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Abstract

Kleinewillinghöfer classified Laguerre planes with respect to central automor-
phisms. Polster and Steinke investigated flat Laguerre planes and their so-called
Kleinewillinghöfer types, that is, the Kleinewillinghöfer types with respect to the
full automorphism group. For some of these types the existence question remained
open. We provide strong necessary existence conditions for flat Laguerre planes of
Kleinewillinghöfer type III.B and provide examples of such planes of types III.B.1
and III.B.3.

MSC 2000: 51H15, 51B15.

1 Introduction

Similar to the Lenz-Barlotti classification of projective planes, compare [11], Anhang,
Section 6, Kleinewillinghöfer [6] classified Laguerre planes with respect to central auto-
morphisms, that is, permutations of the point set of the Laguerre plane such that parallel
classes are mapped to parallel classes and circles are mapped to circles and such that
at least one point is fixed and central collineations are induced in the derived projective
plane at one of the fixed points. In [14] and [19] flat Laguerre planes were considered and
their so-called Kleinewillinghöfer types were investigated, that is, the Kleinewillinghöfer
types with respect to the full automorphism group. In particular, all possible types of
flat Laguerre planes with respect to Laguerre translations, were completely determined
in [14] and the case of Laguerre homologies was dealt with in [19]. Examples for some of
the possible Kleinewillinghöfer types of flat Laguerre planes can be found in [14] Section
6, [18] and [10].

In Section 5 we provide examples for flat Laguerre planes of Kleinewillinghöfer types
III.B.1 and III.B.3 thus completely covering type III together with the models from [14],
Section 6. Hence for flat Laguerre planes only the existence of three combined types
remains open.

∗This paper was published in Adv. Geom 11 (2011), DOI 10.1515/ADVGEOM.2011.038
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2 Flat Laguerre Planes

A flat or 2-dimensional Laguerre plane L = (Z, C) is an incidence structure of points and
circles whose point set is the cylinder Z = S1 × R (where S1 usually is represented as
R ∪ {∞}), whose circles C ∈ C are graphs of continuous functions S1 → R such that
any three points no two of which are on the same generator {c} × R of the cylinder can
be joined by a unique circle and such that the circles which touch a fixed circle C at
p ∈ C, that is, C itself and the circles which have only p in common with C, partition the
complement in Z of the generator that contains p. For more information on flat Laguerre
planes we refer to [2] and [4] or [13] Chapter 5. We say that two points of Z are parallel
if they are on the same generator of Z. This defines an equivalence relation on Z whose
equivalence classes, also called parallel classes, are the generators of Z.

It readily follows that for each point p of L the incidence structure Ap = (Ap,Lp)
whose point set Ap consists of all points of L that are not parallel to p and whose line
set Lp consists of all restrictions to Ap of circles of L passing through p and of all parallel
classes not passing through p is an affine plane, which extends to a projective plane Pp.
We call Ap and Pp the derived affine and projective plane at p, respectively. In fact, the
geometric axioms of a Laguerre plane are equivalent to all derived incidence structures
Ap as defined above being affine planes.

The classical flat Laguerre plane is obtained as the geometry of non-trivial plane
sections of a cylinder in R3 with an ellipse in R2 as base, or equivalently, as the geometry
of non-trivial plane sections of an elliptic cone, in real 3-dimensional projective space,
with its vertex removed. The parallel classes are the generators of the cylinder or cone.
By replacing the ellipse in the construction of the classical flat Laguerre plane by arbitrary
ovals in R2, i.e., convex, differentiable simply closed curves, we also obtain flat Laguerre-
planes. These are the so-called ovoidal flat Laguerre planes.

Every automorphism of a flat Laguerre plane is continuous and thus a homeomorphism
of Z. The collection of all automorphisms of a flat Laguerre plane L forms a group with
respect to composition, the automorphism group Γ of L. This group is a Lie group of
dimension at most 7 with respect to the compact-open topology; see [16]. We call the
dimension of Γ the group dimension of L. The maximum dimension is attained precisely
in the classical flat Laguerre plane. In fact, group dimension at least 6 implies classical.
Furthermore, flat Laguerre planes of group dimension 5 must be special ovoidal Laguerre
planes; see [9] Theorem 1.

If the Lie group G acts on a manifold M , then we get the following dimension formula
dimG = dimGp + dimG(p) where Gp and G(p) are the stabilizer and orbit, respectively,
of the point p ∈M .

3 Kleinewillinghöfer types of flat Laguerre planes

Kleinewillinghöfer considered four kinds of central automorphisms: C-homologies, G-
translations, (G,B(q, C))-translations and (p, q)-homotheties; see the following for defi-
nitions. Central automorphisms are automorphisms that have at least one fixed point
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and induce central collineations in the derived projective plane at this fixed point. The
four different kinds of central automorphisms above are distinguished according to the
relative position of centre and axis and whether or not the axis is the line at infinity of
the derived affine plane at one of its fixed points. The notions of translation, homothety
and homology describe the sort of central collineation one sees in this derived affine plane.

