 1, and k is odd, then, as k − 1 and k − 3 are even,

t(n, k − 1) + t(n, k − 3) = 2
(k − 1)/2 + 2

(k − 3)/2 = 2
(k − 3)/2 (2 + 1)

= 3 · 2(k − 3)/2 =
3

2
√
2
2
k/2 = t(n, k).

If n ≥ 5, 4 ≤ k ≤ n− 1, and k is even, then, as k − 1 and k − 3 are odd,

t(n, k − 1) + t(n, k − 3) = 3
2
√
2
2
(k − 1)/2 + 3

2
√
2
2
(k − 3)/2 = 3

2
√
2
2
(k − 3)/2(2 + 1)

> 23

2
√
2
2
(k − 3)/2 = 2

k/2 = t(n, k).

The next lemma establishes the number of distinct phylogenetic trees displayed by an octopus.

Lemma 3.2. Let N be an octopus with n leaves and k ̸= 1 reticulations. Then |T (N )| = t(n, k).

Proof. The proof is by induction on k. Evidently, if k = 0, then |T (N )| = 1 = t(n, 0). Furthermore,
if k = 2, then N contains precisely one non-trivial 2-connected component which is the core of a
2-tight caterpillar ladder and it is easy to verify that |T (N )| = 2 = t(n, 2). Similarly, if k = 3, then
N contains precisely one non-trivial 2-connected component which is the core of a 3-tight caterpillar
ladder and |T (N )| = 3 = t(n, 3). Thus the lemma holds for k ∈ {0, 2, 3}.

Now suppose that k ≥ 4, in which case n ≥ 5, and the lemma holds for all octopuses with at
most k − 1 reticulations. Let v be a reticulation of N with the property that all paths starting at
v are tree paths, that is, there are no other reticulations among the descendants of v. As N is an
octopus, v is a reticulation of either a 2-tight or 3-tight caterpillar ladder, say N ′, of N .

Assume that N ′ is a 2-tight caterpillar ladder of N . Let N1 be the tree-child network obtained
from N by deleting the third and last rungs of N ′, and let N2 be the tree-child network obtained
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from N by deleting the first and last rungs of N ′. Clearly, N1 and N2 are octopuses with n leaves
and k − 2 reticulations. Moreover, observe that T (N1) ∩ T (N2) is empty and, if T ∈ T (N ), then
either T ∈ T (N1) or T ∈ T (N2). Thus, by induction and Lemma 3.1(v),

|T (N )| = |T (N1)|+ |T (N2)| = t(n, k − 2) + t(n, k − 2) = t(n, k).

Now assume that N ′ is a 3-tight caterpillar ladder of N , in which case, k is odd and so k ≥ 5.
Let N1, N2, and N3 be the octopuses on k− 3 reticulations obtained from N by deleting the third,
fifth, and last rungs of N ′, the first, fifth, and last rungs of N ′, and the second, third, and last
rungs of N ′, respectively. It is easily verified that T (Ni)∩ T (Nj) = ∅ for all distinct i, j ∈ {1, 2, 3}.
Furthermore, if T ∈ T (N ), then T ∈ T (N1) ∪ T (N2) ∪ T (N3). Therefore, as k is odd, it follows by
induction that

|T (N )| = |T (N1)|+ |T (N2)|+ |T (N3)|
= t(n, k − 3) + t(n, k − 3) + t(n, k − 3)

= 3 · 2(k − 3)/2 = 3
2
√
2
2
k/2 = t(n, k).

This completes the proof of the lemma.

For the proof of Theorem 1.1, we need to understand what happens if we delete a reticulation
arc of a tree-child network and create a 3-cycle. The next three lemmas consider tree-child networks
and 3-cycles.

Lemma 3.3. Let N be a tree-child network with no 3-cycles, and let e be a reticulation arc of N .
Suppose that N\e has a 3-cycle with reticulation arcs f and f ′. Then each of N\{e, f} and N\{e, f ′}
is tree-child and has no 3-cycles.

Proof. Consider N\e and denote the arcs of the 3-cycle of N\e as f = (u1, v), f ′ = (u2, v), and
h = (u1, u2). In particular, v is a reticulation, and f is a shortcut of N and N\e. Note that N
and N\e contain the arcs f and f ′, but N does not contain h. Instead, N contains two arcs, say
h1 = (u1, s) and h2 = (s, u2), such that e = (s, t) is the reticulation arc that is deleted to obtain
N\e from N . We now argue that both N\{e, f} and N\{e, f ′} are tree-child and have no 3-cycles.

