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Abstract

We construct flat Laguerre planes that admit the universal covering group of
SL2R, extended by a factor R, as a group of automorphisms. These planes contain
the affine Moulton planes as derived planes, and they are constructed by gluing
together two copies of a Moulton plane, folded up along their fixed lines. The
action of the Moulton group carries over (modulo Z2) to the Laguerre planes, and
the circles and parallel classes are essentially orbits of 4 types one-parameter groups
of the Moulton action. These planes have group dimension 4 and also provide
examples of flat Laguerre planes of Kleinewillinghöfer type II.G.1.

MSC 2000: Primary: 51H15, 51B15; Secondary: 22E46.

1 Introduction

The analytic and group structures of the universal covering group Ω̃ of Ω = PSL2(R) are
well known; see, for example, [2], [5], [7]. However this group is most elusive as it permits
no faithful linear representation and only a few geometries are known on which Ω̃ acts as
a group of automorphisms. Among the 2-dimensional projective planes only the Moulton
planes, see [12], section 34, or the following section 2, admit Ω̃ as a collineation group.
The Moulton planes can be obtained from an action of a certain group of the form R · Ω̃
on R2, fixing the origin. One takes as lines the closures of the orbits of the center and all
orbits of all parabolic one-parameter groups of Ω̃; finally one adds a line at infinity.

We shall show that the Moulton plane minus the origin may be folded up along the
line at infinity in a way compatible with the action. This yields an action on a cylinder
with one boundary circle. Gluing two copies of this cylinder along the two boundaries we
obtain an action of the original Moulton group modulo Z2 on a cylinder, having 3 orbits.
We shall construct a Laguerre plane from this action by taking as circles all orbits of
compact one-parameter groups of R · Ω̃ and of all hyperbolic and parabolic one-parameter
groups of Ω̃; some of the circles consist of two orbits, joined by a single point. The orbits
of the center yield the parallel classes of the Laguerre plane.

∗This paper was published in J. Lie Th. 17 (2007), 685–708.
†This research was supported for the first author by an Erskine Fellowship from the University of

Canterbury.
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Although it is not obvious from the construction, the Moulton plane reappears if we
take the derived affine plane of our Laguerre plane at a point of the 1-dimensional orbit.

In [14] it was shown that a connected locally simple Lie subgroup of the automorphism
group of a flat (i.e., 2-dimensional) Laguerre plane is isomorphic to either Ω = PSL2(R)
or Ω̃. The former group occurs in the classical flat Laguerre plane and also in certain
semi-classical Laguerre planes, see [13], but no flat Laguerre planes were known on which
the latter group acts. Our aim with the above construction is to provide examples for
the latter kind of flat Laguerre planes. The planes obtained also provide examples of
flat Laguerre planes of Kleinewillinghöfer type II.G.1, one of the types whose existence
remained open in [11] and [17].

2 Moulton Planes and Moulton Groups

A flat affine plane is an affine plane whose point set is R2 and whose lines are closed subsets
homeomorphic to R. The Moulton planes are flat affine planes. They were introduced
by Moulton in 1902, see [9], and are some of the earliest examples of non-classical flat
affine planes. The most homogeneous non-classical flat projective planes are the projective
extensions of these flat affine planes.

We fix a real number k > 1 and replace every line in the Euclidean plane with negative
slope m by a line that starts out as this Euclidean line in the right half-plane and continues
as a line of slope km in the left half-plane, see [12], 31.25b. This gives the following bent
lines.

{(x,mx+ t) ∈ R2 | x ≥ 0} ∪ {(x, kmx+ t) ∈ R2 | x ≤ 0},
where m, t ∈ R,m < 0. You can also think of this plane as being glued together along
the y-axis from two Euclidean halves. The number k is the ‘glue’ factor.

For our purpose we need lines to be glued together along the x-axis instead. This is
achieved by applying the transformation (x, y) 7→ (y, x). The lines of the resulting plane
Mk are

• the horizontal lines y = a for a ∈ R;

• the vertical lines x = b for b ∈ R;

• the Euclidean lines y = m(x− b) for b,m ∈ R, m > 0; and

• the bent Euclidean lines y =

{
m(x− b), if x ≥ b

km(x− b), if x < b
for b,m ∈ R, m < 0.

The projective extensionsMk of the Moulton planesMk play a prominent role in the
theory of flat projective planes. Two such planesMk andMk′ are isomorphic if and only
if k′ = k, and none of these planes are Desarguesian.

It is quite cumbersome to extract information about the full automorphism group of
Mk from the above models. Clearly, the maps of the form

R2 → R2 : (x, y) 7→ (cx+ b, ay)
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where a, b, c ∈ R, a, c > 0, form a 3-dimensional group of collineations of Mk. Further-
more, the transformation

R2 → R2 : (x, y) 7→

{
(x,−y), for y ≥ 0

(x,−ky), for y ≤ 0

also is a collineation of Mk.
In fact, the full automorphism group ofMk is 4-dimensional and does not fix the line

at infinity. The only point and line fixed by all automorphisms of are the point at infinity
of the y-axis and the x-axis, respectively. Furthermore, the automorphism group of a flat
projective plane has dimension 4 if and only if it is isomorphic to one of the mutually
non-isomorphic projective Moulton planes Mk for k > 1.

These facts are best seen by looking at the radial model M(s) of the Moulton plane
Mk, where k = e2πs; see [1] or, for the version preferred here, [12], Section 34. The affine
plane M(s) is isomorphic to the complement of the x-axis in Mk. Its point set is the
complex number plane C, and its lines are the ordinary lines passing through the origin
and the curves of the form {

cesϕ

cosϕ
eiϕ
∣∣∣∣ − π

2
< ϕ <

π

2

}
,

where c ∈ C×. Obviously, this line system is invariant under rotation and under multipli-
cation by positive real numbers. An isomorphism between M(s) and Mk is obtained by
extending the homeomorphism

C \ iR→ (R \ {0})× R : reiϕ 7→
(

tanϕ,
esϕ

r cosϕ

)
,

where r > 0, π/2 6= ϕ ∈ (−π/2, 3π/2). In fact, this homeomorphism uniquely extends
to an isomorphism between M(s) and Mk that maps the line at infinity of M(s) to the
x-axis in Mk.

Let ∆ denote the automorphism group ofM(s). This group fixes (precisely) the origin
and the line at infinity, hence it can be seen within the affine planeM(s). The group ∆ is
a connected 4-dimensional Lie group. We exhibit four one-parameter groups generating
∆, see [12], 34.4:

• the central one-parameter group H = {ηt | 0 < t ∈ R}, where ηt(re
iϕ) = treiϕ;

• the rotation group R = {ρt | t ∈ R} ∼= SO2R, where ρt(re
iϕ) = rei(ϕ+t);

• the hyperbolic group Ξ = {ξt | 0 < t ∈ R} defined below; and

• the parabolic group E = {εt | t ∈ R} defined below.

