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Abstract

Kleinewillinghöfer types of Laguerre planes reflect transitivity properties of cer-
tain groups of central automorphisms. In the case of flat Laguerre planes, Polster
and Steinke have shown that some of the conceivable types cannot exist, and they
gave models for most of the other types. Only few types are still in doubt. One of
them is type V.A.1, whose existence we prove here. In order to construct our model,
we make systematic use of the restrictions imposed by the group. We conjecture
that our example belongs to a one-parameter family of planes, all of type V.A.1.
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1 Introduction

Recall that a Laguerre plane is an incidence structure that is defined in terms of points
and circles and an incidence relationship between them. Kleinewillinghöfer [5] classified
Laguerre planes with respect to linearly transitive groups of central automorphisms. We
give the definitions in Section 3. Polster and Steinke [11] and Steinke [16] considered
flat Laguerre planes and investigated their so-called Kleinewillinghöfer types, that is, the
Kleinewillinghöfer types of their full automorphism groups. In particular, all possible
types of flat Laguerre planes with respect to Laguerre translations (automorphisms of
Laguerre planes that either are the identity or fix the points of precisely one parallel
class and induce a translation in the derived affine plane at one of its fixed points) were
completely determined in [11]. The case of Laguerre homotheties (automorphisms of
Laguerre planes that either are the identity or fix precisely two nonparallel points and
induce a homothety in the derived affine plane at each of these two fixed points) was dealt
with in [16]. Examples for some of the feasible Kleinewillinghöfer types of flat Laguerre
planes can be found in [11, Section 6] and [8].

In this paper we provide an example for a flat Laguerre plane of Kleinewillinghöfer type
V.A.1. With this model the number of open cases of Kleinewillinghöfer types (with respect
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to Laguerre homologies, Laguerre translations and Laguerre homotheties combined) is
reduced to four. Moreover, numerical evidence suggests that this example belongs to an
infinite one-parameter family of flat Laguerre planes all of Kleinewillinghöfer type V.A.1.

2 Flat Laguerre Planes

A flat Laguerre plane (or topological, locally compact, 2-dimensional Laguerre plane) L =
(Z, C) is an incidence structure of points and circles whose point set is the cylinder Z =
S1 × R, whose circles C ∈ C are graphs of continuous functions S1 → R such that any
three points no two of which are on the same generator {c} × R of the cylinder can be
joined by a unique circle and such that the circles which touch a fixed circle K at p ∈ K
partition the complement in Z of the generator that contains p. For more information on
flat Laguerre planes we refer to [2] and [3] or [10, Chapter 5]. There are also topological
Laguerre planes whose point spaces are locally compact and topologically zero or four
dimensional, but we are dealing exclusively with flat Laguerre planes in this paper.

The generators of Z are usually referred to as the parallel classes of L. We denote
the parallel class of a point p by |p|. We further say that two points are parallel if they
belong to the same parallel class.

For each point p of L we form the incidence structure Ap = (Ap,Lp) whose point set
Ap consists of all points of L that are not parallel to p and whose line set Lp consists of all
restrictions to Ap of circles of L passing through p and of all parallel classes not passing
through p. It is easy to see that Ap is an affine plane. We call Ap the derived affine plane
at p.

Each derived affine plane Ap of a flat Laguerre plane is even a topological, locally
compact, 2-dimensional affine plane and extends to a topological, compact, 2-dimensional
projective plane Pp that we call the derived projective plane at p. Circles not passing
through the distinguished point p induce closed ovals in Pp by removing the point parallel
to p and adding in Pp the point ω at infinity of the lines that come from parallel classes
of L. The line at infinity of Pp (relative to Ap) is a tangent to this oval.

The classical real Laguerre plane is obtained as the geometry of nontrivial plane sec-
tions of a cylinder in R3 with an ellipse in R2 as base, or equivalently, as the geometry of
nontrivial plane sections of an elliptic cone, in real 3-dimensional projective space, with
its vertex removed. The parallel classes are the generators of the cylinder or cone. By
replacing the ellipse in the construction of the classical flat Laguerre plane by arbitrary
closed ovals in R2, i.e., convex, differentiable, simply closed curves, we also obtain flat
Laguerre planes. These are the so-called flat ovoidal Laguerre planes.

An automorphism of a flat Laguerre plane is a permutation of its point set such that
parallel classes are mapped to parallel classes and circles are mapped to circles. Such an
automorphism is continuous and thus a homeomorphism of Z.

The collection of all automorphisms of a flat Laguerre plane L forms a group with
respect to composition. This group is called the automorphism group Γ of L. When
equipped with the compact-open topology, it is a Lie group (see [14]). We call the di-
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mension of Γ the group dimension of L. In general, Γ is not connected. Note that
dim Γ = dim Γ1 where Γ1 is the connected component of Γ that contains the identity ele-
ment. The maximum group dimension is seven and is attained precisely for the classical
real Laguerre plane. Group dimension 6 does not occur. Flat Laguerre planes of group
dimension five must be special ovoidal Laguerre planes (see [7, Theorem 1]).

3 Kleinewillinghöfer types of flat Laguerre planes

Kleinewillinghöfer considered four kinds of central automorphisms of Laguerre planes: C-
homologies, G-translations, (G,B(q, C))-translations and {p, q}-homotheties. See below
for definitions. Central automorphisms are automorphisms that have at least one fixed
point at which they induce central collineations in the derived projective plane. The four
different kinds of central automorphisms given above are distinguished according to the
relative position of centre and axis and whether or not the axis is the line at infinity of
the derived affine plane at the fixed point at which we derive. The notions of translation,
homothety and homology describe the sort of central collineation one sees in this derived
affine plane.