First, consider N\{e, f} and suppose that it contains a 3-cycle, say C. Then C contains the arc
(p, u2), where p is the unique parent of u1 in N . The two remaining arcs of C are reticulation arcs,
say (p, r) and (u2, r), where r ̸= v is a reticulation in N\{e, f} and also in N . Since there is also
an arc (u2, v) in N and v is a reticulation, this implies that both children of u2 are reticulations,
contradicting the fact that N is tree-child. Thus N\{e, f} is tree-child and has no 3-cycle.

Next, consider N\{e, f ′} and suppose that it contains a 3-cycle, say C ′. Then C ′ contains the
arc (u1, w), where w ̸= v is a child of u2 in N . As N is tree-child, w is a tree vertex. Thus the
two remaining arcs of C ′ are reticulation arcs incident with the same reticulation, say r′ ̸= v. But
then (u1, r

′) is an arc of C ′ and so, as r′ is a reticulation of N , the vertex u1 is the parent of two
reticulations in N , a contradiction as N is tree-child. Therefore N\{e, f ′} is tree-child and has no
3-cycles, thereby completing the proof of the lemma.
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Lemma 3.4. Let N be a tree-child network with no 3-cycles, and let e = (u, v) be a reticulation
arc of N such that, amongst all reticulation arcs of N , u has minimum distance to the root of N .
Then N\e is tree-child and has no 3-cycles.

Proof. If N\e has a 3-cycle, then the parent p of u in N has a child that is a reticulation. But then
p is closer to the root of N than u, a contradiction. Hence N\e has no 3-cycles.

The last lemma in this section is a technical lemma that is used in the inductive proof of
Theorem 1.1. Recall that a reticulation is normal if neither reticulation arc directed into it is a
shortcut.

Lemma 3.5. Let N be a tree-child network with n leaves, k ≥ 2 reticulations, and no 3-cycles.
Suppose that N has a normal reticulation and, for all tree-child networks N ′ with n leaves, k′ < k
reticulations, and no 3-cycles, |T (N ′)| ≥ t(n, k′). Then |T (N )| > t(n, k).

Proof. Let v be a normal reticulation of N , and let e1 and e2 denote the reticulation arcs directed
into v. The proof is partitioned into three cases depending on whether zero, one, or two of N\e1
and N\e2 has a 3-cycle. We establish the lemma for when each of N\e1 and N\e2 has a 3-cycle.
The other two cases are proved similarly, but are less complicated.

Let e1 = (u1, v) and e2 = (u2, v), and let m be a leaf at the end of a tree path starting at v. For
each i ∈ {1, 2}, let wi and w′

i denote the child of ui that is not v and the parent of ui, respectively.
Since N is tree-child and each of N\e1 and N\e2 has a 3-cycle, for each i, the vertices wi and w′

i

are tree vertices and the parent of a reticulation vi. For each i, let fi = (wi, vi) and f ′
i = (w′

i, vi),
and let mi be a leaf at the end of a tree path starting at vi. Furthermore, let ℓi be a leaf at the end
of a tree path starting at wi. Observe that ℓ1, ℓ2, m, m1, and m2 are distinct as v is normal and
neither e1 nor e2 is a shortcut.

Let T ∈ T (N ). If T uses {e2, f1, f ′
2} or {e2, f1, f2}, then T |{ℓ1, ℓ2,m,m1,m2} ∼={

(ℓ1,m1), (m, ℓ2,m2)
}

and T |{ℓ1, ℓ2,m,m1,m2} ∼=
{
(ℓ1,m1), (ℓ2,m2,m)

}
, respectively. On the

other hand, if T uses {e1, f2, f ′
1} or {e1, f2, f1}, then T |{ℓ1, ℓ2,m,m1,m2} ∼=

{
(ℓ1,m,m1), (ℓ2,m2)

}
and T |{ℓ1, ℓ2,m,m1,m2} ∼=

{
(ℓ1,m1,m), (ℓ2,m2)

}
, respectively. It now follows that

|T (N )| ≥ |T (N\{e1, f ′
1, f2})|+ |T (N\{e1, f ′

1, f
′
2})|+ |T (N\{e2, f ′

2, f1})|+ |T (N\{e2, f ′
2, f

′
1})|,

and so, by Lemmas 3.1(iv) and 3.3, and the assumption in the statement of the lemma,

|T (N )| ≥ t(n, k − 3) + t(n, k − 3) + t(n, k − 3) + t(n, k − 3) > t(n, k).

This completes the proof of the lemma.