The groups H,E,Ξ are also considered (under a similar name) in [12]. Note, however,
that R does not correspond to the group of spiral rotations considered there, which is
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contained in the commutator subgroup Ω̃ of ∆ and is not compact; for us, the compact
group R is more important.

The definition of ξt is given by ξt(x) = x/t for x ∈ iR and

ξt(re
iϕ) =

r cosϕ

t cosψ
es(ψ−ϕ)eiψ,

where tanψ = t2 tanϕ and ϕ, ψ ∈ (−π/2, π/2) or ϕ, ψ ∈ (π/2, 3π/2). The map εt has a
very similar form; note that it is written incorrectly in [12]: on iR, the action of εt is the
identity, and

εt(re
iϕ) =

r cosϕ

cosψ
es(ψ−ϕ)eiψ,

where tanψ = tanϕ = t and ϕ, ψ ∈ (−π/2, π/2) or ϕ, ψ ∈ (π/2, 3π/2).

According to [12], 34.6, the group ∆ = ∆(s) generated by H,R,E,Ξ is locally isomor-
phic to GL2R and is independent of s (up to isomorphism). The commutator group ∆′

is isomorphic to the universal covering group Ω̃ of PSL2R. The center of ∆ is generated
by H together with ρπ = −id, and it intersects the commutator group precisely in the
infinite cyclic center of the latter. Although the Moulton Groups ∆(s), ∆(s′) determined
by different choices s, s′ > 0 are isomorphic groups, they are different as transformation
groups of C×, see [12], 34.7.

3 Action of the Moulton group on the Laguerre Cylin-

der

In this section, we construct the point sets Z = Z(s) of our new Laguerre planes and we
describe an action of the Moulton group ∆(s) on Z(s); later it will turn out that this
yields the maximal connected automorphism group of those Laguerre planes. The actions
of ∆(s) on C× and on Z(s) will be related via an equivariant twofold covering map α
from C× to the upper half of the cylinder Z. The normal subgroup 〈ρπ〉 of order 2 will
act trivially on Z.

We fix k > 1 for the remainder of this paper and let s = ln k
2π

so that k = e2πs. For
x ∈ R let

δx =


1, if x > 0√
k, if x = 0

k, if x < 0

The value of δ0 does not matter too much, because in every occurrence of δ0 it is multiplied
by 0. The choice above is such that δx = limc→0+ e

2s cot−1(x/c) where cot−1 : R→ (0, π) is
the inverse cotangent.

The Laguerre cylinder Z = Z(s) is defined as

Z = (R ∪ {∞})× R,
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with a topology defined as follows. We consider R ∪ {∞} ≈ S1 as the one-point-
compactification of R and define the topology of Z as the inverse image of the product
topology under the map Z → (R ∪ {∞})× R given by

(x, y)→

{
(x, y

δxx2
), if x ∈ R, x ≥ 1 or x ≤ −1/

√
k

(x, y), if x =∞ or − 1/
√
k ≤ x ≤ 1.

In other words, a sequence (xn, yn) ∈ Z converges to (∞, y) if, and only if, those yn with
xn =∞ converge to y, and for the remainder of the sequence we have xn →∞ and

y = lim
yn

δxnx
2
n

.

At all points (x, y) with x 6=∞, the neighborhood system is the usual one. This topology
is distinct from the product topology but is, by its very definition, homeomorphic to it.

We define two subsets Z± ⊆ Z by the conditions ±y > 0; their common boundary is
the set L0 ≈ S1 defined by y = 0. We shall next describe a map α : C× → Z, which will
turn out to be a twofold covering of Z+; there is a similar covering of Z− which will not
be made explicit at this point. Later we shall introduce an action of ∆(s) on Z such that
α is equivariant. Note that α is closely related to a map considered in section 2.

PROPOSITION 3.1 The following formula defines a continuous surjective map α :
C× → Z+ ⊆ Z(s):

α(reiϕ) =

{
(− tanϕ, e2sϕ

r2δcosϕ cos2 ϕ
), if π

2
6= ϕ ∈ (−π

2
, 3π

2
)

(∞, 1
r2
√
k
), if ϕ ∈ {−π

2
, π

2
, 3π

2
}.

Proof. Only continuity of α at points r0e
iϕ0 with ϕ0 ∈ {−π

2
, π

2
, 3π

2
} requires a proof. Let

rn → r0 and ϕn → ϕ0; we may assume that ϕn 6= ϕ0. Then α(rne
iϕn) converges to

(∞, y0), where

y0 = lim
e2sϕn

r2δcosϕnδ− tanϕn tan2 ϕn cos2 ϕn
,

provided that this limit exists. Checking the cases ϕn → −π
2
+, ϕn → π

2
−, ϕn → π

2
+,

ϕn → 3π
2
− separately, it is straightforward to verify that the limit does exist and has the

value 1
r2
√
k
.

Our next aim is to use the map α in order to transfer the action of ∆(s) on C× to Z+

(and later, to Z). This will be done by employing a general technique provided by the
following lemma. We assume that we are given several things, namely,

1. a group G and a subset H ⊆ G generating G;

2. sets X and Y

3. an action G×X → X, written as (g, x)→ xg;
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4. a map H × Y → Y , written as (h, y)→ yh such that y → yh is bijective for fixed h;

5. a surjective map f : X → Y which is equivariant for generators, i.e., such that
f(xh) = f(x)h holds for each h ∈ H.

LEMMA 3.2 In the situation described above, there is a unique action of G on Y such
that f : X → Y is G-equivariant. If X, Y are topological spaces and all maps y → yh,
h ∈ H, are homeomorphisms of Y , then the same is true for the maps y → yg, g ∈ G.

Proof. The second assertion is a trivial consequence of the first one. For the first assertion,
we shall give the proof under the special assumption that every element of G is a product
of some elements of H, i.e., that taking inverses is not required in the generation process.
If that has been proved, then the general case will follow, because we can define the map
y → yh

−1
to be the inverse of the map y → yh; then equivariance with respect to h−1

follows from equivariance with respect to h. Indeed, let x ∈ X be given and define x′, y′

and y by x = (x′)h, y′ = f(x′), and y = (y′)h, respectively. Then f(x) = f((x′)h) = f(x′)h,
and hence f(xh

−1
) = f(x′) = f(x)h

−1
, as desired. Therefore, the special case may be

applied to the situation where H is replaced with H ∪H−1, and the lemma will follow.
In the special situation, there is no other choice but to define

y(h1...hn) = (. . . (yh1)h2 . . . )hn

for hi ∈ H. Then we claim that f(x)g = f(xg) holds for all g ∈ G: this follows by induction
from assumption 5; the first inductive step is f(x)(h1h2) = (f(x)h1)h2 = (f(xh1))h2 =
f((xh1)h2) = f(x(h1h2)).