A subgroup of central automorphisms that have the same ‘centre’ and ‘axis’ is linearly
transitive if the induced group of central collineations in a derived projective plane at the
distinguished fixed point is transitive on each central line except for the obvious fixed
points, the centre and the point of intersection with the axis. Kleinewillinghöfer consid-
ered groups of automorphisms and determined their types according to linearly transitive
subgroups of central automorphisms contained in them. A group of automorphisms is
said to be linearly transitive if it contains a linearly transitive subgroup of central auto-
morphisms. The Kleinewillinghöfer type of a Laguerre plane is defined to be the type of
its full automorphism group. Many of the types Kleinewillinghöfer found can be realized
as types of certain subgroups, but it is much more difficult to find Laguerre planes that
have these types.

A Laguerre homology of a Laguerre plane L is an automorphism of L that either is the
identity or fixes precisely the points of one circle. One speaks of a C-homology if C is the
circle that is fixed pointwise. For each point q ∈ C, a C-homology induces a homology
of the derived projective plane Pq. The centre of the induced homology is the point ω at
infinity corresponding to the parallel classes of L. Kleinewillinghöfer [5, Satz 3.1] found
seven types of groups of automorphisms of Laguerre planes, labelled I, II, III, IV, V, VI
and VII with respect to Laguerre homologies. It is known that type VI cannot occur
as the type of a flat Laguerre plane (see [11, Proposition 3.4]). The examples from [11,
Section 6], [8], [13] and the model given in this paper show that all remaining types with
respect to Laguerre homologies occur, except perhaps type IV.

A Laguerre translation of L is an automorphism of L that is either the identity or fixes
precisely the points of one parallel class and, moreover, induces a translation in the derived
affine plane at one of its fixed points. Laguerre translations come in two different varieties.
The first variety is a nonidentity G-translation of L, which is a Laguerre translation that
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fixes precisely the points of the parallel class G and, further fixes each parallel class
globally.

In order to describe the second variety of Laguerre translations, we consider a tangent
bundle B(p, C), that is, all circles that touch the circle C at the point p. In the derived
affine plane at p the tangent bundle represents a bundle of parallel lines, and we can
look at translations in this direction. Then a (G,B(p, C))-translation of L is a Laguerre
translation that fixes C and each circle in B(p, C) globally.

Kleinewillinghöfer obtained 11 types of groups of automorphisms of Laguerre planesthat
can occur with respect to Laguerre translations and labelled them A to K (see [5, Satz
3.3], or [6, Satz 2]). Out of these 11 types, only types F, I and J cannot occur as types
of flat Laguerre planes (see [11, Proposition 4.8]). There are examples for flat Laguerre
planes for each of the eight remaining types with respect to Laguerre translations (see
[11, Section 6]).

Finally, a Laguerre homothety of L is an automorphism of L that is either the identity
or fixes precisely two nonparallel points and induces a homothety in the derived affine
plane at each of these two fixed points. One speaks of a {p, q}-homothety if p, q are the
two fixed points.

Kleinewillinghöfer [5, Satz 3.2] or [6, Satz 1], obtained 13 types of groups of automor-
phisms of Laguerre planes with respect to Laguerre homotheties and labelled them from
1 to 13. Types 5, 6, 7, 9, 10 and 12 cannot occur as types of flat Laguerre planes (see [11,
Proposition 5.6] and [16]). There are examples for flat Laguerre planes for each of the
remaining types with respect to Laguerre homotheties except for, possibly, type 2 (see
[11, Section 6]).

Combining all three classifications Kleinewillinghöfer obtained a total of 46 types. Of
these 46 types, 21 cannot occur in flat Laguerre planes. There are models of flat Laguerre
planes of types I.A.1, I.B.1, I.B.3, I.C.1, I.E.1, I.E.4, I.G.1, I.H.1, I.H.11, II.A.1, II.E.1,
II.E.4, II.G.1, III.B.1, III.B.3, III.H.1, III.H.11, VII.D.1, VII.D.8 and VII.K.13 (see [11,
Section 6], [8], [15], [16], [13]). Here a combined type just refers to the constituent simple
types. The examples from [11, Section 6] and [8], [13], together with the model given in this
paper, leave the question of existence for flat Laguerre planes open for Kleinewillinghöfer
types I.A.2, II.A.2, IV.A.1 and IV.A.2 only.

4 The general setting for a flat Laguerre plane of

Kleinewillinghöfer type V

In this section, we consider a flat Laguerre plane L of type V.A.1. This means that the
set Z of all circles C for which the automorphism group of L is linearly transitive with
respect to C-homologies consists of a flock of L, that is, the circles in Z partition the
point set of L (type V), that there is neither a tangent bundle nor a parallel class for
which the group of Laguerre translations is linearly transitive (type A), and that there is
no group of Laguerre homotheties that is linearly transitive (type 1).
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Theorem 4.1 A flat Laguerre plane L of Kleinewillinghöfer type V with respect to La-
guerre homologies has group dimension two or three. In the latter case, the automorphism
group of L has precisely two orbits on the circle space C. One orbit consists of all the
circles in the flock F as in type V, and the other orbit is C \ F .

Proof. Let L be a flat Laguerre plane of Kleinewillinghöfer type V and let F be the flock
of L as in type V. Let G be the group generated by all Laguerre homologies at circles in F .
By the definition of Laguerre homologies, the group G fixes each parallel class. Moreover,
G acts two-transitively and effectively on F and on each parallel class. Furthermore, G
is isomorphic to the two-dimensional affine group consisting of all affine transformations
x 7→ ax+ b where a, b ∈ R and a 6= 0.