4 Proof of Theorem 1.1

The proof of Theorem 1.1 is inductive and relies on first showing that the theorem holds for all
k ∈ {0, 1, 2, 3}, the base cases. The next lemma establishes this base case.
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Lemma 4.1. Let N be a tree-child network with n leaves, k ∈ {0, 1, 2, 3} reticulations, and no
3-cycles. Then |T (N )| = 1 if k = 0, |T (N )| = 2 if k = 1, and

|T (N )| ≥

{
2, if k = 2;
3, if k = 3.

Furthermore, if |T (N )| = 2 and k = 2 or |T (N )| = 3 and k = 3, then N is an octopus.

Proof. Evidently, if k = 0, then |T (N )| = 1. Furthermore, as N has no 3-cycles, if k = 1, then
|T (N )| = 2, so the lemma holds for k ∈ {0, 1}. For the remainder of the proof, we may assume
without loss of generality that, amongst all tree-child networks with n leaves, k ∈ {2, 3} reticulations,
and no 3-cycles, |T (N )| is minimised, in which case, by Lemma 3.2, |T (N )| ≤ t(n, k).

First, consider when k = 2. Let f = (u, v) be a reticulation arc of N such that, amongst all
reticulation arcs of N , the vertex u has minimum distance to the root of N . By Lemma 3.4, N\f
is tree-child and has no 3-cycles. Therefore, as N\f has exactly one reticulation, it follows by the
previous base case that |T (N\f)| = 2. Furthermore, by Lemma 3.2, |T (N )| ≤ t(n, 2) = 2, and so

|T (N )| = |T (N\f)| = 2.

Thus f is non-essential, and, by Lemma 2.2, f is the first or last rung of a 2-tight caterpillar ladder
of N (in fact, by the choice of f , it is the last rung). As k = 2, this implies that N is an octopus,
thereby completing the proof for when k = 2.

Now consider when k = 3. Again, let f = (u, v) be a reticulation arc of N such that, amongst all
reticulation arcs of N , the vertex u has minimum distance to the root of N . Lemma 3.4 implies that
N\f is tree-child and has no 3-cycles. Furthermore, as N\f has exactly two reticulations, it follows
by the previous base case that |T (N\f)| ≥ 2. Additionally, by Lemma 3.2, |T (N )| ≤ t(n, 3) = 3,
and so |T (N )| ∈ {2, 3}.

First, suppose that |T (N )| = 2. Then |T (N )| = |T (N\f)| = 2, and so f is non-essential. By
Lemma 2.2 and the choice of f , we have that f is the last rung of a 2-tight or 3-tight caterpillar
ladder of N . If f is the last rung of a 3-tight caterpillar ladder, then N is an octopus and |T (N )| = 3,
a contradiction as |T (N )| = 2. Therefore f is the last rung of a 2-tight caterpillar ladder of N with
reticulations, v1 and v2 say. Let v3 denote the third reticulation in N , and let g1 and g2 be the
reticulation arcs of N directed into v3.

Assume that either N\g1 or N\g2 has no 3-cycle. Without loss of generality, assume N\g1 has
no 3-cycle. By the previous base case, |T (N\g1)| ≥ 2 and, by assumption, |T (N )| = 2, implying
that |T (N )| = |T (N\g1)| = 2, and so g1 is non-essential. Therefore, by Lemma 2.2, g1 is either the
first or last rung of a 2-tight or 3-tight caterpillar ladder of N . However, as k = 3 and N contains a
2-tight caterpillar ladder with reticulations v1 and v2, and v3 ̸∈ {v2, v3}, this is not possible. Thus,
for each i ∈ {1, 2}, the tree-child network N\gi has a 3-cycle. But neither 3-cycle involves v1 nor v2
as they are the reticulations of a 2-tight caterpillar ladder of N , and so this is also not possible. In
summary, we cannot have |T (N )| = 2, and so |T (N )| = 3. It remains to show that N is an octopus.
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Suppose that |T (N )| = 3. By Lemma 3.4, N\f is tree-child and has no 3-cycles. Furthermore,
by the previous base case, |T (N\f)| ≥ 2 and so, as |T (N )| = 3, we have |T (N\f)| ∈ {2, 3}. We
now distinguish two cases depending on |T (N\f)|:

(a) If |T (N\f)| = |T (N )| = 3, then f is non-essential and, by Lemma 2.2 and the choice of f , it
is the last rung of a 2-tight or 3-tight caterpillar ladder of N . If f is the last rung of a 3-tight
caterpillar ladder of N , then N is an octopus, and so we may assume that f is the last rung of
a 2-tight caterpillar ladder of N with reticulations v1 and v2, and core arcs

{(u′2, u′1), (u′1, u2), (u2, u1), (u′1, v1), (u1, v1), (u′2, v2), (u2, v2)}.