A subgroup of central automorphisms that have the same ‘centre’ and ‘axis’ is linearly
transitive if the induced group of central collineations in a derived projective plane at one
of the fixed points is transitive on each central line except for the obvious fixed points, the
centre and the point of intersection with the axis. Kleinewillinghöfer considered groups
of automorphisms and determined their types according to linearly transitive subgroups
of central automorphisms contained in them. In particular, a group of automorphisms is
said to be linearly transitive if it contains a linearly transitive subgroup of central auto-
morphisms. In case of the full automorphism group Γ we then say that the Laguerre plane
is of the corresponding Kleinewillinghöfer type of Γ.

A Laguerre homology of a Laguerre plane L is an automorphism of L that is either
the identity or fixes precisely the points of one circle. One speaks of a C-homology if C
is the circle that is fixed. A C-homology induces a homology of the derived projective
plane Pq at each q ∈ C with infinite centre ω. With respect to Laguerre homologies
Kleinewillinghöfer obtained seven types of Laguerre planes, labelled I, II, III, IV, V, VI
and VII; see [6], Satz 3.1. Of these types type VI cannot occur in flat Laguerre planes;
see [14] Proposition 3.4.

A Laguerre translation of L is an automorphism of L that is either the identity or fixes
precisely the points of one parallel class and induces a translation in the derived affine
plane at one of its fixed points. Laguerre translations. come in two different varieties.
Firstly, a non-identity G-translation of L is a Laguerre translation that fixes precisely
the points of the parallel class G and furthermore fixes each parallel class globally. For
the second variety of Laguerre translations one uses a tangent bundle B(p, C), that is,
all circles that touch the circle C at the point p. In the derived affine plane at p the
tangent bundle represents a parallel class of lines, and we can look at translations in this
direction. Then a (G,B(p, C))-translation of L is a Laguerre translation that fixes C (and
each circle in B(p, C)) globally. With respect to Laguerre translations Kleinewillinghöfer
obtained 11 types of Laguerre planes, labelled A through to K; see [6] Satz 3.3, or [7]
Satz 2. Of these types the types F, I and J cannot occur in flat Laguerre planes; see [14]
Proposition 4.8.

Finally, a Laguerre homothety of L is an automorphism of L that is either the identity
or fixes precisely two non-parallel points and induces a homothety in the derived affine
plane at each of these two fixed points. One speaks of a {p, q}-homothety if p, q are the
two fixed points. With respect to Laguerre homotheties Kleinewillinghöfer [6] Satz 3.2,
or [7] Satz 1, obtained 13 types of Laguerre planes, labelled 1 through to 13. Types 5, 6,
7, 9, 10 and 12 cannot occur in flat Laguerre planes; see [14] Proposition 5.6 and [19].

Combining all three classifications Kleinewillinghöfer obtained a total of 46 combined
types. In flat Laguerre planes 21 of these 46 combined types cannot occur. There are
models of flat Laguerre planes of types I.A.1, I.B.1, I.B.3, I.C.1, I.E.1, I.E.4, I.G.1, I.H.1,
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I.H.11, II.A.1, II.E.1, II.E.4, II.G.1, III.H.1, III.H.11, IV.A.1, IV.A.2, VII.D.1, VII.D.8
and VII.K.13; see [14] Section 6, [10], [18], [19], [20]. Here a combined type just refers to
the respective single types. E.g., type III.B.3 refers to type III with respect to Laguerre
homotheties, type B with respect to Laguerre translations, and type 3 with respect to
Laguerre homotheties. Note that there is a flat Laguerre plane of each of the single
Kleinewillinghöfer types not excluded for flat Laguerre planes, except for type V with
respect to Laguerre homologies.

In particular, the Kleinewillinghöfer types III.B.1 and III.B.3 we are interested in in
this paper are defined as follows. In type III (with respect to Laguerre homologies) the
set Z of all circles C for which the automorphism group of the flat Laguerre plane L is
linearly transitive (with respect to C-homologies) consists of a tangent bundle B(p, C) of
L. In type B (with respect to Laguerre translations) there is no tangent bundle for which
the group of Laguerre translations is linearly transitive and exactly one parallel class G
for which the group of G-translations is linearly transitive. In type 3 (with respect to
Laguerre homotheties) there are a point p and a parallel class G with p /∈ G such that
each group of {p, q}-homotheties is linearly transitive for all q ∈ G. A flat Laguerre plane
of type III.B must be of type III.B.1 or III.B.3.

With the models in this paper only the existence of combined types I.A.2, II.A.2 and
V.A.1 remains open in flat Laguerre planes.

4 Some necessary conditions for a flat Laguerre plane

of type III.B.3

Let L be a flat Laguerre plane of type III.B.3. Then the derived affine plane at the distin-
guished point p as in types III and 3 with respect to Laguerre homologies and Laguerre
homotheties must be Desarguesian by the Lenz-Barlotti classification of projective planes,
compare [11], Anhang, Section 6. We introduce coordinates such that the distinguished
point is (∞, 0) and the distinguished parallel class is Π0 = {0} × R. Since A(∞,0) is
Desarguesian, the circles through (∞, 0) are the extended Euclidean lines

C0,b,c = {(x, bx+ c) | x ∈ R} ∪ {(∞, 0)}

and the group generated by all the central automorphisms as in types III, B and 3 consists
of the transformations

ϕr,s,t : (x, y) 7→ (rx, sy + t)

for r, s, t ∈ R, r, s 6= 0, suitably extended onto the parallel class Π∞ = {∞}×R at infinity.