Every automorphism of L leaves F invariant. In particular, each automorphism in the
connected component Γ1 of the automorphism group Γ of L that contains the identity
fixes F . Furthermore, Γ1 is transitive on F and on each parallel class.

Let C0, C1 be two circles in F and let Σ = (ΓC0,C1)
1 be the connected component of

the stabilizer ΓC0,C1 of the two circles. Note that Σ is a subgroup of Γ1, by connectedness.
Since C0 and C1 have 1-dimensional orbits under Γ (namely F),

dim Γ = 2 + dim Σ

by the dimension formula for Lie transformation groups, which relates the dimensions of
the group, orbits and stabilizers. Moreover, Σ acts effectively on C0.

Let p0 be a point on C0 and consider the stabilizer Σ0 = Σp0 . Then Σ0 induces a group
Σ̃0 of collineations of the derived projective plane Pp0 of L at p0. This group fixes the line
W at infinity, the oval C̃1 induced by the circle C1 and the point w0 at infinity of the line
that comes from C0. Since C̃1 is a topological oval in Pp0 , there are precisely two tangents
to C̃1 through w0 (see [4, Statement 2.5.b], [1, Satz 3.7.a] or [12, proof of Proposition
55.17]). One of these tangents is W . Let L be the other tangent and let q1 = L ∩ C̃1.
Then Σ̃0 fixes q1 and so does Σ0, because q1 is a point of L. Let p1 = C1 ∩ |p0| and
q0 = C0 ∩ |q1|. Then Σ0 fixes the four points p0, p1, q0 and q1. Note that the circle D0

that induces L in Pp touches C0 at p0 and C1 at q1.
Let D1 be the circle through p1 that touches C0 at q0. If, for example, C1 is above C0

in Z, we see that p1 ∈ D1 is above p0 ∈ D0 in |p0| and q0 ∈ D1 is below q1 ∈ D0 in |q1|.
Hence, D0 and D1 must intersect in two points r1 and r2 and Σ0 fixes {r1, r2}. However,
r1 and r2 lie in different connected components of Z \ {|p0|, |q1|}, so Σ0 must fix each of
r1 and r2 by the connectedness of Σ.

Now, in a flat Laguerre plane, given three points on a circle and a fourth point off this
circle, the stabilizer of these four points is trivial (see [14]). Therefore, we deduce that
Σ0 = {id}. In particular, dim Σ0 = 0 and so dim Σ ≤ 1, by the dimension formula, and
thus Γ is at most three dimensional.

We now assume that Γ is three dimensional. From the arguments above we infer that
Σ must be one dimensional. Furthermore, Σ is connected, transitive and effective on C0.

Given a circle C not in F , there is a circle B in F that touches C from below. Using
the group Γ, the circle B and the point of touching C ∩ B can be mapped to the circle
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C0 and any point p0 on C0. The group of C0-homologies is transitive on the set of circles
touching C0 at p0 other than C0 and so B can be taken to any circle that touches C0 at
p0 other than C0. For example, B can be taken to the circle D0 from above. This shows
that the circles in C \ F form an orbit under Γ. �

We keep the notation in the proof of Theorem 4.1 and assume that Γ is three di-
mensional. We represent the cylinder Z as S1 × R where S1 ∼= R/2πZ. The coordinates
obtained in this way differ from the ones usually used but are more convenient for us. We
may choose any interval [u, u+2π) of length 2π with its end points identified to represent
S1. In particular, circles are represented by graphs of continuous periodic functions with
period 2π.

As we have seen, Σ is one dimensional and connected, and acts transitively and ef-
fectively on C0. Hence, Σ is isomorphic to the rotation group SO2(R) and, in fact, acts
equivalently to the standard group of rotations on Z by Brouwer’s Theorem (see [12,
Theorem 96.30]). We may therefore assume that the transformations in Σ are given by

(x, y) 7→ (x+ t, y)

where t ∈ R/2πZ. The circles in the flock F are orbits under this group, so we obtain the
circles {(x, a) | x ∈ S1} with a ∈ R.

As in the proof of Theorem 4.1 let G be the group generated by all Laguerre homologies
at circles in F . Since γ ∈ G fixes each parallel class and σ ∈ Σ fixes each circle in F , the
commutator γ−1σ−1γσ fixes each parallel class and each circle in F , and thus must be the
identity. This shows that G and Σ commute. We may therefore assume that the maps

(x, y) 7→ (x+ t, sy + a)

where a, s ∈ R, s 6= 0, and t ∈ R/2πZ, are automorphisms of L.
Let {(x, f(x)) | x ∈ S1} be a circle through (π, 0) and (0, 0) where f : S1 → R is

continuous but not identically 0. Then the circles of L are of the form

{(x, sf(x+ t) + a) | x ∈ R/2πZ}

where a, s ∈ R and t ∈ R/2πZ. This shows that L is completely determined by the single
function f , in this case.