Note that f = (u, v) = (u′2, v2). Let v3 be the third reticulation of N and let g1 = (u3, v3) and
g2 = (u′3, v3) denote the reticulation arcs of N directed into v3. For each i ∈ {1, 2, 3}, let mi

denote a leaf at the end of a tree path starting at vi. Furthermore, let a, b, and c denote a leaf
at the end of a tree path starting at u1, u3, and u′3, respectively. Note that m1 ̸= m2 ̸= m3,
a ̸= m1, a ̸= m2, b ̸= m3, and c ̸= m3. If a = m3, then there is a tree path from v3 to u′2 to a
in N , contradicting the choice of f . Thus a ̸= m3. In summary,

a ̸= m1 ̸= m2 ̸= m3, b ̸= m3, and c ̸= m3.

We now consider two subcases:

(i) Assume that b ̸= c. By making the appropriate choices of reticulation arcs incident with
v1, v2, and v3, it is easily seen that N displays phylogenetic trees T1, T2, T3, and T4 such
that

T1|{a,m1,m2} ∼= (a,m1,m2) and T1|{b, c,m3} ∼= (m3, b, c),

T2|{a,m1,m2} ∼= (a,m1,m2) and T2|{b, c,m3} ∼= (m3, c, b),

T3|{a,m1,m2} ∼= (a,m2,m1) and T3|{b, c,m3} ∼= (m3, b, c),

T4|{a,m1,m2} ∼= (a,m2,m1) and T4|{b, c,m3} ∼= (m3, c, b).

Since b ̸= c, we have that T1, T2, T3, and T4 are distinct, and so |T (N )| ≥ 4, a contradiction.

(ii) On the other hand, if b = c, then one of g1 and g2, without loss of generality say g2, is
a shortcut. As N has no 3-cycles, the vertex u′3 has a child w that is neither u3 nor v3.
Let ℓ be a leaf at the end of a tree path that avoids u3 and either starts at w if w is not
a parent of a reticulation or starts at such a reticulation. Observe that ℓ ̸∈ {b,m3}. By
making the appropriate choices of reticulation arcs incident with v1, v2, and v3, it is again
easily seen that N displays phylogenetic trees T ′

1 , T ′
2 , T ′

3 and T ′
4 such that

T ′
1 |{a,m1,m2} ∼= (a,m1,m2) and T ′

1 |{b, ℓ,m3} ∼= (m3, b, ℓ),

T ′
2 |{a,m1,m2} ∼= (a,m1,m2) and T ′

2 |{b, ℓ,m3} ∼= (m3, ℓ, b),

T ′
3 |{a,m1,m2} ∼= (a,m2,m1) and T ′

3 |{b, ℓ,m3} ∼= (m3, b, ℓ),

T ′
4 |{a,m1,m2} ∼= (a,m2,m1) and T ′

4 |{b, ℓ,m3} ∼= (m3, ℓ, b).

Since b, ℓ, and m3 are distinct, it follows that |T (N )| ≥ 4, another contradiction.
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Hence if |T (N\f)| = |T (N )| = 3, then N is an octopus.

(b) If |T (N\f)| = 2, then, by the previous base case, N\f is an octopus. In particular, N\f
contains a 2-tight caterpillar ladder, say N ′.

Assume that N ′ is not a 2-tight caterpillar ladder of N . Then f = (u, v) is incident with one
of the core arcs of N ′ in N . If the head v of f is incident with such an arc, then N is not
tree-child, a contradiction. If instead the tail u of f is incident with one of the core arcs of N ′

in N , then this contradicts the choice of f . So N ′ is a 2-tight caterpillar ladder of N and f is
not a core arc of this ladder.

Let v1 and v2 denote the reticulations of the 2-tight caterpillar ladder N ′ of N , and assume
that its core arcs are given by

{(u′2, u′1), (u′1, u2), (u2, u1), (u′1, v1), (u1, v1), (u′2, v2), (u2, v2)}.

Furthermore, let v3 be the third reticulation of N and let g1 = (u3, v3) and g2 = (u′3, v3) denote
the reticulation arcs of N directed into v3. For each i ∈ {1, 2, 3}, let mi denote a leaf at the end
of a tree path starting at vi, and let a, b, and c denote a leaf at the end of a tree path starting
at u1, u3, and u′3, respectively.

If a ̸= m3, we can apply the same arguments as in Cases (a)(i) and (a)(ii) to conclude that
|T (N )| ≥ 4, a contradiction. So we may assume that a = m3, in which case, by the choice
of f , there is a tree path from v3 to u′2 to a in N . We now make a few observations. First,
m1 ̸= m2 ̸= a. Second, if b = m1, the path from v1 to m1 contains a reticulation, contradicting
the fact that it is a tree path. Therefore b ̸= m1 and, similarly, b ̸= m2, b ̸= m3, c ̸= m1,
c ̸= m2, and c3 ̸= m3. In summary,

m1 ̸= m2 ̸= m3, b ̸∈ {m1,m2,m3}, c ̸∈ {m1,m2,m3}, and a = m3.