The automorphism group Γ of L must fix the distinguished point p = (∞, 0), the
parallel class Π0 and the tangent bundle as in type III. Each γ ∈ Γ induces a collineation
of Ap that fixes two points on the line at infinity (the points at infinity on vertical lines
and on lines that come from circles in the distinguished tangent bundle) and a vertical
line. Hence Γ is at most 3-dimensional by the dimension formula, see the end of section
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2. On the other hand the collection of automorphisms ϕr,s,t is 3-dimensional so that Γ
must be 3-dimensional. In fact,

Γ = {ϕr,s,t | r, s, t ∈ R, r, s 6= 0}.

The stabiliser H of the circle C0,0,0 is

H = {ϕr,s,0 | r, s 6= 0}.

Since H is a 2-dimensional abelian group and because the subgroups of all homologies or
all homotheties are transitive on Π∗∞ = Π∞ \ {(∞, 0)}, there is a 1-dimensional subgroup
of H that acts trivially on Π∞. The connected component containing the identity of such
a subgroup must be of the form {ϕr,rk,0 | r > 0} for some k 6= 0. Indeed, suppose that
s = φ(r) for some continuous function φ : R>0 → R. Since this component is a subgroup,
φ satisfies the functional equation φ(r1r2) = φ(r1)φ(r2), which yields the above, see also
section A.1.4 of [13]. Since the homology ϕ1,−1,0 and the homothety ϕ−1,−1,0 act orientation
reversing on Π∞, we see that ϕ−1,1,0 is orientation preserving on Π∞. But ϕ−1,1,0 is also
involutory so that ϕ−1,1,0 must act trivially on Π∞. Composing this automorphism with
all automorphisms in {ϕr,rk,0 | r > 0} for some k 6= 0 shows that

K = {ϕr,|r|k,0 | r 6= 0}

is in the kernel of the action of H on Π∞.
Let C1 be the circle through (1, 1) that touches C0,0,0 at (0, 0). Without loss of gener-

ality we may assume that C1 also passes through the point (∞, 1). Since C1 is fixed by
K, we obtain a functional equation for the function f1 : R → R describing C1 (that is,
C1 = {(x, f1(x)) | x ∈ R} ∪ {(∞, 1)}), which results in f1 being of the form f1(x) = |x|k
for some k 6= 0. Since C1 induces in the derived projective plane at (∞, 0) an oval that has
the line at infinity as a tangent, the curve y = f1(x) must be parabolic. Parabolic curves
are characterized by f1 (or −f1) being strictly convex and limx→+/−∞(f1(x)− cx) = +∞
for all c ∈ R, compare [13], Section 5.3.1. Hence, we obtain that k > 1. Applying the
automorphisms φ(1,a,c) to C1 shows that L has the circles

Ca,b,c = {(x, a|x|k + bx+ c) | x ∈ R} ∪ {(∞, a)}

for a, b, c ∈ R, ab = 0. (The orbit of C1 plus the circle through (∞, 0).) Moreover, since
ϕ(r,s,t) sends (x, a|x|k + bx + c) to (rx, s(a|x|k + bx + c) + t), putting x′ = rx shows that
ϕr,s,t acts on Π∞ by

ϕr,s,t(∞, y) = (∞, sy/|r|k).

Γ has four orbits on the cylinder Z, namely, {(∞, 0)}, Π∞\{(∞, 0)}, Π0 and Z \(Π∞∪
Π0). Furthermore, Γ has one orbit on the set of all remaining circles (not of the form Ca,b,c

with ab = 0 as above). Let C2 be the circle through (∞, 1) that touches C0,1,0 at (0, 0) and
let f2 be a function describing C2 so that C2 = {(x, f2(x)) | x ∈ R} ∪ {(∞, 1)}. Applying
all the transformations ϕr,s,t, we thus obtain the circles C2

r,s,t = {((x, sf2(x/r) + t) | x ∈
R} ∪ {(∞, s|r|k).
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Note that coherence in flat Laguerre planes implies that the circle through (∞, 1)
that touches C0,b,0 at (0, 0) tends to C1,0,0 as b tends to 0. Thus if s = |r|k and s/r =
r|r|k−2 tends to 0, that is, r → 0, then |r|kf2(x/r) tends to |x|k. But this implies that
limx→∞ f2(x)/|x|k = 1.

In order to find a flat Laguerre plane of type III.B.1 one can look for planes which have
‘almost’ type III.B.3, that is, flat Laguerre planes for which the group of all {(∞, 0), (0, 0)}-
homotheties has four orbits (instead of three under full linear transitivity) on C0,0,0,
namely, {(∞, 0)}, {(0, 0)}, {(x, 0) | x > 0} and {(x, 0) | x < 0}. This means that Γ
is still 3-dimensional and that all ϕr,s,t for r, s, t ∈ R, r > 0, s 6= 0, are automorphisms
of the plane but γ−1,−1,0 is not. Hence most of the conditions about the structure of
the plane obtained above remain valid. Such a construction can be achieved by pasting
together along Π∞ ∪ Π0 two halves of flat Laguerre planes of type III.B.3 or by making
sure that f1 or f2 is not symmetric.