In particular, when a = 0, s = 1 and t = π, one has the circle

{(x, f(x+ π)) | x ∈ R/2πZ}

that passes through (π, 0) and (0, 0). Thus, it must be of the form y = sf(x) for a suitable
nonzero s, that is,

f(x+ π) = sf(x)

for all x ∈ R/2πZ. Applying this identity again for f(x+ π), one finds

f(x) = f(x+ 2π) = sf(x+ π) = s2f(x)
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for all x ∈ R/2πZ. Hence, s2 = 1 and then s = −1, because a rotation through π takes
the positive half of y = f(x) to the negative half of y = sf(x). Therefore

f(x+ π) = −f(x)

for all x ∈ R/2πZ.
Since Γ is transitive on the points of L, it follows that L is a Laguerre plane if and only

if the derived incidence structure A of L at (π, 0) is an affine plane. From the description
of circles above one finds that the nonvertical lines of A are given by

y = s(f(x+ u) + f(u))

for all s ∈ R, u ∈ R/2πZ.
Note that the classical flat Laguerre plane admits a three-dimensional group of auto-

morphisms as described above. The usual parabola model of the classical flat Laguerre
plane has point set (R ∪ {∞})× R and circles

{(x, ax2 + bx+ c) | x ∈ R} ∪ {(∞, a)}

where a, b, c ∈ R.
According to [9, Proposition 2] there is a unique topology extending the natural topol-

ogy of R2 such that one obtains a flat Laguerre plane. In this model such a group of
transformations is, for example, given by{

(x, y) 7→
(
x cos t− sin t

x sin t+ cos t
,
sy + a(x2 + 1)

(x sin t+ cos t)2

) ∣∣∣∣ a, s, t ∈ R, s 6= 0

}
.

Here, in the first coordinate the usual conventions for linear fractional maps on R∪ {∞}
apply when dealing with the symbol ∞ or when dividing by 0.

Because of the way the infinite parallel class {∞} × R is topologically fitted into the
cylinder in the parabola model, the behaviour in the second coordinate is less straight-
forward. For example, (∞, y) is mapped to (cot t, (sy + a)/ sin2 t) if sin t 6= 0. Also, an
affine point (u, v) is close to (∞, y) if and only if u is close to ∞, that is, |u| is large and
also v/(u2 + 1) is close to y.

However, of course, the classical Laguerre plane has type VII. The coordinate trans-
formation

(R ∪ {∞})× R→ (−π, π]× R : (x, y) 7→

{
(2 tan−1(x), y

x2+1
), when x ∈ R

(π, y) when x =∞

takes a circle
{(x, ax2 + bx+ c) | x ∈ R} ∪ {(∞, a)}

to {(
u,
b

2
sinu+

c− a
2

cosu+
c+ a

2

) ∣∣∣∣ u ∈ R/2πZ
}

and brings the group to the form we used above. Consequently, the function f(x) = sin x
yields a Laguerre plane in the setting above, albeit the classical plane.



8 J. Schillewaert and G.F. Steinke

5 A model for a flat Laguerre plane of type V.A.1

In this section we construct a flat Laguerre plane of Kleinewillinghöfer type V.A.1. We
build on the information gained in the previous section, assuming that there is a three-
dimensional automorphism group. In order to obtain our model we modify the describing
function of the classical real Laguerre plane. More precisely, we use

f(x) =
sinx

1 + sin2 x

for all x ∈ R/2πZ.
As in Section 4 our model for a Laguerre plane has point set Z = S1 × R and circles

Ca,t,b = {(x, af(x+ t) + b) | x ∈ R/2πZ}

where a, b ∈ R and t ∈ R/πZ. We claim that the collection C of the above sets forms the
circle set of a flat Laguerre plane L.

Note that the parameters a and t are not uniquely determined by a circle. Indeed,
C−a,t,b = Ca,t+π,b, and C0,0,b = C0,t,b for all t. The first of these coincidences is avoided
by taking t modulo π rather than 2π. The second of the coincidences cannot be avoided.
We often use [−1

2
π, 3

2
π) or (−π, π] or any other convenient interval of length 2π with its

endpoints identified to represent S1, the set of first coordinates of Z. Moreover, note that
each circle is the graph of a continuous function from S1 ≈ R/2πZ to R.

The circles C0,0,b for b ∈ R form a partition of the cylinder Z, that is,

F = {C0,0,b | b ∈ R}

is a flock. Note that the restrictions on t made above ensure that each circle not in F
uniquely determines its parameters a, t and b.

It is readily verified that the permutations

γr,c,s : (x, y) 7→ (x+ s, ry + c)

where x ∈ R/2πZ,r, c ∈ R, r 6= 0 and s ∈ R/2πZ, are automorphisms of L and that
γr,c,s(Ca,t,b) = Cra,t−s,rb+c. Moreover, the permutation

σ : (x, y) 7→ (−x, y)

is an automorphism of L and σ(Ca,t,b) = C−a,−t,b. The group ∆ generated by these
permutations of Z is transitive on Z and has two orbits on the set of circles, F and C \F .

Before we come to the verification of the geometric axioms of a Laguerre plane we list
some useful properties of the function f that are straightforward to check. The function
f is periodic with period 2π and f(x+ π) = −f(x) for all x ∈ R/2πZ. Furthermore, f is
infinitely often differentiable and

f ′(x) =
cos3 x

(1 + sin2 x)2
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and

f ′′(x) = − sinx cos2 x(6 + cos2 x)

(1 + sin2 x)3
.

Proposition 5.1 Two distinct circles intersect in at most two points.

Proof. Let C1 6= C2 be two circles. Since the automorphism group has two orbits on C,
it suffices to look at the following three cases.

In the first case, when C1, C2 ∈ F , the circles are disjoint because the circles in F
form a partition of Z.