As in Case (a), we consider two subcases:

(i) If b ̸= c, then, as b, c /∈ {a,m1,m2}, it follows as in Case (a)(i) that |T (N )| ≥ 4, a
contradiction.

(ii) On the other hand, if b = c, then, one of g1 and g2, without loss of generality say g2, is
a shortcut. Since N has no 3-cycles, the vertex u′3 has a child w that is neither u3 nor
v3. Let ℓ be a leaf at the end of a tree path avoiding u′2 and either starting at w if w is
not the parent of a reticulation or starting at such a reticulation. Observe that such a leaf
exists and ℓ ̸∈ {b,m3}. By the placement of v3, we have ℓ /∈ {a,m1,m2}. It is now easily
checked that N displays phylogenetic trees T ′′

1 , T ′′
2 , T ′′

3 and T ′′
4 such that

T ′′
1 |{a,m1,m2} ∼= (a,m1,m2) and T ′′

1 |{a, b, ℓ} ∼= (a, b, ℓ),

T ′′
2 |{a,m1,m2} ∼= (a,m1,m2) and T ′′

2 |{a, b, ℓ} ∼= (b, ℓ, a),

T ′′
3 |{a,m1,m2} ∼= (a,m2,m1) and T ′′

3 |{a, b, ℓ} ∼= (a, b, ℓ),

T ′′
4 |{a,m1,m2} ∼= (a,m2,m1) and T ′′

4 |{a, b, ℓ} ∼= (b, ℓ, a).

Since a, b, and ℓ are distinct, it follows that |T (N )| ≥ 4, a contradiction.

Hence |T (N\f)| ≠ 2.

13



This completes the proof of the lemma.

Proof of Theorem 1.1. Without loss of generality, we may assume that, amongst all tree-child net-
works with n leaves, k reticulations, and no 3-cycles, |T (N )| is minimised, in which case, by
Lemma 3.2, |T (N )| ≤ t(n, k). By Lemma 4.1, the theorem holds for k ∈ {0, 1, 2, 3}. Now sup-
pose that k ≥ 4, and so n ≥ 5, and the theorem holds for all tree-child networks with n leaves, at
most k − 1 reticulations, and no 3-cycles.

Let pB be a tree vertex of N that is a parent of a reticulation, say pA, so that, amongst all
such tree vertices, pB has maximum distance to the root. Let A and B denote the leaf sets of the
pendant subtrees of N obtained by deleting the outgoing arc of pA and the outgoing arc of pB that
is not (pB, pA), respectively. By maximality, A and B are well defined. Let a ∈ A and b ∈ B, and
let e1 and e2 denote the reticulation arcs of N directed into pA, where e1 = (pB, pA). Note that e1 is
not a shortcut. Let qA denote the parent of pA that is not pB, that is e2 = (qA, pA). By Lemma 3.5
and the minimality and induction assumptions, pA is not normal and so e2 is a shortcut. With this
setup, the remainder of the proof is to show that e1 is the first rung of a 2-tight or 3-tight caterpillar
ladder of N , and then use induction to show that N is an octopus.

Let Pu = qA, u1, u2, . . . , ur, pB be a directed path from qA to pB in N . Since N has no 3-cycles,
we have r ≥ 1. We next show that, for all i ∈ {1, 2, . . . , r}, the vertex ui is a tree vertex and the
parent of a reticulation. Note that this will imply that Pu is the unique directed path from qA to
pB. In fact, we eventually show that r = 1.

Consider u1. Since N is tree-child, u1 is not a reticulation. Assume that there is a tree path
from u1 to a leaf ℓ avoiding pB. Let T ∈ T (N ). Then T uses e1 if and only if T |{a, b, ℓ} ∼= (a, b, ℓ),
and T uses e2 if and only if either T |{a, b, ℓ} ∼= (a, ℓ, b) or T |{a, b, ℓ} ∼= (b, ℓ, a). In particular, if T1,
T2 ∈ T (N ), and T1 uses e1 and T2 uses e2, then T1 and T2 are not isomorphic (an argument that
we use repeatedly throughout the proof). Thus

|T (N )| = |T (N\e2)|+ |T (N\e1)|.