5 The Models

In this section we present models for flat Laguerre planes of Kleinewillinghöfer types
III.B..1 and III.B.3. According to the previous section all we have to do for type III.B.3
is specify k and the function f2 and then verify the axioms of a flat Laguerre plane. We
are looking for a suitable polynomial of low degree for the function f2. Since k = 2 yields
the classical Laguerre plane and because polynomials of odd degree are not parabolic, the
lowest degree suitable is k = 4. Specifically, in the notation of the previous section, we
use f2(x) = x4 + x3 + x2 + x. Then the limit condition on f2 is automatically satisfied.
In order to simplify the formulas and to avoid cubic roots we make a slight change to the
way circles are parametrised. For a, b ∈ R let

ha,b(x) = a3x4 + a2bx3 + ab2x2 + b3x

so that ha,b(x) = a3b4f2(x/b). Then ha,b is a strictly convex or strictly concave function
of R unless a = 0. Note that

hb,a(x) = x5ha,b(1/x) x 6= 0

ha,−b(x) = ha,b(−x)

ha,b(x) = a3h1,b/a(x) a 6= 0

For type III.B.1 the pasting along Π∞ ∪Π0 is achieved with a fixed parameter q > 0. We
define the sets

Ca,b,c = {(x, ha,b(x) + c) | x ≥ 0} ∪ {(x, qha,b(x) + c) | x < 0}} ∪ {(∞, a3)}

for a, b, c ∈ R. Explicitly, we have the following incidence structures.

Description of the models L(q).



Flat Laguerre planes of Kleinewillinghöfer type III.B 7

Let q > 0. The incidence structure L(q) has point set Z = (R∪{∞})×R; two points
(x1, y1), (x2, y2) ∈ Z are parallel if and only if x1 = x2. The sets

Ca,b,c = {(x, a3x4 + a2bx3 + ab2x2 + b3x+ c) | x ≥ 0}
∪{(x, q(a3x4 + a2bx3 + ab2x2 + b3x) + c) | x < 0}} ∪ {(∞, a3)}.

for a, b, c ∈ R are the circles of L(q).

We claim that L(q) is a flat Laguerre plane with the collection of the above sets Ca,b,c

as the circle set. For r, s, t ∈ R, r, s 6= 0, let the permutation γr,s,t : Z → Z be defined by

γr,s,t : (x, y) 7→

{
(rx, s3y + t), for x ∈ R
(∞, s3y/r4), for x =∞

.

It is readily verified that γr,s,t is an automorphism of L(q) such that

γr,s,t(Ca,b,c) = Cas/r4/3,bs/r1/3,s3c+t

for r, s, t ∈ R, r > 0, s 6= 0. Furthermore, σ = γ−1,1,0 is an isomorphism from L(q) to
L(1/q). Note that σ is an automorphism of L(1).

Let
G = {γr,s,t | r, s, t ∈ R, s 6= 0, r > 0}.

This is a group of automorphisms of L(q) that has five orbits on the cylinder Z, namely
{(∞, 0)}, Π∞ \ {(∞, 0)}, Π0, {(x, y) ∈ R2 | x > 0} and {(x, y) ∈ R2 | x < 0}.

PROPOSITION 5.1 The derived incidence structure A(∞,0) of L(q) at (∞, 0) is the
real Desarguesian affine plane.

Proof. The non-vertical lines in A(∞,0) are the traces on R2 of circles C0,b,c for b, c ∈

R. After the coordinate transformation (x, y) 7→

{
(x, y), for x ≥ 0,

(qx, y), for x < 0
we obtain the

Euclidean lines {(x, b3x+ c) | x ∈ R}. �

For the derived incidence structures at points (∞, a), a 6= 0, on the parallel class at
infinity it suffices to consider a = 1 because all other points can be obtained by applying
automorphisms of the form γ1,s,0.

PROPOSITION 5.2 The derived incidence structure A(∞,1) of L(q) at (∞, 1) is a non-
Desarguesian affine plane.

Proof. The non-vertical lines in A(∞,1) are the traces on R2 of circles C1,b,c for b, c ∈ R.
Applying the coordinate transformation

(x, y) 7→

{
(x, y − x4), for x ≥ 0

(x, y − qx4), for x < 0
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we obtain an isomorphic incidence structure A1 whose non-vertical lines are the sets

Lb,c = {(x, bx3 + b2x2 + b3x+ c) | x ≥ 0} ∪ {(x, q(bx3 + b2x2 + b3x) + c) | x < 0}}

for b, c ∈ R.
We first show that two lines Lb,c and Lb′,c′ are parallel (that is, disjoint or identical) if

and only if b = b′ and that two non-parallel lines intersect in precisely one point. Clearly
the lines are parallel if b = b′. Now assume that b 6= b′. Then

(bx3 + b2x2 + b3x)− (b′x3 + (b′)2x2 + (b′)3x) = (b− b′)(x3 + (b+ b′)x2 + (b2 + bb′ + (b′)2)x)

and the cubic polynomial

p(x) = x3 + (b+ b′)x2 + (b2 + bb′ + (b′)2)x

is strictly increasing. Hence p(x) = c′−c
b−b′ has exactly one solution x+. This solution gives

rise to a point of intersection if x+ ≥ 0. Similarly, p(x) = c′−c
q(b−b′) has exactly one solution

x−, which gives rise to a point of intersection if x− < 0. However, p(0) = 0 and q > 0 so
that x+ and x− are either both 0 or have the same sign. In the latter case precisely one
of x+ or x− corresponds to a point of intersection of Lb,c and Lb′,c′ . This shows that Lb,c

and Lb′,c′ are not parallel and indeed have precisely one point in common. Obviously, a
vertical line and a line Lb,c also have precisely one point in common.