In the second case, when C1 ∈ F and C2 ∈ C \F , then, by using the group ∆, we may
assume that C1 = C0,0,b and C2 = C1,0,0. We then have to solve the equation

f(x) =
sinx

1 + sin2 x
= b

for x. When b = 0 one obviously obtains C1 ∩ C2 = {(0, 0), (π, 0)} and there are two
points of intersection. When b 6= 0, we obtain the equation

sin2 x− β sinx+ 1 = 0,

where we have written β = 1/b.
The quadratic polynomial in sin x on the left-hand side has discriminant β2 − 4. If

|β| < 2, then we have no solutions. If |β| = 2, then sinx = β
2

= ±1, and we obtain

precisely one solution in S1. If |β| > 2, then sinx = 1
2
(β ±

√
β2 − 4). However, if β > 2,

then 1
2
(β +

√
β2 − 4) > 1, and, if β < −2, then 1

2
(β −

√
β2 − 4) < −1, which is not

admissible. Therefore,

sinx =
1

2
(β − sign(β)

√
β2 − 4),

and this yields precisely two solutions in S1. Hence, |C1 ∩ C2| ≤ 2.
In the third case, C1, C2 ∈ C \ F . By using the group ∆ and the symmetry between

the two circles, we may assume that C1 = Ca,0,b and C2 = C1,t,0. Note that a 6= 0, because
C1 6∈ F . Furthermore, we may assume that 0 < t < π, because if t = 0 then there is no
point of intersection when a = 1 and there are at most two points of intersection when
a 6= 1. Indeed, if a 6= 1, then one is led to the equation f(x) = b/(1 − a), which has at
most two solutions as we saw in the second case.

We then have to solve an equation of the form

f(x+ t)− af(x) = b .

Let
ga,t(x) = f(x+ t)− af(x)

denote the function on the left-hand side of the equation. Now ga,t is a bounded, contin-
uously differentiable function and thus has a maximum and a minimum. At the extremal
points, the derivative of ga,t must be zero. Since f(x + π) = −f(x), one sees that
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g′a,t(x+ π) = −g′a,t(x). Hence, the roots of the derivative come in pairs, one in [−1
2
π, 1

2
π)

and one in [1
2
π, 3

2
π).

We want to show that g′a,t(x) = 0 has exactly one solution x0 in [−1
2
π, 1

2
π). Once

this is verified and, say g′a,t(−1
2
π) > 0, we may deduce that ga,t(x) is strictly increasing

between x0− π and x0 and strictly decreasing from x0 to x0 + π. Thus, ga,t(x) = b has at
most two solutions. Hence, the two circles C1 and C2 have at most two points in common.

To verify our claim on the zeros of g′a,t(x) in [−1
2
π, 1

2
π), note that f ′(±1

2
π) = 0 and

that f ′(x) > 0 when −1
2
π < x < 1

2
π. This implies that g′a,t(−1

2
π) 6= 0. Then g′a,t(x) = 0 if

and only if f ′(x+ t)/f ′(x) = a. It therefore suffices to show that the function

ht(x) =
f ′(x+ t)

f ′(x)

is a bijection from I = (−1
2
π, 1

2
π) onto R. Now f ′(−1

2
π + t) > 0 and f ′(1

2
π + t) < 0 (note

that 0 < t < π), and so limx→− 1
2
π+ ht(x) = +∞ and limx→ 1

2
π− ht(x) = −∞. Hence, ht(x)

is surjective.
For the injectivity of ht(x), consider

h′t(x) =
f ′′(x+ t)f ′(x)− f ′(x+ t)f ′′(x)

(f ′(x))2
.

Clearly, h′t has a zero at 1
2
π − t in I. In order to find other possible zeros of h′t in I, we

follow an idea of one of the referees, which shortens our original proof. We consider

F (x) = − f
′′(x)

f ′(x)
=

(6 + cos2 x) sinx

(1 + sin2 x) cosx
= G(tanx)

where G is the rational function

G(u) =
(7 + 6u2)u

1 + 2u2
= 3u+

4u

1 + 2u2
.

Now

G′(u) =
7 + 4u2 + 12u4

(1 + 2u2)2
> 0

and thus F ′(x) = G′(tanx)(1 + tan2 x) > 0. This shows that F is injective.
We now assume that x0 6= 1

2
π − t is a zero of h′t in I. Then f ′(x0), f

′(x0 + t) 6= 0,
and we see that F (x0 + t) = F (x0). However, as seen before, F is injective in I, so this
identity cannot hold in I. If x0 + t > 1

2
π, then x0 + t − π ∈ I. But F is periodic with

period π, so

F (x0 + t− π) = F (x0 + t) = F (x0),

which is again a contradiction to the injectivity of F .
This shows that 1

2
π− t is the only zero of h′t in the interval I. Hence, h′t(x) < 0 for all

x ∈ I \ {1
2
π − t}, and we have shownthat ht(x) is injective and thus a bijection. �
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To verify that L is a Laguerre plane it suffices to show that the derived incidence
structure A = A(π,0) at the point (π, 0) is an affine plane, as a consequence of the transi-
tivity of the group ∆ on the point set. The nonvertical lines of A are the circles Ca,t,af(t)
minus the point (π, 0). Thus, the nonvertical lines La,t of A are given by

y = a(f(x+ t) + f(t))

where a ∈ R, a 6= 0 and t ∈ R/πZ.

Proposition 5.2 Two distinct points in A are joined by a unique line.

Proof. Let (x1, y1) and (x2, y2) be two given points of A. If x1 = x2, then the vertical
line x = x1 is the only line of A joining the two points.

We now assume that x1 6= x2. We then have to solve the system of equations

y1 = a(f(x1 + t) + f(t))

y2 = a(f(x2 + t) + f(t))

for a and t.
If y1 = y2 = 0, then a = 0 is a solution. Otherwise, a 6= 0, so t is a solution of

y2(f(x1 + t) + f(t))− y1(f(x2 + t) + f(t)) = 0 .