If N\e2 has a 3-cycle and f is a reticulation arc of this 3-cycle, then, by Lemma 3.3, N\{e2, f} has
no 3-cycles. Therefore, as N\e1 has no 3-cycle, it follows by induction and Lemma 3.1(v) that

|T (N )| ≥ t(n, k − 1) + t(n, k − 2) > t(n, k),

a contradiction to the minimality of |T (N )|. Thus there is no such tree path from u1. Instead,
as N is tree-child, all tree paths from u1 to a leaf traverse pB. This implies that Pu has no
reticulations and, for all i ∈ {1, 2, . . . , r}, the vertex ui is a parent of a reticulation, vi say. For
each i ∈ {1, 2, . . . , r}, let mi denote a leaf at the end of a tree path starting at vi and observe
that mi ̸∈ A ∪ B. Furthermore, let u′i denote the second parent of vi, and let fi = (ui, vi) and
f ′
i = (u′i, vi). By Lemma 3.5 and the minimality and induction assumptions, vi is not normal for all
i, and so either fi or f ′

i is a shortcut.

4.1.1. For all i ∈ {1, 2, . . . , r}, the arc f ′
i is a shortcut and there is a directed path from u′i to qA.
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Assume that, for some i, both ui and u′i lie on Pu. Let T ∈ T (N ). If T uses e1, then
T |{a, b,mi} ∼= (a, b,mi). But, if T uses e2, then T |{a, b,mi} ∼= (b,mi, a). Therefore

|T (N )| ≥ |T (N\e2)|+ |T (N\e1)|.

Noting that N\e2 may contain a 3-cycle, in which case, by Lemma 3.3, deleting one further arc
results in a tree-child network with no 3-cycles, it follows by induction and Lemma 3.1(v) that

|T (N )| ≥ t(n, k − 2) + t(n, k − 1) > t(n, k).

Hence, for all i ∈ {1, 2, . . . , r}, the vertex u′i does not lie on Pu and so, as vi is not normal, (u′i, vi)
is a shortcut and there is a directed path from u′i to qA for all i. This proves (4.1.1).

4.1.2. r = 1.

Assume that r ≥ 2. Let T ∈ T (N ). If T uses e1, then A ∪ B is a cluster of T . Also, if
T uses {e2, f1, f ′

2} or {e2, f ′
1, f2}, then T |{a, b,m1,m2} ∼= (b,m1, a,m2) and T |{a, b,m1,m2} ∼=

(b,m2, a,m1), respectively. Observing that if T |{a, b,m1,m2} is isomorphic to either (b,m1, a,m2)
or (b,m2, a,m1), then A ∪B is not a cluster of T , it follows that

|T (N )| ≥ |T (N\e2)|+ |T (N\{e1, f ′
1, f2})|+ |T (N\{e1, f1, f ′

2})|.

Say N\e2 has no 3-cycle. If k ≥ 6, then, as N\{e1, f1} and N\{e1, f2} have no 3-cycles, it follows
by induction and Lemmas 3.1(v) and 3.3 that

|T (N )| ≥ t(n, k − 1) + t(n, k − 4) + t(n, k − 4)

= t(n, k − 1) + t(n, k − 2)

> t(n, k).

Furthermore, if k = 4, then

|T (N )| ≥ t(n, 3) + t(n, 0) + t(n, 0) = 3 + 1 + 1 > 4 = t(n, 4)

while, if k = 5, then

|T (N )| ≥ t(n, 4) + t(n, 1) + t(n, 1) = 4 + 2 + 2 > 6 = t(n, 5).

On the other hand, if N\e2 has a 3-cycle, then, by construction, this 3-cycle contains the reticulation
arcs f1 and f ′

1, and so N\f ′
1 has no 3-cycles. Thus, if k ≥ 6, then, by induction and Lemmas 3.1(v)

and 3.3,

|T (N )| ≥ t(n, k − 2) + t(n, k − 3) + t(n, k − 4)

> t(n, k − 2) + t(n, k − 2)

= t(n, k).

Also, if k = 4, then

|T (N )| ≥ t(n, 2) + t(n, 1) + t(n, 0) = 2 + 2 + 1 > 4 = t(n, 4)
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while, if k = 5, then

|T (N )| ≥ t(n, 3) + t(n, 2) + t(n, 1) = 3 + 2 + 2 > 6 = t(n, 5).

These contradictions to the minimality of |T (N )| imply that r = 1, thereby proving (4.1.2).

To simplify notation, set u = u1, u′ = u′1, v = v1, mu = m1, fu = f1, and f ′
u = f ′

1.