It remains to be shown that we have defined an action on Y . So let g1, g2 ∈ G be
arbitrary elements and set g = g1g2. We have to show that yg = (yg1)g2 holds for each
y ∈ Y . Choose x ∈ X such that y = f(x). Then yg = f(x)g = f(xg) by what we have just
proved. On the other hand, in the same way we obtain (yg1)g2 = (f(x)g1)g2 = (f(xg1))g2 =
f((xg1)g2) = f(x(g1g2)) = f(xg), which finishes the proof.

We shall apply the lemma to X = C×, Y = Z+ and f = α; the part of G will be played
by ∆, and the generating set H will be the union of the one-parameter groups H,E,Ξ
together with the set {ρt | 0 < t < π} (which generates R). We would be allowed to omit
one of the sets E,Ξ, but we shall need to know explicitly how each of these one-parameter
groups acts on Z, and their action is easy to write down anyway. Only the action of R
is a little more complicated. We need to define the action of the generators on Z+, but
actually we shall define them on all of Z at no extra cost.

For p, q, r ∈ R such that p, r > 0, we define a bijective mapping γp,q,r : Z → Z by

γp,q,r : (x, y) 7→

{
(px+ q, ry), if x ∈ R
(∞, ry/p2), if x =∞,

and we set ηt = γ1,0,t−2 , εt = γ1,−t,1, ξt = γt2,0,t2 , so that we have

ηt(x, y) = (x, t−2y), εt(x, y) = (x− t, y), ξt(x, y) = (t2x, t2y),
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except for the special cases εt(∞, y) = (∞, y) and ξt(∞, y) = (∞, t−2y). It is easily seen
that the maps γp,q,r form a permutation group of Z isomorphic to the group L2×R, where
L2 denotes the non-abelian 2-dimensional Lie group, but we shall obtain more information
later.

Finally, let ρ0 be the identity of Z and define ρt : Z → Z for 0 < t < π by

ρt : (x, y) 7→


(x cos t−sin t
x sin t+cos t

, e2sty
δx sin t+cos t(x sin t+cos t)2

), if x ∈ R, x sin t+ cos t 6= 0,

(∞, (sin2 t)e2sty/k), if x ∈ R, x sin t+ cos t = 0,

(cot t, e2sty/ sin2 t), if x =∞.

We extend the definition of ρt to all t ∈ R by reducing modulo π.
Our next task is to show that all generating maps are homeomorphisms of Z+; in fact,

we shall show this for Z instead of Z+.

PROPOSITION 3.3 The maps ηt, εt, ξt and ρt defined above are homeomorphisms of
the Laguerre cylinder Z.

Proof. It suffices to show continuity of the maps, since the inverses are of the same kind;
for instance, the inverse of ρt is ρπ−t. We shall concentrate on the proof of continuity for
ρt; the treatment of the other maps (and of the composite maps γp,q,r) is very easy and
will be left to the reader. The points where continuity of ρt is not obvious are those where
the second or third line in the definition of ρt applies.

To show continuity at (∞, y0), consider a sequence (xn, yn) converging to this point.
This means that xn →∞ (and we may assume that xn 6=∞ for all n), and that yn

δxnx
2
n
→

y0. We have to show that ρt(xn, yn) → ρt(∞, y0). We may assume that t ∈ (0, π), hence
δxn sin t+cos t = δxn for n large, and the limit in question is equal to

lim

(
xn cos t− sin t

xn sin t+ cos t
,

e2styn
δxn sin t+cos t(xn sin t+ cos t)2

)
=

(
cot t,

lim(e2stynδ
−1
xn x

−2
n )

lim(sin t+ x−1
n cos t)2

)
.

Comparing this to the definition of ρt(∞, y0) establishes our claim.
Now consider a point (x0, y0) ∈ R × R such that x0 sin t + cos t = 0. We are given

a sequence (xn, yn) converging to this point in the usual sense, and we may assume that
xn sin t+ cos t is always nonzero. Our assumption implies that x0 = − cot t, and thus

x0 cos t− sin t = −(sin t)−1 < 0

(we assume again that t ∈ (0, π)). We have to show that ρt(xn, yn) converges to the point
(∞, (sin2 t)e2sty0k

−1). This means that in the first place, h(xn) = xn cos t−sin t
xn sin t+cos t

tends to ∞
(which is the case) and that, moreover,

e2styn
δxn sin t+cos t(xn sin t+ cos t)2h(xn)2δh(xn)
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converges to (sin2 t)e2sty0k
−1. Now we have seen that the numerator of h(xn) is negative,

which shows that δh(xn) = δ−(xn sin t+cos t), hence the product of the δ’s in the denominator
is k. Moreover, xn cos t− sin t→ −(sin t)−1, and our claim follows.

Next, we aim to prove equivariance of α. It would suffice to do this for a minimized
system of generators. However, in most cases it is completely straightforward to ob-
tain equivariance with respect to a one-parameter group, and this justifies the explicit
definitions given above.

PROPOSITION 3.4 The map α : C× → Z introduced in 3.1 is equivariant with respect
to all generators of ∆ introduced above, that is, the maps ηt, εt, ξt, and ρt.

Proof. We deal only with the hard part, ρt. We may assume that t ∈ (0, 2π), for if we
prove this much, then we know that ρπ induces the identity on Z+, and we know from 3.2
that the family of maps ρt, t ∈ (0, 2π), of Z embeds in a one-parameter group. It follows
then that ρt may be computed by reduction of t mod π. This agrees with our definition
of ρt for general t.

We have to prove the equation α(ρt(re
iϕ)) = ρt(α(reiϕ)) for all r > 0 and all ϕ ∈

[−π
2
, 3π

2
]. Now the definitions of α and of ρt involve case distinctions. Since we know that

α and ρt are continuous, it suffices to prove the equation in the generic cases. Thus, the
action of ρt on Z is given as follows:

ρt(x, y) =

(
x cos t− sin t

x sin t+ cos t
,

e2st̃y

δx sin t̃+cos t̃(x sin t+ cos t)2

)
,

where we have written t̃ ∈ [0, π) for t reduced mod π, and we have omitted the tilde where
it makes no change. Here we ignore the exceptional cases x = ∞ and x sin t + cos t = 0.
The formula for α may be used in the generic form valid for π

2
6= ϕ ∈ (−π

2
, 3π

2
). Then we

have

α(ρt(re
iϕ)) =

(
− tan(ϕ+ t),

e2s(ϕ̂+t)

r2δcos(ϕ+t) cos2(ϕ+ t)

)
,

where ϕ̂+ t ∈ (−π
2
, 3π

2
) denotes ϕ+ t reduced mod 2π. Now let

ϕ+ t = ϕ̂+ t+ 2nπ, t = t̃+mπ.