Let h(t) denote the function of t on the left-hand side of the above equation. Then

h(0) = y2f(x1)− y1f(x2)

h(π) = y2f(x1 + π)− y1f(x2 + π) = y1f(x2)− y2f(x1) = −h(0) .

Hence, when h(0) 6= 0, there is at least one solution t in the interval (0, π) of the above
equation by the continuity of h. If h(0) = 0, then of course t = 0 is a solution.

Both of y1 and y2 cannot be equal to 0, and so at least one of f(x1 + t) + f(t) and
f(x2 + t) + f(t) is nonzero, and a = yi/(f(xi + t) + f(t)) for the appropriate i = 1, 2. The
uniqueness of the resulting line then follows from Proposition 5.1. �

Proposition 5.3 Two nonvertical lines La1,t1 and La2,t2 in A are parallel if and only if

a1f
′(t1) = a2f

′(t2) .

Moreover, the parallel axiom is satisfied in A.

Proof. We first assume that La1,t1 and La2,t2 are two nonvertical lines in A such that
a1f

′(t1) 6= a2f
′(t2). These lines come from the circles C1 = Ca1,t1,a1f(t1) and C2 =

Ca2,t2,a2f(t2). By assumption, the functions describing these circles have different deriva-
tives at x = π, so the two curves locally intersect transversally, that is, there are points on
C1 near (π, 0) that are in different connected components of Z \C2. But C1\{(π, 0)} ≈ R,
which is connected, so C1 and C2 must intersect in at least another point different from
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(π, 0). This means that the lines in A must also intersect in A and therefore are not
parallel.

We now consider an m ∈ R and a point (x, y) ∈ P = (−π, π)×R. We claim that there
is a unique line La,t that passes through (x, y) such that m = −af ′(t). Once this claim is
verified, it will follow that the lines La,t with the same values of af ′(t) form a partition
of P . In particular, two such lines are parallel and the parallel axiom is satisfied in A.

We begin with the case when m = 0. In this case, either a = 0 or t = 1
2
π. If a = 0,

then our line is L0,0, and otherwise

a =
y

f(x+ π
2
) + f(π

2
)
.

Note that

f
(
x+

π

2

)
+ f

(π
2

)
=

cosx

1 + cos2 x
+

1

2
=

(1 + cos x)2

2(1 + cos2 x)
> 0

for all −π < x < π, so a is well defined. Furthermore, the fact that

f(x+
1

2
π) + f(

1

2
π) > 0 for all x ∈ (−π, π)

implies that the lines La, 1
2
π, where a ∈ R, form a partition of P .

We now assume that m 6= 0 and thus that t 6= 1
2
π. In this case, a = −m/f ′(t) and we

have to find t ∈ (−1
2
π, 1

2
π) such that

ym = − y

m
=
f(x+ t) + f(t)

f ′(t)
.

Let hx(t) be the function on the right-hand side. Since f(x+ 1
2
π) + f(1

2
π) > 0, it follows

that limt→+ 1
2
π− hx(t) = +∞ and limt→− 1

2
π+ hx(t) = −∞. Hence, by the continuity of hx

on the interval (−1
2
π, 1

2
π), we see that for each ym there is at least one t ∈ (−1

2
π, 1

2
π) such

that ym = hx(t).
It remains to show uniqueness. We do this by verifying that hx is injective. In fact,

we want to show that hx is strictly increasing. Explicitly,

hx(t) =
f(x+ t) + f(t)

f ′(t)

=
(sin(x+ t) + sin t)(1 + sin t sin(x+ t))(1 + sin2 t)

(1 + sin2(x+ t)) cos3 t
.

We make the substitutions

u = tan t and v = tan
(x

2

)
so sin x = 2v/(1 + v2) and cos x = (1 − v2)/(1 + v2), and use the addition formula for
sines to obtain

Hv(u) = 2
(u+ v)((u+ v)2 + 1 + u2)(1 + 2u2)

(1 + v2)2(1 + u2) + (2v + (1− v2)u)2
.
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The function Hv has derivative

H ′v(u) =
2p(u, v)

((1 + v2)2(1 + u2) + (2v + (1− v2)u)2)2

where

p(u, v) = 24(v4 + 1)u6 + 32(v5 − 2v3 + 3v)u5

+ (12v6 − 68v4 + 228v2 + 28)u4 + (−16v5 + 208v3 + 64v)u3

+ (4v6 + 102v4 + 108v2 + 10)u2 + (32v5 + 72v3 + 8v)u

+ 7v6 + 19v4 + 5v2 + 1

If we can show that p(u, v) ≥ 1 for all u, v ∈ R, then H ′v(u) > 0 and thus h′x(t) > 0 and
our claim about the monotonicity of hx is verified.

Note that
p(u, 0) = 24u6 + 28u4 + 10u2 + 1 ≥ 1 and
p(0, v) = 7v6 + 19v4 + 5v2 + 1 ≥ 1

and that these polynomials take the value 1 if and only u = 0 and v = 0. Further,
there are no linear terms in p(u, v), so the graph of p has a horizontal tangent plane at
(0,0,1). The quadratic terms of p(u, v) are 10u2 + 8uv+ 5v2. Since this quadratic form is
nondegenerate and positive definite, p(u, v) has a local minimum at (0,0).

We consider the function

r(u, v) = p(u, v)− (1 + 10u2 + 8uv + 5v2).