4.1.3. If (u′, qA) is an arc of N , then N is an octopus.

Assume that (u′, qA) is an arc of N . Let T ∈ T (N ). If T uses {e1, fu}, then T |{a, b,mu} ∼=
(a, b,mu), while if T uses {e2, fu}, then T |{a, b,mu} ∼= (b,mu, a). So

|T (N )| ≥ |T (N\{e2, f ′
u})|+ |T (N\{e1, f ′

u})|.

By induction and Lemma 3.1(v) and 3.3,

|T (N )| ≥ t(n, k − 2) + t(n, k − 2) = t(n, k).

Therefore, as |T (N )| ≤ t(n, k),

|T (N )| = 2 · t(n, k − 2) = t(n, k). (1)

We now show that N is an octopus. Since {u′, qA, u, pB, pA, v} induces the core of a 2-tight caterpillar
ladder of N , it follows by Lemma 2.2 that f ′

u is non-essential. Thus

|T (N )| = |T (N\f ′
u)|.

In turn, it is now easily checked that

|T (N )| = 2|T (N\{f ′
u, e2})|

and so, by (1),
|T (N\{f ′

u, e2})| = t(n, k − 2).

Therefore, by induction, N\{f ′
u, e2} is an octopus, and so, by construction, N is an octopus. This

proves (4.1.3).

Now assume that (u′, qA) is not an arc of N . Let Pt = u′, t1, t2, . . . , ts, qA be a directed
path from u′ to qA in N . Similar to before, we will show that s = 1 and t1 is the parent
of a reticulation. Consider t1. Since N is tree-child, t1 is not a reticulation. Say that there
is a tree path from t1 to a leaf ℓ avoiding qA. Let T ∈ T (N ). If T uses {e1, fu}, then
T |{a, b,mu, ℓ} ∼= (a, b,mu, ℓ). If T uses either {e2, fu} or {e2, f ′

u}, then T |{a, b,mu, ℓ} ∼= (b,mu, a, ℓ)
and T |{a, b,mu, ℓ} ∈

{
(a, b, ℓ,mu), {(a, b), (mu, ℓ)}

}
, respectively. So

|T (N )| ≥ |T (N\{e2, f ′
u})|+ |T (N\{e1, f ′

u})|+ |T (N\{e1, fu})|.

Now N\e2 has no 3-cycle as u′ is not the parent of qA. Therefore, if k ≥ 5, it follows by induction
and Lemmas 3.1(v) and 3.3 that

|T (N )| ≥ t(n, k − 3) + t(n, k − 3) + t(n, k − 2)

= t(n, k − 1) + t(n, k − 2)

> t(n, k),
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a contradiction. Furthermore, if k = 4, then

|T (N )| ≥ t(n, 1) + t(n, 1) + t(n, 2) = 2 + 2 + 2 > 4 = t(n, k),

another contradiction. Thus there is no such tree path from t1, and so all tree paths from t1 to
a leaf traverse qA. In turn, this implies that Pt has no reticulations, and so Pt consists of tree
vertices and, for all i ∈ {1, 2, . . . , s}, the vertex ti is a parent of a reticulation, wi say. For each
i ∈ {1, 2, . . . , s}, let mi denote the leaf at the end of a tree path starting at wi. Also let t′i denote
the second parent of wi, and let gi = (ti, wi) and g′i = (t′i, wi). By Lemma 3.5, and the minimality
and induction assumptions, either gi or g′i is a shortcut for all i.

4.1.4. For all i ∈ {1, 2, . . . , s}, the arc g′i is a shortcut and there is a directed path from t′i to u′.

Assume that, for some i, both ti and t′i lie on Pt. Let T ∈ T (N ). If T uses {e2, f ′
u},

then T |{a, b,mu,mi} ∼= (a, b,mi,mu). Furthermore, if T uses {e1, fu}, then T |{a, b,mu,mi} ∼=
(a, b,mu,mi), while if T uses {e2, fu}, then T |{a, b,mu,mi} ∼= (b,mu, a,mi). Thus

|T (N )| ≥ |T (N\{e1, fu})|+ |T (N\{e2, f ′
u})|+ |T (N\{e1, f ′

u})|.

Noting that N\f ′
u may contain a 3-cycle but N\e2 does not contain a 3-cycle, it follows by induction

and Lemmas 3.1(v) and 3.3 that, if k ≥ 5, then

|T (N )| ≥ t(n, k − 2) + t(n, k − 3) + t(n, k − 3)

= t(n, k − 2) + t(n, k − 1)

> t(n, k),

a contradiction. Also, if k = 4, then

|T (N )| ≥ t(n, 2) + t(n, 1) + t(n, 1) = 2 + 2 + 2 > 4 = t(n, 4),

another contradiction. Thus, for all i ∈ {1, 2, . . . , s}, the vertex t′i does not lie on Pt, and so g′i is a
shortcut and there is a directed path from t′i to u′ for all i. This proves (4.1.4).