Then we have 2s(ϕ̂+ t) = 2s(ϕ + t) − 4nsπ = 2sϕ + 2st̃ + 2smπ − 4snπ, hence (with
k = e2πs),

e2s(ϕ̂+t) = e2sϕe2st̃km−2n.

On the other hand, we obtain from the definitions that

ρt(α(reiϕ)) =

(
− tanϕ cos t− sin t

− tanϕ sin t+ cos t
,

e2st̃e2sϕ

r2δcosϕ cos2 ϕ δ− tanϕ sin t̃+cos t̃(− tanϕ sin t+ cos t)2

)
.
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This is simplified using− tanϕ cos t−sin t = −(cosϕ)−1 sin(ϕ+t) and− tanϕ sin t+cos t =
(cosϕ)−1 cos(ϕ+ t). Together, the equations obtained so far yield

ρt(α(reiϕ)) =

(
− tan(ϕ+ t),

e2s(ϕ̂+t)

r2km−2nδcosϕδ(cosϕ)−1 cos(ϕ+t̃) cos2(ϕ+ t)

)
.

Now our claim will follow from the identity

δcos(ϕ+t) = km−2nδcosϕδ(cosϕ)−1 cos(ϕ+t̃).

It suffices to prove this identity for m ∈ {0, 1}. This is routinely checked by a case dis-
tinction depending on which of the intervals (−π

2
, π

2
), (π

2
, 3π

2
), (3π

2
, 5π

2
), or (5π

2
, 7π

2
) contains

ϕ or ϕ+ t. The details are omitted.

We introduce one more map acting on the Laguerre cylinder Z, namely the involution
σ given by

σ : (x, y) 7→

{
(x,−y), for y ≥ 0

(x,−ky), for y ≤ 0.

This map fixes all points of the set

L0 = (R ∪ {∞})× {0},

and it interchanges the complementary components Z+, Z− of L0. We are now ready to
state some comprehensive results.

THEOREM 3.5 1. There is an action of the Moulton group ∆ = ∆(s) on the La-
guerre cylinder Z(s) extending the actions of the one-parameter groups η, ε, ξ and ρ
and generated by them.

2. The action of ∆ on Z has three orbits, Z+, Z− and L0.

3. Let τ : Z → Z be defined by τ(x, y) = (x,−y). The maps α : C× → Z+ and
τ ◦ α : C× → Z− are twofold coverings and are equivariant with respect to ∆.

4. The map α has a continuous ∆-equivariant extension α to the complement of the
∆-fixed point in the Moulton plane, sending the ∆-fixed line at infinity bijectively
onto L0.

5. The kernel of the action of ∆ on Z is generated by the element ρπ of order 2. The
the center of the effective factor group ∆eff = ∆/〈ρπ〉 is the one-parameter group
H (considered as a subgroup of ∆eff). The simply connected cover Ω̃ of SL2 R is
(isomorphic to) a subgroup of ∆eff, and ∆eff = HΩ̃. The intersection H ∩ Ω̃ is the
infinite cyclic center of Ω̃. In particular, ∆eff is 4-dimensional.

6. The kernel of the action of ∆ on L0 is the center H〈ρπ〉 of ∆, and the effective action
induced on L0 is the 2-transitive standard action of Ω = PSL2 R on the projective
line.
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7. The map σ normalizes ∆eff, in fact, σγp,q,rσ = γp,q,kr and σρtσ = γ1,0,kρt. In
particular, ∆eff has index 2 in the extension Γ = ∆eff〈σ〉, and ∆eff = Γ1 is the
identity component of Γ.

8. The action of Γ on Z has two orbits, L0 and Z \ L0.

It is worthwhile to picture the map α. What happens is that the Moebius strip P \{0}
(the point set of the projective Moulton plane minus the fixed point 0) is folded along its
‘middle circle’ L∞, thus producing a cylinder with one boundary curve (resulting from
the folding line) and one ‘open boundary’.

Proof. The maps τ defined in 3 and ζ : Z → L0 defined by ζ(x, y) = (x, 0) commute
with each of the homeomorphisms ρt, ηt, εt, ξt of Z, hence by 3.4 the three maps α :
C× → Z+, τ ◦ α : C× → Z− and ζ ◦ α : C× → L0 are equivariant with respect to those
homeomorphisms. Therefore, assertion 1 together with the last part of 3 (equivariance
with respect to all of ∆) follows from 3.2. Assertion 2 is now obvious.

For the remaining part of 3 (the covering property), it is sufficient to consider α, since
τ is a homeomorphism Z+ → Z−. The complement Z \ ({∞} × R) is evenly covered by
α; in fact, each of the two components of C× \ iR is mapped homeomorphically onto this
set. Transitivity of ∆ on Z+ now implies that every point of Z has an open neighborhood
that is evenly covered by α, and the claim 3 follows.

Let 0 and L∞ denote the fixed point and the fixed line of the Moulton plane M(s),
respectively. The map α sends each affine line L passing through 0 onto some generator
of the cylinder Z. We extend α by sending the point of intersection L ∧ L∞ to the point
α(L)∧L0. The extension α is equivariant, because ∆ permutes the lines passing through
0 and also permutes the generators. Moreover, α is continuous, because a sequence of
points an = rne

iϕn ∈ C× = P \ L∞ converges to a ∈ L∞ if, and only if, rn →∞ and the
projections (an ∨ 0) ∧ L∞ converge to a. If this is the case, then the second coordinates
of α(an) converge to 0 and the first coordinates converge to α(a), hence α(an)→ α(a) as
desired.

In [12], 34.6, it is proved that the commutator group ∆′ is (isomorphic to) Ω̃ and that
∆ is the product of its center H〈ρπ〉 with Ω̃, the intersection of the two groups being the
infinite cyclic center of Ω̃. (Note that ρπ has a different meaning in [12]; what we call ρπ
is denoted −1 there.) In particular, the factor group ∆/(H〈ρπ〉) is the simple group Ω.
Since H〈ρπ〉 acts trivially on L0 but ∆ does not, we infer that the former group is the
kernel of the action on L0 and the induced group is isomorphic to Ω. There is only one
action of Ω on the circle, and claim 6 is proved. See below for a more direct proof.

Assertion 5 now follows easily; just observe that the kernel of the action on Z must
be contained in the kernel on L0, and that H acts faithfully on Z. The center of ∆eff

is not larger than H since the factor group Ω is simple. Assertion 7 is verfied by direct
computation, and 8 is obvious.

As an alternative, we give a direct proof of the isomorphism of the effective action on
L0 to the action of Ω on the projective line (the set of all 1-dimensional subspaces of R2).
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Each element of Ω can be represented by a 2 × 2 matrix

(
a b
c d

)
such that ad − bc = 1.