Next we verify the axiom of joining for an affine plane. So let (x1, y1), (x2, y2) ∈ R2

be two distinct points. If x1 = x2, then the only line in A1 joining these two points is the
vertical line x = x1. We now assume that 0 ≤ x1 < x2. In this case we obtain the system
of equations

y1 = bx31 + b2x21 + b3x1 + c

y2 = bx32 + b2x22 + b3x2 + c

for the parameters b and c of a joining line Lb,c. Taking the difference of these equations
and dividing by x2 − x1 6= 0, we find that the parameter b is determined by

b3 + (x1 + x2)b
2 + (x21 + x1x2 + x22)b−

y2 − y1
x2 − x1

= 0 ,

which has precisely one root. (This basically is the polynomial p from above.) From b we
obtain c = y1 − (bx31 + b2x21 + b3x1), and the joining line Lb,c is uniquely determined. The
case x1 < x2 ≤ 0 is dealt with similarly or we can use the isomorphism σ and obtain the
desired result from the previous case in L(1/q).

In the last case to be considered we assume that x1 < 0 < x2. We then solve the
system of equations

y1 = bx31 + b2x21 + b3x1 + c

y2 = qbx32 + qb2x22 + qb3x2 + c
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for b and c. Taking the difference of these equations yields

(qx2 − x1)b3 + (qx22 − x21)b2 + (qx32 − x31)b+ y1 − y2 = 0.

The leading coefficient of this cubic polynomial in b is positive and the above equation
has at least one root. Each such root b and c = y1− (bx31 + b2x21 + b3x1) results in a joining
line Lb,c. However, as seen before, two distinct lines intersect in at most one point and so
b and c, and thus Lb,c, must be unique. This shows that A1 is a linear space.

We now turn to the parallel axiom in A1. Since the parallel axiom is clearly satisfied
for vertical lines, let a point (x0, y0) and a non-vertical line Lb,c be given. A line parallel
to Lb,c must be of the form Lb,c′ for some c′ ∈ R. The line parameter c′ is uniquely
determined by

c′ =

{
y0 − (bx30 + b2x20 + b3x0), for x0 ≥ 0

y0 − q(bx30 + b2x20 + b3x0), for x0 < 0
.

This shows that A1 (and thus A(∞,1)) is an affine plane.
We finally show that A1 is non-Desarguesian. To see this consider the two triangles

with vertices p1 = (0, 0), p2 = (1, 3), p3 = (1,−1) and p′1 = (u, u2 − 3), p′2 = (2, 3), p′3 =

(2,−1), respectively, where u is the root of X3+X−8 = 0 (that is, u = 1
3

3
√

108 +
√

1299−
1

3
√

108+
√
1299

≈ 1.833751). Then corresponding sides pipj and p′ip
′
j of the triangles are

parallel (these are the lines L1,0 and L1,−11 for i = 1, j = 2, the lines L−1,0 and L−1,5 for
i = 1, j = 3, and the vertical lines x = 1 and x = 2 for i = 2, j = 3) as well as the lines
pip
′
i for i = 2, 3. (The latter are horizontal Euclidean lines y = 3 and y = −1.) However,

the third line p1p
′
1 is not parallel to the other two so that Desargues’ configuration does

not close in A1. �

The lemma below will be used to prove that two distinct circles have at most two
points in common.

LEMMA 5.3 The following polynomial in t always has exactly one real root if x 6= y:

fx,y,z,w(t) = 4(x3 − y3)t3 + 3(x2z − y2w)t2 + 2(xz2 − yw2)t+ z3 − w3.

Before we give the proof we remark that during the proof we have to determine the so-
lutions to a system of two equations of in degree 6 in two variables. By the well-known
result on the unsolvability by radicals of polynomials of degree 5 and higher, we cannot
expect to have a nice and elegant analytical solution for this. Our method consists of
reducing the above system of equations to high degree equations in one variable. Only at
this point do we rely on Maple to calculate the roots of these equations. As the explicit
expressions are long, tedious and not enlightening at all, we have opted to leave them
out. Alternately, we could have used the well-developed and accurate method of Gröbner
bases to determine solutions to systems of polynomial equations; compare [21].
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Proof. As is well known, see, for example, [1], a polynomial f(t) = at3 + bt2 + ct+ d has
exactly one (counted with multiplicity) real root if and only if the discriminant

∆ = −4b3d+ b2c2 − 4ac3 + 18abcd− 27a2d2

is negative. We investigate the discriminant of f where a = 4(x3 − y3), b = 3(x2z −
y2w), c = 2(xz2 − yw2) and d = z3 − w3. If y = 0, then the discriminant becomes

−4x6
(
−135 z3w3 + 50 z6 + 108w6

)
and if w = 0, then it becomes

−4x6
(
−135 z3w3 + 50 z6 + 108w6

)
.