4.1.5. s = 1.

Assume that s ≥ 2. Let T ∈ T (N ). If T uses e1, then A ∪ B is a cluster of T . Also, if T uses
{e2, fu}, then T |{a, b,mu} ∼= (b,mu, a). Furthermore, if T uses {e2, fu, g1, g′2} or {e2, fu, g′1, g2},
then T |{a, b,mu,m1,m2} ∼= (b,mu, a,m1,m2) and T |{a, b,mu,m1,m2} ∼= (b,mu, a,m2,m1), re-
spectively. Therefore

|T (N )| ≥ |T (N\e2)|+ |T (N\{e1, f ′
u})| (2)

and

|T (N )| ≥ |T (N\e2)|+ |T (N\{e1, f ′
u, g

′
1, g2})|+ |T (N\{e1, f ′

u, g1, g
′
2}|. (3)
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If N\f ′
u has a 3-cycle, then, by construction, this 3-cycle contains g1 and g′1, in which case, by

Lemma 3.3, neither N\{f ′
u, g1} nor N\{f ′

u, g
′
1} has a 3-cycle. Moreover, none of N\e2, N\g1, and

N\g2 has a 3-cycle. Therefore, if k is even, then, by (2), induction, and Lemmas 3.1(vi) and 3.3,

|T (N )| ≥ t(n, k − 1) + t(n, k − 3)

> t(n, k),

a contradiction. If k ≥ 7 and odd, then, by (3), induction, Lemma 3.1(v) and (vi), and Lemma 3.3,

|T (N )| ≥ t(n, k − 1) + t(n, k − 4) + t(n, k − 5)

> t(n, k − 1) + t(n, k − 3)

= t(n, k),

while if k = 5, then

|T (N )| ≥ t(n, 4) + t(n, 1) + t(n, 0) = 4 + 2 + 2 > 6 = t(n, 5).

These contradictions imply that s = 1, thereby proving (4.1.5).

To simplify (for the last time) the notation, set t = t1, t′ = t′1, w = w1, mt = m1, gt = g1, and
g′t = g′1.

4.1.6. If (t′, u′) is an arc of N , then N is an octopus.

Assume that (t′, u′) is an arc of N . Let T ∈ T (N ). If T uses e1, then A ∪ B is a cluster of T ,
while if T uses {e2, fu}, then T |{a, b,mu} ∼= (b,mu, a). So

|T (N )| ≥ |T (N\e2)|+ |T (N\{e1, f ′
u}|.

Since N\{e2, f ′
u, g

′
t} has no 3-cycles by Lemma 3.3, it follows by induction that

|T (N )| ≥ t(n, k − 1) + t(n, k − 3).

If k is even, then, by Lemma 3.1(vi), we have |T (N )| > t(n, k), a contradiction. So say k ≥ 5 and
odd. Then, as |T (N )| ≤ t(n, k),

|T (N )| = t(n, k − 1) + t(n, k − 3) = t(n, k).

We now show that N is an octopus. Since {t′, u′, t, qA, u, pB, w, v, pA} induces the core of a 3-tight
caterpillar ladder of N , it follows by Lemma 2.2 that g′t is non-essential. Thus

|T (N )| = |T (N\g′t)|.

In turn, it is easily checked that

|T (N )| = 3 · |T (N\{g′t, f ′
u, e2}|.

Therefore, by induction,

t(n, k − 1) + t(n, k − 3) = |T (N )| = 3 · |T (N\{g′t, f ′
u, e2})| ≥ 3 · t(n, k − 3),
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that is, as k ≥ 5, and thus, by Lemma 3.1(v), t(n, k − 1) = 2 · t(n, k − 3), we have

|T (N\{g′t, f ′
u, e2})| = t(n, k − 3).

Hence, by induction, N\{g′t, f ′
u, e2} is an octopus with an even number of reticulations. It follows

by construction that N is an octopus, completing the proof of (4.1.6).

Thus we may now assume that (t′, u′) is not an arc. Let T ∈ T (N ). If T uses e1, then A∪B is
cluster of T , while if T uses {e2, fu}, then A ∪B is not a cluster of T . Thus

|T (N )| ≥ |T (N\e2)|+ |T (N\{e1, f ′
u})|.

Since (t′, u′) is not an arc, N\{e1, f ′
u} has no 3-cycles and so, by induction and Lemma 3.1(v),

|T (N )| ≥ t(n, k − 1) + t(n, k − 2) > t(n, k).

This last contradiction completes the proof of the theorem.
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