This matrix operates on the set of 1-dimensional subspaces of R2 like the fractional linear
map x 7→ ax+b

cx+d
on R ∪ {∞}. Under this correspondence the standard group SO2(R) of

rotations

(
cos t − sin t
sin t cos t

)
for t ∈ R yields the permutations x 7→ x cos t−sin t

x sin t+cos t
induced by ρt

on L0. The maps induced by γp,q,1 are obtained in a similar way from upper triangular
matrices. Together, these matrices generate Ω, and the isomorphism follows.

We have avoided the question whether the action of ∆ on Z is continuous, i.e., whether
δ(z) depends continuously on the pair (δ, z). We do know from 3.2 that each δ ∈ ∆ acts
as a homeomorphism of Z. This will suffice for our purposes. Continuity of the action
can be deduced from continuity of the Moulton action, using the equivariant maps α and
τ ◦ α from Theorem 3.5 and observing that these maps admit local cross sections.

We remark here that some of the results of 3.5 could have been obtained independently
of the facts about Moulton actions that we took from [12]. In a first draft of this paper, we
started from the definition of a Laguerre plane given in the next section and showed that
the generators of Γ considered in the present section are automorphisms of that plane
(by essentially the same proof as in the next section) and we used known facts about
automorphism groups of Laguerre planes. We prefer the present version because it gives
a more complete picture of the structure of Γ and its action.

4 The Laguerre planes

In this section we present the circles that make up our Laguerre planes. In general, a flat
(or 2-dimensional) Laguerre plane L = (Z, C) is an incidence structure on the cylinder
Z = S1 × R (where S1 is represented as R ∪ {∞} as before) where C is a collection of
graphs of continuous functions S1 → R such that the usual axioms of joining and touching
are satisfied and parallel classes of points are the verticals (or generators) on the cylinder;
compare [3] and [4] or [10] Chapter 5 or [16].

For a given k = e2πs > 1, we are going to construct a plane Lk. The automorphism
group of this plane will be the group Γ constructed in section 3; see Theorem 3.5. There-
fore, we shall use the Laguerre cylinder Z from section 3 as the point set. Since the
topology of Z is not the product topology in our representation of Z, our circles will be
graphs of functions that are discontinuous at ∞. Nevertheless, they will be topological
circles in the topology induced by Z.

The first one of our circles is the 1-dimensional ∆-orbit L0. The shape of the other
circles will be obtained from the action of certain one-parameter groups of ∆eff. Since the
circle space C of a flat Laguerre plane is a 3-manifold, it is clear that every circle C is
fixed by some one-parameter group Φ, and Φ has to be distinct from H because C should
meet every generator exactly once. Thus, elements of Φ have the form ηatψt, where a ∈ R
and ψ is a nontrivial one-parameter group of Ω̃. Conjugation in ∆ does not change the
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number a, but can be used to reduce ψ to one of the three types of one-parameter groups
in Ω̃, represented by ε, ξ, and by the spiral rotations ρ̃t = ηestρt (in our notation; in [12],
these maps are simply called ρt). All one-parameter subgroups of Ω̃ are non-compact.
The one-parameter groups that we actually use in order to construct circles are the ∆-
conjugates of E,Ξ and of the compact group R ∼= SO2R (which is not contained in Ω̃).
Notice that also the H-orbits are objects of the Laguerre plane; the parallel classes consist
of two of these orbits plus one point on L0.

The choice of an orbit of a given one-parameter group does not matter very much. If
Φ fixes C, and A = Φ(a) ⊆ Z+ is a nontrivial orbit contained in C, then all H-images of
A are also orbits of Φ because H is central, and they are contained in the corresponding
H-images of C. Thus we may choose suitable orbits of the preferred one-parameter groups
arbitrarily and combine them into circles (not so arbitrarily), and then apply the group
∆ to obtain all circles.

The R-orbits in Z+ are simply the α-images of half circles {reiϕ | − π
2
< ϕ ≤ π

2
}.

They are topological circles because ρπ acts as the identity on Z+. By definition of α, see
3.1, they have the following form:

C =

{(
− tanϕ,

e2sϕ

r2cos2ϕ

) ∣∣∣∣ − π

2
< ϕ <

π

2

}
∪
{

(∞, r−2k−
1
2 )
}
,

where 0 < r ∈ R; observe that δcosϕ = 1 in the given range. If we define x = − tanϕ for
ϕ 6= π

2
, then ϕ = − tan−1 x = cot−1 x− π

2
, and (cosϕ)−2 = x2 + 1. This gives

C =
{

(x, ae2s cot−1 x(1 + x2))
∣∣∣ x ∈ R

}
∪ {(∞, a)},

where a = r−2k−
1
2 . Since R is centralized by RH and ∆ is generated by this set together

with EΞ, we obtain all orbits in Z+ of all conjugates of R if we apply the transformations
(x, y) → (cx + b, y) to C, where b, c ∈ R and c > 0. The orbits in Z− are obtained from
these by the transformation τ introduced in 3.5. This leads to the circles Da,b,c appearing
in the following list. It is clear from the construction that the set of these circles is
invariant under ∆. They are precisely the circles disjoint from L0; this corresponds to the
fact that R is of elliptic type, i.e., fixes no point on L0.

Here we have looked at all orbits of one-parameter groups conjugate to R. For the
remaining groups E and Ξ, we shall be content to show that all orbits of this group
itself have been used to form circles appearing in the final list. That the same is true for
conjugate groups will follow once we know that the whole system of circles is ∆-invariant.
Invariance under the groups H, E and Ξ is fairly obvious, compare 4.1 below, but R-
invariance requires some computations, which are omitted. Since these one-parameter
groups generate ∆, invariance under ∆ then follows.

Consider the group E, which is of parabolic type (i.e., E fixes exactly one point on
L0, namely the point (∞, 0)). The E-orbits will be used accordingly to assemble circles
touching the circle L0 in that unique fixed point. Now εt acts on Z by (x, y)→ (x− t, y),
hence the orbits have the form

Lc = {(x, c) | x ∈ R} ∪ {(∞, 0)}.
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Under the mapping ρt, the circle Lc is taken to the circle Cck−1e2st sin2 t,cot t,cot t appearing
in the list below.

Similarly, the group Ξ of hyperbolic type (fixing two points on L0) yields those circles
which intersect L0 twice, namely in the points (0, 0) and (∞, 0). We have ξt(x, y) =
(t2x, t2y), hence the orbits of Ξ are Euclidean rays starting from (0, 0). We use them to
compose lines Lm,b that look like lines of the affine Moulton planeMk; observe, however,
that they have nothing to do with the lines of the plane M(s) that we used to cover Z+

via the mapping α. Yet the appearance of Moulton lines is not a coincidence: it will turn
out that the derivation of Lk in the point (∞, 0) is equal to Mk.