Hence, the discriminant is negative unless one of the other coordinates is also zero. It is
easy to see that in all those cases the expression is negative if x 6= y. Suppose from now
on that yw 6= 0 and denote x

y
by α and z

w
by β, respectively. Then

∆ = −4 y6w6E(α, β)

where E(α, β) is a polynomial in α and β. Hence, it suffices to prove that E is always
positive if x 6= y. As a polynomial, E(α, β) is continuous and differentiable. An explicit
calculation reveals that E is bounded below, hence it suffices to prove that the only critical
point for E occurs at (α, β) = (1, 1) and hence is an absolute minimum for E. The critical
points are the solutions of the following system of equations

E1 =
∂E

∂α
= 0 ;E2 =

∂E

∂β
= 0.

Furthermore, calculation yields that E1−E2, αE1−βE2 and α2E1−β2E2 all contain α−β
as a factor. If α = β we obtain a high degree equation in β, yielding only (α, β) = (1, 1)
as critical point. Therefore, from now on, we assume α 6= β, and factor α − β out in
the above expressions. This yields enough independent equations to obtain a high degree
equation in β, which yields no further critical points. �

We say that two circles touch analytically at a point p = (xp, yp) ∈ R2 if they pass
through p and their describing functions have equal derivatives at xp, where we consider
one-sided derivatives in case xp = 0. Given the form of the circles, the circles Ca1,b1,c1

and Ca2,b2,c2 touch analytically at p if and only if ha1,b1(xp) + c1 = ha2,b2(xp) + c2 and
h′a1,b1(xp) = h′a2,b2(xp).

PROPOSITION 5.4 Two distinct circles of L(q) have at most two points in common.
Moreover, two circles in L(q) touch analytically at a point p ∈ R2 if and only if they are
tangent to each other at p.
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Proof. Let Ca1,b1,c1 and Ca2,b2,c2 be two distinct circles. If a1 = a2, then the first statement
follows from Propositions 5.1 and 5.2 and using automorphisms γ1,s,0.

We now assume that a1 6= a2. For the x-coordinate of a point of intersection one has

ha1,b1(x)− ha2,b2(x) = c2 − c1, x ≥ 0 and ha1,b1(x)− ha2,b2(x) =
c2 − c1
q

, x < 0. (*)

We consider the left-hand side h(x) = ha1,b1(x) − ha2,b2(x) of these equations. h(x) is a
quartic polynomial in x with h(0) = 0. Explicitly,

h(x) = (a31 − a32)x4 + (a21b1 − a22b2)x3 + (a1b
2
1 − a2b22)x2 + (b31 − b32)x ,

h′(x) = 4(a31 − a32)x3 + 3(a21b1 − a22b2)x2 + 2(a1b
2
1 − a2b22)x+ (b31 − b32) .

We want to show that y = h(x) has at most two intersection points with any given
horizontal line if a1 6= a2. Then, because h(0) = 0, h(x) = r has one positive and one
negative solution in case r > 0 and solutions have the same sign in case r < 0. But c2− c1
and c2−c1

q
have the same sign so that for c2 > c1 we obtain one solution for each of the

two equations (*). For c2 < c1 one of the equations in (*) has no solution and the other
at most 2, and for c2 = c1 we obtain one or two solutions.

Therefore, it suffices to prove that h′(x) has exactly one real root in this case. This is
achieved by the application of Lemma 5.3 since h′(x) = fa1,a2,b1,b2(x).

In case h(x0) = r and h′(x0) = 0, the equation h(x) = r has only one solution x0.
It follows that the circles are tangent at (x0, y0). Conversely, if two circles are tangent
to one another at a point (x0, y0), then h′(x0) has to be zero, otherwise we surely get a
second point of intersection since h is a polynomial of degree 4. �

REMARK 5.5 In some cases we can prove Proposition 5.4 in a shorter way. Recall that
ha,b is strictly convex for a > 0, strictly concave for a < 0 and linear for a = 0. Hence,
if a1 ≥ 0 ≥ a2, the function h itself is strictly convex, and an equation h(x) = r has at
most 2 solutions x. As seen in the proof of Proposition 5.4 this property suffices to prove
the assertion of the Proposition.

A similar argument applies when a1 < 0 < a2, or we can use the automorphism γ1,−1,0
to reduce this situation to the case considered above. Using γ1,−1,0, if necessary, it suffices
to consider the case where a1 > a2 > 0. In this case we really need the approach used in
Proposition 5.4.

PROPOSITION 5.6 Three mutually non-parallel points can be uniquely joined by a
circle in L(q).

Proof. Let (xi, yi), i = 1, 2, 3, be three mutually non-parallel points. If any one of the xis
is ∞, the result follows from Propositions 5.1 and 5.2. So we can assume that all xi are
in R and, without loss of generality, furthermore that x1 > x2 > x3.
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We consider the generic case where x3 < 0 ≤ x2. In this case we have to find a, b, c ∈ R
such that

y1 = ha,b(x1) + c

y2 = ha,b(x2) + c

y3 = qha,b(x3) + c

Subtracting the first equation from the other two yields

y2 − y1 = ha,b(x2)− ha,b(x1)
y3 − y1 = qha,b(x3)− ha,b(x1)

which does not involve c.
We first consider the case that the three modified points (x1, y1), (x2, y2) and (qx3, y3)

are on a Euclidean line. Then y2−y1
x2−x1

= y3−y1
qx3−x1

and

a = 0, b = 3

√
y2 − y1
x2 − x1

, c =
y1x2 − y2x1
x2 − x1

yields a circle containing the three original points.
If the three modified points are not on a Euclidean line, then (y2 − y1)(qx3 − x1) −