When u, v 6= 0, let z = v/u. Then

r(u, zu)

u4
= (24z4 + 32z5 + 12z6)u6 + (−16z5 − 68z4 − 64z3 + 4z6)u4

+ (24 + 7z6 + 102z4 + 228z2 + 208z3 + 96z + 32z5)u2

+ 28 + 19z4 + 108z2 + 64z + 72z3 .

By substituting w for u2 in the above equation, we obtain the cubic polynomial

rz(w) = 4z4(3z2 + 8z + 6)w3 + 4z3(z3 − 4z2 − 17z − 16)w2

+ (7z6 + 32z5 + 102z4 + 208z3 + 228z2 + 96z + 24)w

+ 19z4 + 72z3 + 108z2 + 64z + 28

and r(u, zu) = u4rz(u
2). We calculate that

r′z(w) = 12z4(3z2 + 8z + 6)w2 + 8z3(z3 − 4z2 − 17z − 16)w

+ 7z6 + 32z5 + 102z4 + 208z3 + 228z2 + 96z + 24

and this quadratic polynomial in w has discriminant −16z4D(z), where

D(z) = 59z8 + 488z7 + 1884z6 + 4480z5 + 7212z4

+ 7904z3 + 5600z2 + 2304z + 432 .
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We make the substitution z = z1− 1, in order to reduce the magnitude of the coefficients
in D(z). This yields

d(z1) = D(z1 − 1)

= 59z81 + 16z71 + 120z61 + 120z51 + 122z41 − 48z31 + 24z21 + 8z1 + 11 .

Since we can write

d(z1) = (z1 + 1)2(8z61 + 60z41 + 4) + 12z21(2z1 − 1)2 + 51z81 + 52z61 + 14z41 + 8z21 + 7

we see that d(z1) ≥ 7 and thus D(z) ≥ 7. Therefore, the discriminant of r′z(w) is also
always negative if z 6= 0. The coefficient of w2 in r′z(w) is 12z4(3z2 + 8z + 6), which is
positive when z 6= 0, and so r′z(w) ≥ 0 for all w and all z 6= 0. Hence, rz(w) is strictly
increasing in w. But

rz(0) = 19z4 + 72z3 + 108z2 + 64z + 28

=
1

19
(19z + 36)2z2 +

428

133
z2 +

4

7
(8z + 7)2 > 0

so rz(w) > 0 for all w ≥ 0. Therefore, r(u, zu) ≥ 0 for all u and z. This implies r(u, v) ≥ 0
and thus

p(u, v) ≥ 1 + 10u2 + 8uv + 5v2 ≥ 1

when uv 6= 0. Using this together with the previous result for p(u, 0) and p(0, v), we
deduce that p(u, v) ≥ 1 for all u and v. �

Proposition 5.4 The derived incidence structure A = A(π,0) of L at (π, 0) is a non-
Desarguesian affine plane.

Proof. By Propositions 5.1 and 5.2, A is a linear space. Proposition 5.3 shows that the
parallel axiom holds in A. Hence, A is an affine plane.

It remains to show that A is not Desarguesian. To see this, we consider the two
triangles with vertices

p1 = (0,−20
√

3), p2 =
(
2π
3
, 0
)
, p3 =

(
−π

3
, 0
)

and

p′1 = (0, 0), p′2 =
(
2π
3
, 20
49

√
3
)
, p′3 =

(
−π

3
, 36

7

√
3
)
,

respectively. The sides in these triangles are given by

p1p2 = L35,−π
3
,

p1p3 = L−25
√
3,π

6
,

p′1p
′
2 = L 10

7
,0,

p′1p
′
3 = L−18,0.

Furthermore, the lines pip
′
i are parallel. Indeed, we see that these are the parallel classes

|p1| = {0} × R, |p2| = {23π} × R and |p3| = {−1
3
π} × R.
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It is easily checked that the corresponding sides p1pj and p′1p
′
j of the triangles are

parallel when j = 2, 3, by Proposition 5.3. However, the third pair of sides p2p3 = L0,0

and p′2p
′
3 is not parallel by Proposition 5.3. Indeed, lines parallel to L0,0 are of the form

La, 1
2
π, and intersect |p2| and |p3| in (2

3
π, 1

10
a) and (−1

3
π, 9

10
a), respectively. But the second

coordinate of p′3 is not 9 times the second coordinate of p′2.
This shows that A is not Desarguesian. �

Theorem 5.5 The incidence structure L is a flat Laguerre plane of Kleinewillinghöfer
type V.A.1.

Proof. We know from the transitivity properties of L and by Proposition 5.4 that L is
a Laguerre plane and, hence, a flat Laguerre plane by the continuity of f .

It is easy to check that

{γs,(1−s)b,0 | s ∈ R, s 6= 0}

is a linearly transitive group of C0,0,b-homologies. Hence, the set Z of all circles C for
which the automorphism group of L is linearly transitive with respect to C-homologies
contains a flock of circles.

By [11, Proposition 3.4] the only set Z containing a flock of circles plus an extra circle
is of type VII and such a flat Laguerre plane is ovoidal by [11, Corollary 3.2]. However,
the derived plane A(∞,0) at (∞, 0) is not Desarguesian by Proposition 5.4 and we have
reached a contradiction. Hence, L must be of Kleinewillinghöfer type V. It follows from
the list of Kleinewillinghöfer types given in [11, Theorem 6.1] that L is of type V.A.1. �

Theorem 5.6 Each automorphism of L is of the form γr,c,s or γr,c,sσ. Hence, the group
∆ is the full automorphism group of L.