Here is our definition of circles of Lk:

Lc = {(x, c) | x ∈ R} ∪ {(∞, 0)}
for c ∈ R;

Lm,b =

{(
x,m(x− b)

)
| x ∈ R

}
∪ {(∞, 0)}

where m, b ∈ R,m > 0;

Lm,b =
{(
x, δx−bm(x− b)

)
| x ∈ R

}
∪ {(∞, 0)}

where m, b ∈ R,m < 0;

Ca,b,c =
{(
x, δx−ba(x− b)(x− c)

)
| x ∈ R

}
∪ {(∞, a)}

where a, b, c ∈ R, a > 0, b ≤ c;

Ca,b,c =
{(
x, δx−ca(x− b)(x− c)

)
| x ∈ R

}
∪ {(∞, a)}

where a, b, c ∈ R, a < 0, b ≤ c;

Da,b,c =

{(
x, ae2s cot−1 x−b

c ((x− b)2 + c2)
)
| x ∈ R

}
∪ {(∞, a)}

where a, b, c ∈ R, a 6= 0, c > 0.

The sets Lc and Lm,b are precisely the non-vertical lines of the Moulton planeMk except
for the point (∞, 0). The sets Ca,b,c are composed of two branches of Euclidean parabolae.
For b 6= c these parabolae pass through the same two points on the x-axis; the two parts are
pasted together at one of their common points on the x-axis at which both the parabolae
have non-positive Euclidean slopes and such that some bent line of the Moulton plane
Mk becomes a tangent at this point. For b = c the sets Ca,b,b have only one point in
common with L0, the point (b, 0), and except for this point are entirely above or below
L0 for a > 0 and a < 0, respectively.

Let

Ck = {Lc | c ∈ R} ∪ {Lm,t | m, t ∈ R,m 6= 0}
∪{Ca,b,c | a, b, c ∈ R, a 6= 0, b ≤ c}
∪{Da,b,c | a, b, c ∈ R, a 6= 0, c > 0}
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We denote by Lk = (Z, Ck) the incidence structure with point set the cylinder Z and
circle set Ck. We say that two points (x, y) and (x′, y′) are parallel if and only if x = x′;
the parallel classes, that is, the maximal sets of mutually parallel points, are just the
generators of Z, that is, the vertical lines in our description.

We will show in Section 5 that Lk is a Laguerre plane and indeed a flat Laguerre
plane. In the last section we show that the full automorphism group of Lk is in fact
the 4-dimensional group Γ introduced in 3.5, and that the planes Lk are mutually non-
isomorphic. As we remarked above, the generating one-parameter groups of ∆eff consist
of automorphisms of Lk. In fact, also the map σ introduced in 3.5 is an automorphism
(but not the map τ !). We list the images of circles under the generating automorphisms
(except for rotations) in the following proposition.

PROPOSITION 4.1 σ and each γp,q,r for p, q, r ∈ R, p, r > 0, is an automorphism of
Lk. More specifically,

γp,q,r(Lc) = Lrc, σ(Lc) = L−δcc,
γp,q,r(Lm,b) = Lrm/p,pc+q, σ(Lm,b) = L−δmm,b,
γp,q,r(Ca,b,c) = Cra/p2,pb+q,pc+q, σ(Ca,b,c) = C−δaa,b,c,
γp,q,r(Da,b,c) = Dra/p2,pb+q,pc, σ(Da,b,c) = D−δaa,b,c.

Since the group Γ is generated by these maps together with the rotations ρt, see
Theorem 3.5, we obtain the following corollary.

COROLLARY 4.2 The group Γ introduced in 3.5 consists of automorphisms of Lk.
Moreover, Σ = {γp,q,p2 | p, q ∈ R, p > 0} is a subgroup of Γ that acts trivially on the
infinite parallel class Π∞ = {∞} × R.

5 The Laguerre axioms

The axioms of a Laguerre plane are equivalent to the condition that for each point p of
a Laguerre plane L the incidence structure Ap = (Ap,Lp) whose point set Ap consists of
all points of L that are not parallel to p and whose line set Lp consists of all restrictions
to Ap of circles of L passing through p and of all parallel classes not passing through p is
an affine plane. We call Ap the derived affine plane at p.

Since the group of automorphisms obtained in Section 4 has two orbits on the cylinder
Z by Proposition 3.5, it suffices to verify that the derived incidence structures at the
points (∞, 0) and (∞, 1) are affine planes in order to show that the incidence structure
Lk from Section 4 is a Laguerre plane. For the first point we just obtain, by construction,
the Moulton plane Mk as described in Section 2.

PROPOSITION 5.1 Each derived incidence structure of Lk at a point of L0 is an affine
plane isomorphic to a Moulton plane Mk. In particular, these derived affine planes are
non-Desarguesian.
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The verification that the derived incidence structure A at the second point (∞, 1) is
an affine plane is done in a number of steps. Recall that A has point set R2 and lines the
vertical Euclidean lines and the restrictions to R2 of the circles C1,b,c and D1,b,c, that is,
these circles minus the point (∞, 1). We refer to such a line as Cb,c or Db,c, respectively.
For convenience we sometimes make the coordinate transformation

ψ : (x, y) 7→

{
(x,
√
y), if y ≥ 0,

(x,−
√
−y), if y < 0

to obtain an isomorphic model ψ(A). The advantage of ψ(A) is that ψ(Cb,b) = {(x, x −
b) | x ≥ b}∪{(x,−

√
k(x−b) | x < b} is made up of halves of two Euclidean lines. In order

to distinguish lines of ψ(A) from Euclidean lines we denote the Euclidean line y = mx+ t
by Em,t. We further call the Euclidean lines E1,−b and E−

√
k,b
√
k the supporting Euclidean

lines of ψ(Cb,b).
Note that each automorphism γp,q,p2 in Σ from Proposition 4.2 induces a collineation

γp,q of A. Furthermore, in the coordinates of ψ(A) the collineation γp,q becomes the
dilatation γψp,q : (x, y) 7→ (px+q, py) of the real affine plane. In particular, Euclidean lines
are mapped to parallel Euclidean lines.

We begin with some properties of the functions that describe ψ(D0,1) and ψ(C0,1).
Note that ψ(D0,1) is entirely above the x-axis whereas ψ(C0,1) has two connected pieces
above the x-axis. We call the collection of all points of ψ(C0,1) whose abscissas are greater
than 1 the right branch and those points whose abscissas are negative the left branch.

LEMMA 5.2 1. Let
f(x) = es cot−1 x

√
x2 + 1

so that ψ(D0,1) is the graph of f . Then the derivative f ′(x) is strictly increasing from

−
√
k to 1 and E1,s and E−

√
k,−s

√
k are oblique asymptotes for f . These Euclidean

lines are supporting Euclidean lines for ψ(C−s,−s) and intersect on L0 in the point
(−s, 0). Furthermore, ψ(D0,1) is strictly above ψ(C−s,−s). If (xi, yi), i = 0, 1, are

two points on ψ(D0,1) with x0 < x1, then −
√
k < y1−y0

x1−x0 < 1 < y1+y0/
√
k

x1−x0 .