(y3−y1)(x2−x1) 6= 0 and a cannot be 0. We now write ha,b(x) as a3h1,t(x) where t = b/a.
From the above system of two equations for a and b we then obtain the single equation

(y2 − y1)(qh1,t(x3)− h1,t(x1))− (y3 − y1)(h1,t(x2)− h1,t(x1)) = 0

for t. Expanding the product yields a cubic polynomial in t with t3 having coefficient
(y2 − y1)(qx3 − x1) − (y3 − y1)(x2 − x1) 6= 0. Hence this polynomial has at least one
real root t0. From Proposition 5.4 it follows that not both of h1,t0(x2) − h1,t0(x1) and
qh1,t0(x3)−h1,t0(x1) can be zero. (Otherwise the circle C1,t0,0 has three points in common
with C0,0,0.) Hence we can find a as

a = 3

√
y2 − y1

h1,t0(x2)− h1,t0(x1)
or a = 3

√
y3 − y1

qh1,t0(x3)− h1,t0(x1)
.

From there we obtain b = at0 and then c = y1−ha,b(x1). This shows that the three points
are on a circle. Furthermore, in any case, a joining circle must be unique by Proposition
5.4.

If we assume x3 ≥ 0, we can put q = 1 in the above computations and obtain in
exactly the same way a unique joining circle. In the two remaining cases x1 < 0 and
x2 < 0 ≤ x1 we use the isomorphism σ to reduce them to the previous cases in L(1/q). �

PROPOSITION 5.7 Consider a circle C̃ and two non-parallel points p1 = (x1, y1) /∈ C̃
and p2 = (x2, y2) ∈ C̃. Then there exists exactly one circle Ca,b,c through p1 which
intersects C̃ exactly in p2.
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Proof. If p2 is on the parallel class at infinity Π∞, the result follows from Propositions
5.1 and 5.2. If p2 is not on Π∞, then it suffices to prove existence of a touching circle.
Indeed, suppose there were two circles C and C ′ fulfilling the requirements. Since analytic
and geometric touching are the same by Proposition 5.4 and because both circles touch
C̃ analytically, they also touch each other analytically. Hence, by Proposition 5.4, they
must touch geometrically. But they have p1 and p2 in common by assumption, which
yields a contradiction.

If p1 ∈ Π∞, then a = ã is known, where C̃ = C ã,b̃,c̃ , and expressing that C = Ca,b,c

and C̃ touch at p2 yields a cubic equation in b:

4x32a
3 + 3x22a

2b+ 2x2ab
2 + b3 = h′

ã,b̃
(x2) = y′2. (1)

This equation has a real root and the remaining parameter c can be found from the
equation expressing that p2 lies on C (put q = 1 if x2 ≥ 0):

y2 = q(x42a
3 + x32a

2b+ x22ab
2 + x2b

3) + c.

Now we deal with the case where p1, p2 ∈ R2. Without loss of generality we may
assume that x1 ≥ 0 and x2 < 0. The other cases follow by either putting q = 1 in the
calculations or by isomorphism.

Since p1 and p2 lie on C, we have that

y1 = x41a
3 + x31a

2b+ x21ab
2 + x1b

3 + c, (2)

y2 = q(x42a
3 + x32a

2b+ x22ab
2 + x2b

3) + c. (3)

Subtracting (2) from (3) yields

y2 − y1 = (qx42 − x41)a3 + (qx32 − x31)a2b+ (qx22 − x21)ab2 + (qx2 − x1)b3. (4)

Expressing that C and C̃ touch analytically at p2 yields again equation (1) after dividing
both sides by q.

In case
y2 − y1
qx2 − x1

= y′2, we can take a = 0, b = 3
√
y′2, c = y1 − x1y′2.

In case
y2 − y1
qx2 − x1

6= y′2, we must have a 6= 0. We then write b = ta and (3) and (4)

become

((qx42 − x41) + (qx32 − x31)t+ (qx22 − x21)t2 + (qx2 − x1)t3)a3 = y2 − y1, (5)

(4x32 + 3x22t+ 2x2t
2 + t3)a3 = y′2. (6)

Eliminating a from equations (5) and (6) yields a cubic equation in t, which has a real
root t0. Note that the polynomials 4x32 + 3x22t+ 2x2t

2 + t3 and (qx42− x41) + (qx32− x31)t+
(qx22−x21)t2 +(qx2−x1)t3 have no roots in common. Indeed, combining the two equations
yields a quadratic equation which after putting x1 = λx2 has discriminant

−x62(3λ6 − 8λ5 + (6 + 4q)λ4 + (−16− 4q)λ3 + (23 + 12q)λ2 − 28λq + 8q2),

an expression which is always negative since λ < 0. This implies we can solve for a from
either (5) or (6). This also gives us b, and finally we find c from either (2) or (3). �
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THEOREM 5.8 L(q) is a flat Laguerre plane of group dimension 3. Furthermore, L(q)
is of Kleinewillinghöfer type III.B.1 for q 6= 1 and of type III.B.3 for q = 1.

Proof. The previous propositions prove that L(q) is a flat Laguerre plane. It is readily
verified that {γ1,s,(1−s)c | s ∈ R, s 6= 0} is a linearly transitive group of C0,0,c-homologies.
Hence, the set Z of all circles for which the automorphism group Γ(q) of L(q) is linearly
transitive with respect to C-homologies contains circles as in type III.