Proof. Let ϕ be an automorphism of L. Now L is a flat Laguerre plane, so ϕ is continuous
and even a homeomorphism of Z. Since L has type V with respect to Laguerre homologies,
the flock F must be must invariant. We may therefore assume that, the circles C0,0,0

and C0,0,1 in F are fixed by ϕ, up to automorphisms of L of the form γr,c,0. Using an
automorphism of the form γ1,0,s, we may further assume that the point (π, 0) on C0,0,0 is
fixed by ϕ. But then (π, 1) is fixed as well, because ϕ permutes the parallel classes of L.

To obtain more fixed points, we employ an argument similar to the one used in the
proof of Theorem 4.1. The circle C0,0,0 induces a line in the derived projective plane P at
(π, 0) and the other circle C0,0,1 induces a closed oval O in P . Since P is a (topological,
compact) two-dimensional projective plane, there is exactly one line in P other than the
line at infinity that is a tangent to O and passes through the point at infinity of the
line induced by C0,0,0 (see [4, Statement 2.5.b], [1, Satz 3.7.a] or [12, proof of Proposition
55.17]). In the coordinates of our Laguerre plane, this is the circle C1,π/2,1/2. This circle
touches C0,0,0 at (π, 0) and C0,0,1 at (0, 1). Hence, ϕ fixes the points (0, 0) and (0, 1). If
necessary, we may use the automorphism σ to achieve that each connected component of
Z \({0, π}×R), the complement of the parallel classes of (0, 0) and (π, 0), is left invariant.
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Now, the automorphism γ−1,0,1 interchanges the circles C0,0,0 and C0,0,1, and

C−1,π/2,1/2 = γ−1,0,1(C1,π/2,1/2).

This last circle touches C0,0,0 at (π, 1) and C0,0,1 at (0, 0). Hence, ϕ stabilizes both circles
C1,π/2,1/2 and C1,π/2,1/2 and hence also their intersection given by

C1,π/2,1/2 ∩ C1,π/2,1/2 = {(1

2
π,

1

2
), (

3

2
π,

1

2
)}.

Since these two points lie in different connected components of Z \ ({0, π} × R), each of
which is invariant under ϕ by assumption, we see that both points (1

2
π, 1

2
) and (3

2
π, 1

2
) are

fixed by ϕ.

However, by [10, Lemma 5.4.2], the identity is the only automorphism of a flat Laguerre
plane that fixes three points on a circle and a fourth point off this circle. Thus, by using
elements in ∆, we have reduced ϕ to the identity. Hence, every automorphism of L is an
element of ∆ and thus is of the form γr,c,s or γr,c,sσ. �

Note that {γr,c,s | r, s ∈ R, r > 0, c ∈ R/2πZ} is a three-dimensional connected
subgroup of ∆ = Γ, and thus must be the connected component Γ1 of Γ containing the
identity. It follows that Γ1 has index 4 in Γ.

An obvious generalization of the Laguerre plane L is obtained in the following way.
Let 0 ≤ r ≤ 1 and define

fr(x) =
sinx

1 + r sin2 x

when x ∈ R/2πZ. We use the function fr to generate an incidence structure as in Section
4 using the three-dimensional group ∆. Note that we obtain the classical real Laguerre
plane when r = 0, and we have seen that we obtain a nonclassical flat Laguerre plane of
Kleinewillinghöfer type V.A.1 when r = 1.

A lot of additional experimentation and numerical evidence in MAPLE along with the
motivation given below suggest the following conjecture.

Conjecture 1 If 0 < r ≤ 1, then the incidence structures L(fr) are mutually noniso-
morphic flat Laguerre planes of Kleinewillinghöfer type V.A.1.

We sometimes work in a different setting using a coordinate transformation. The
cylinder is then represented as (R ∪ {∞}) × R as in the parabola model of the classical
real Laguerre plane. Consequently, circles and automorphisms are described by formulas
that involve only rational functions. Apart from facilitating some of the computations,
this second perspective might help to prove the conjecture.

Let x = 2 tan−1(u). Then, up to the scalar factor 2, the function fr becomes

gq(u) =
u(u2 + 1)

u4 + qu2 + 1
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where 2 ≤ q ≤ 6. The admissible values q = 2 and q = 6 correspond to r = 0 and r = 1.
In fact, r = 1

4
(q − 2). For the function gq, circles are the graphs of

u 7→ agq

(
u− t
tu+ 1

)
+ b,

where a, b, t ∈ R.
In both setting, many of the steps in the verification of the axioms of a Laguerre plane

or the verification of type V.A.1 go through as for L. The exceptions are showing the
injectivity of ht(x) in the last case in the proof of Proposition 5.1 and the injectivity of
hx(t) in the proof of Proposition 5.3. In these latter cases, we are led to certain polynomial
equations and we have to check that the corresponding polynomials do not have more than
two zeros. In the cases when q = 2 and q = 6 these polynomials have a special form and an
analytic solution can be found. However, we have not yet proved analytically the general
case 2 < q < 6 analytically. The main reason for this is the impossibility of solving
the general polynomial equations of degree five and higher, that arise in our setting with
coefficients depending on several parameters.

We have verified the conjecture for several rational numbers q ∈ [2, 6] using the com-
mand RealRootCounting in MAPLE. The underlying algorithm relies on [17, Theorem
2.1] and is guaranteed to give the correct number of real solutions of a system of polyno-
mial equations with rational coefficients. Of course, this method can never exhaustively
check all rational numbers in our range. However, if one could show the conjecture for all
admissible rational numbers, then the density of Q in R coupled with continuity would
prove the conjecture.
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