2. Let

g(x) =

{√
δxx(x− 1), for x ≤ 0 or x ≥ 1,

−
√
x(1− x), for 0 < x < 1,

so that ψ(C0,1) is the graph of g. Then g′(x) is strictly decreasing from −
√
k to −∞

on the interval (−∞, 0) and from +∞ to 1 on (1,∞). The Euclidean lines E1,−1/2

and E−
√
k,
√
k/2 are oblique asymptotes for g. These Euclidean lines are supporting

Euclidean lines for ψ(C1/2,1/2) and intersect on L0 in the point (1/2, 0). Further-
more, ψ(C0,1) is strictly below ψ(C1/2,1/2). If (xi, yi), i = 0, 1, are two points on
ψ(C0,1) with x0 < x1, then y1−y0

x1−x0 ≥ 1 in case these points are on the right branch,
y1−y0
x1−x0 ≤ −

√
k if they are on the left branch, and −

√
k < y1−y0

x1−x0 < 1 but y1+y0/
√
k

x1−x0 ≤ 1
if (x0, y0) is on the left branch and (x1, y1) is on the right branch.
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Figure 1: Figure 2:
ψ(D0,1) and ψ(C−s,−s) for k = 6 ψ(C0,1) and ψ(C1/2,1/2) for k = 6

Proof. 1) Differentiating f twice one finds

f ′(x) = es cot−1 x(x− s)/
√
x2 + 1,

f ′′(x) = (s2 + 1)es cot−1 x/(x2 + 1)3/2.

Hence f ′′(x) > 0 for all x ∈ R and f ′ is strictly increasing. But limx→∞ f
′(x) = 1 and

limx→−∞ f
′(x) = −

√
k. This proves the statements on f ′.

Using l’Hôpital’s rule we obtain

lim
x→∞

(f(x)− x) = lim
x→∞

es cot−1 x
√

1 + x−2 − 1

x−1

= lim
x→∞

es cot−1 x(sx+ 1)/
√
x2 + 1

= s

and

lim
x→−∞

(f(x) +
√
kx) = lim

x→−∞

−es cot−1 x
√

1 + x−2 +
√
k

x−1

= lim
x→−∞

es cot−1 x(sx+ 1)/
√
x2 + 1

= s
√
k.

Since f ′(x)−1 < 0 for all x ∈ R, the function x 7→ f(x)−(x+s) is strictly decreasing and
f(x) > x + s for all x ∈ R. Similarly, f ′(x) +

√
k > 0 for all x ∈ R so that the function

x 7→ f(x) +
√
k(x+ s) is strictly increasing. Therefore f(x) > −

√
k(x+ s) for all x ∈ R.

The first two inequalities involving two points on ψ(D0,1) follow from the mean value

theorem and from the fact that f is strictly convex with derivatives between −
√
k and 1.

As for the third inequality, we consider the Euclidean lines of slopes −
√
k and 1 through

the left and right point, respectively. Each of these Euclidean lines is above the asymptote
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of the same slope. But the asymptotes intersect in a point on the x-axis. Therefore the
point of intersection of the Euclidean lines must be above the x-axis. Explicitly, we have
the Euclidean lines y = x − x1 + y1 and y = −

√
k(x − x0) + y0 which have the point

( 1
1+
√
k
(y0 − y1 + x1 + x0

√
k),

√
k

1+
√
k
(y1 + y0/

√
k − x1 + x0)) in common. This shows that

y1+y0/
√
k

x1−x0 > 1.

2) The statements follow similarly to the first part from g′(x) = δx(x − 1
2
)/g(x) and

g′′(x) = −δ2
x/(4g(x)3) for x < 0 or x > 1. If (x0, y0) is on the left branch and (x1, y1) is

on the right branch, then the right branch is strictly between the Euclidean lines though
(x0, y0) of slopes 1 and −

√
k. This implies that −

√
k < y1−y0

x1−x0 < 1. The inequality
y1+y0/

√
k

x1−x0 ≤ 1 follows from the fact that the Euclidean lines though (x0, y0) of slope −
√
k

and through (x1, y1) of slope 1 must intersect below or on the x-axis.

Since γc,b(D0,1) = Db,c and γc−b,b(C0,1) = Cb,c the results of Lemma 5.2 carry over to
arbitrary lines Db,c and Cb,c, after application of ψ. The right and left branch of Cb,c are
defined analogously to the right and left branch of ψ(C0,1) in the obvious way.

COROLLARY 5.3 Let (xi, yi), i = 0, 1, be two points with x0 < x1 and y0, y1 > 0.

1. If the two points are on a line Db,c, then −
√
k <

√
y1−
√
y0

x1−x0 < 1 <
√
y1+
√
y0/k

x1−x0 .

2. If the two points are on a line Cb,c, then
√
y1−
√
y0

x1−x0 ≥ 1 in case they are on the right

branch,
√
y1−
√
y0

x1−x0 ≤ −
√
k if they are on the left branch, and −

√
k <

√
y1−
√
y0

x1−x0 < 1 but
√
y1+
√
y0/k

x1−x0 ≤ 1 if (x0, y0) is on the left branch and (x1, y1) is on the right branch of
Cb,c.

PROPOSITION 5.4 A is a linear space, that is, any two points can be uniquely joined
by a line.

Proof. Let (xi, yi), i = 0, 1 be two points of R2. The existence and uniqueness of a joining
line is obvious for x0 = x1. Using the group of collineations of A induced by Σ we can
therefore assume that x0 = 0 and x1 = 1. If at least one yi is non-positive, any joining
line must come from a circle C1,b,c. For example, in case y0 ≤ 0, the joining line is found
from the system of equations

y0 = bc (1)

y1 = (1− b)(1− c) (2)

as in the classical flat Laguerre plane. This system of equations leads to

b2 + (y1 − y0 − 1)b+ y0 = 0. (3)

The discriminant of this quadratic equation in b is

D = (y1 − y0 − 1)2 − 4y0, (4)
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which is non-negative. Hence (3) has two solutions, the smaller one being the parameter
b and the larger one being the parameter c of a joining line Cb,c.

In case y0 > 0 ≥ y1 one obtains a similar system of equations which leads to essentially
the same equation (3) and discriminant (4), the only difference being that y0 is replaced
by y0/k.

We now assume that y1, y2 > 0. If not all inequalities in Corollary 5.3 are satisfied, the
two points must be on a line of the form Cb,c. This leads to similar systems of equations
for b and c as above, and consequently to a similar quadratic equation (3), where y0 or
y1 may be replaced by y0/k and y1/k, respectively. For example, if

√
y1 −

√
y0 ≥ 1,

both points must be on the right branch of Cb,c and we obtain exactly the same equation
(3). But

√
y1 −

√
y0 ≥ 1 implies y1 = (

√
y1)2 ≥ (

√
y0 + 1)2 = y0 + 1 + 2

√
y0 so that

y1 − y0 − 1 ≥ 2
√
y0 and the discriminant D as in (4) is non-negative.