We first note that every automorphism of L(q) fixes the point (∞, 0). Assume other-
wise, that is, that there is an automorphism γ such that γ((∞, 0)) = p 6= (∞, 0). Then
γ({C0,0,t | t ∈ R}) is the bundle B(p, γ(C0,0,0)) and this bundle must also be contained
in Z. From the list of possible types with respect to Laguerre homologies, compare [14],
Section 3, and because type VI is not possible in flat Laguerre planes by [14], Corollary
3.3, we obtain that L(q) must then be of type VII. However, such a flat Laguerre plane is
ovoidal by [14], Corollary 3.2. This contradicts the fact that A(∞,1) is non-Desarguesian
by Lemma 5.2. (Each derived affine plane of an ovoidal Laguerre plane is Desarguesian.)

Furthermore, because a non-identity Laguerre homology about a circle not passing
through (∞, 0) moves (∞, 0), any circle C for a C-homology must pass through (∞, 0).
The same argument on circles in Z as above yields that if there is a linearly transitive
group of Laguerre homologies about a circle C, then this circle must be in the tangent
bundle {C0,0,c | c ∈ R}. This shows that L(q) must be of type III with respect to Laguerre
homologies.

Since (∞, 0) is fixed, every automorphism α of L(q) induces a collineation of the
derived affine plane A(∞,0). But A(∞,0) is Desarguesian so that in A(∞,0) we have α(x, y) =
(rx+ u, sy + vx+ t) for some r, s, t, u, v ∈ R, r, s 6= 0. Applying suitable automorphisms
of L(q) we may assume that r = ±1, s = 1 and t = 0. Now in case r = 1

α(C1,0,0) = {α((x, x4) | x ∈ R, x ≥ 0} ∪ {α((x, qx4) | x ∈ R, x < 0} ∪ {α((∞, 1))}
= {(x+ u, x4 + vx) | x ∈ R, x ≥ 0} ∪ {(x+ u, qx4 + vx) | x ∈ R, x < 0}

∪{α((∞, 1))}
= {(z, (z − u)4 + v(z − u)) | z ≥ u} ∪ {(z, q(z − u)4 + v(z − u)) | z < u}

∪{α((∞, 1))}
= {(z, z4 − 4uz3 + 6u2z2 + (v − 4u3)z + u4 − vu) | z ≥ u}

∪{(z, qz4 − 4quz3 + 6qu2z2 + (v − 4qu3)z + qu4 − vu) | z < u}
∪{α((∞, 1))}

To match this set with a circle Ca,b,c we must have a = 1, b = −4u, b2 = 6u2, b3 = v− 4u3

and c = vu. The second and third of these equations yield u = 0 = b, and then the fourth
equation gives us v = 0. Hence α = id. A similar computation in case r = −1 leads to
α = σ, and this α is an automorphism if and only if q = 1.

This shows that Γ(q) equals G = {γr,s,t | r, s, t ∈ R, s 6= 0, r > 0} in case q 6= 1 and
〈G, σ〉 = G∪σG in case q = 1. In any case Γ(q) is 3-dimensional. Furthermore, Γ(q) fixes
the parallel class Π0 and is transitive on Π0.
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Since {γ1,1,t | t ∈ R} is a linearly transitive group of Π∞-translations and because
a non-identity (|p|, B(p, C))-translation moves at least one of Π∞ or Π0, we see that
L(q) must be of type B with respect to Laguerre translations. Similarly, a non-identity
(p, q)-homothety with centres p, q not on Π∞ ∪ Π0 moves at least one of Π∞ or Π0,
and a non-identity (p, q)-homothety with p ∈ Π∞ \ {(∞, 0)} and q ∈ Π0 moves (∞, 0).
Hence, only {p, q} = {(∞, 0), q} with q ∈ Π0 can occur for linearly transitive groups
of {p, q}-homotheties. But {γr,r,(1−r)c | r ∈ R, r 6= 0} is a linearly transitive group of
((∞, 0), (0, c))-homotheties in case q = 1 so that L(1) is of type 3. For q 6= 1 however,
σ is not an automorphism of L(q) and the group of all ((∞, 0), (0, 0))-homotheties is not
linearly transitive. We therefore obtain Kleinewillinghöfer type 1 in this case. �

THEOREM 5.9 Two flat Laguerre planes L(q) and L(q′) are isomorphic if and only if
q′ = q or q′q = 1. In particular, each Laguerre plane L(q) is isomorphic to precisely one
plane with q ≥ 1. Furthermore, each isomorphism from L(q) to L(q′) is a composition of
automorphisms of L(q) and the isomorphism σ.

Proof. Let ϕ be an isomorphism from L(q) to L(q′). Since both Laguerre planes are of
type III.B, the point (∞, 0) in L(q) must be taken to the point (∞, 0) in L(q′). Hence ϕ
induces an isomorphism between the derived affine planes A(∞,0) and A′(∞,0), and thus a
collineation of the real Desarguesian plane. As in the proof of Theorem 5.8 we see that ϕ
is a composition of an automorphism of L(q) followed perhaps by σ. In the former case
q′ = q and in the latter case q′ = 1/q.

The remaining statements of the theorem now readily follow. �
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