Likewise, if
√
y0/k +

√
y1 ≤ 1, then −

√
k < −√y0 <

√
y1 −

√
y0 <

√
y1 < 1 so that

(0, y0) must be on the left branch of Cb,c and (1, y1) on the right branch. This means
that in equation (1) and also in the subsequent equations (3) and (4) y0 is replaced by
y0/k. Now

√
y0/k +

√
y1 ≤ 1 implies y1 ≤ (1−

√
y0/k)2 = 1 + (y0/k)− 2

√
y0/k so that

2
√
y0/k ≤ 1 + (y0/k)− y1 and the discriminant D is again non-negative.
Note that in any of the cases above, the joining line Cb,c is unique.
We finally assume that all inequalities in Corollary 5.3(1) are satisfied. A joining line

cannot be of the form Cb,c in this case and we have to show that there is a unique line of
the form Db,c though these points.

The inequalities in Corollary 5.3(1) imply that there is an m such that both points
(0, y0) and (1, y1) are above Cm,m. More precisely, one finds that 1−√y1 < m <

√
y0/k.

(One only has to consider the lines of the form Cm,m through each of these points and
below the other point.) Furthermore, for each such m there is precisely one c > 0 such that
Dm+sc,c passes through (0, y0). (ψ(Dm+sc,c) has the supporting Euclidean lines of ψ(Cm,m)
as asymptotes; compare Lemma 5.2(1).) In order to see this consider the function fm(c) =
e2s cot−1(−s−m/c)((m + sc)2 + c2). Its derivative is f ′m(c) = 2c(s2 + 1)e2s cot−1(−s−m/c) > 0
so that fm is strictly increasing in c. But limc→∞ fm(c) =∞ and limc→0 fm(c) = δ−mm

2.
If m ≥ 0, then δ−mm

2 = km2 < y0/k < y0, because k > 1. For m < 0 we have
δ−mm

2 = m2 < (1−√y1)2 < y0 by one of the inequalities in Corollary 5.3(1). Hence, in
any case limc→0 fm(c) < y0 and by continuity there must be a cm such that fm(cm) = y0.
But for this cm the point (0, y0) is on Dm+scm,cm . Moreover, cm is uniquely determined
because fm is injective.

We differentiate fm(cm) with respect to m. Since fm(cm) = y0 we obtain

0 =
d

dm
fm(cm) = 2e2s cot−1(−s−m/cm)(m+ 2scm + (s2 + 1)cmc

′
m)

where c′m denotes the derivative of cm. Hence

m+ 2scm + (s2 + 1)cmc
′
m = 0. (5)

Let h(m) = e2s cot−1(−s+(1−m)/cm)((1 −m − sc)2 + c2) so that (1, h(m)) is the point of
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intersection of Dm+scm,cm with the vertical line x = 1. For the derivative of h one finds

h′(m) = 2e2s cot−1(−s+(1−m)/cm)(m− 1 + 2scm + (s2 + 1)cmc
′
m)

= −2e2s cot−1(−s+(1−m)/cm) < 0

by (5). This shows that h is strictly decreasing. For m close to 1−√y1 one finds h(m) > y1

(Dm+scm,cm intersects x = 1 above the other point (1, y1)) and for m close to
√
y0/k one

has h(m) < y1 (Dm+scm,cm intersects x = 1 close to (1, δ√k−√y0(1 −
√
y0/k)2), the point

of intersection of C√
y0/k,
√
y0/k

with x = 1). However, δ√k−√y0(1−
√
y0/k)2 < y0 so that

by continuity there is an m such that h(m) = y1), that is, Dm+scm,cm passes through both
points (0, y0) and (1, y1). Moreover, m is uniquely determined because h is injective.

Note that for a line Db,c through both points there is a unique line Cm,m such that the
supporting Euclidean lines of ψ(Cm,m) are asymptotes of ψ(Db,c). From what we found
above we know that Db,c then must be the line Dm+scm,cm . Thus the line joining both
points is unique in this case too.

We now deal with the parallel axiom in A and first establish criteria for two lines to
be parallel.

LEMMA 5.5 Two lines Cb,c and Cb′,c′ are parallel if and only if b+ c = b′ + c′.

Proof. Suppose that b+ c = b′ + c′ and, without loss of generality, that b < b′. From

(x−b′)(x−c′) = x2−(b′+c′)x+b′c′ = x2−(b+c)x+bc+b′c′−bc = (x−b)(x−c)+b′c′−bc

we see that δx−b(x− b)(x− c) 6= δx−b′(x− b′)(x− c′) for x ≤ b or x ≥ b′. But for b < x < b′

we have δx−b(x− b)(x− c) < 0 and δx−b′(x− b′)(x− c′) > 0 so that δx−b(x− b)(x− c) 6=
δx−b′(x− b′)(x− c′) for all x ∈ R. This shows that Cb,c and Cb′,c′ are parallel.

Conversely, assume that b + c 6= b′ + c′. If u ∈ {b, c} ∩ {b′, c′}, then ((u, 0) is a finite
point on both Cb,c and Cb′,c′ . We thus assume that {b, c}∩{b′, c′} = ∅, and, by symmetry,
that b < b′.

Let f(x) = δx−b′(x− b′)(x− c′)− δx−b(x− b)(x− c). ¿From δx−b = δx−b′ for x < b or
x > b′ we find that

x =
bc− b′c′

b+ c− b′ − c′

is a zero of f unless this value is between b and b′. But then

(c′ − b)(b′ − b)
b+ c− b′ − c′

= b− bc− b′c′

b+ c− b′ − c′
< 0 < b′ − bc− b′c′

b+ c− b′ − c′
=

(c− b′)(b′ − b)
b+ c− b′ − c′

.

Since b < b′ ≤ c′, the inequalities above imply that b ≤ c < b′ ≤ c′. But then

f(c) = k(c− b′)(c− c′) > 0,

f(b′) = −(b′ − b)(b′ − c) < 0.
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Hence, by continuity, f has a zero between c and b′. This shows that in any case f has a
zero and thus Cb,c and Cb′,c′ have a finite point of intersection.

Recall that by Lemma 5.2 the lines D0,1 and C−s,−s are parallel. This yields a clue as
to when lines of A of different types are parallel.

LEMMA 5.6 Two lines Db,c and Cb′,c′ are parallel if and only if b− sc = (b′ + c′)/2.

Proof. Suppose that b− sc = (b′ + c′)/2 = m. From Lemma 5.5 we know that Cb′,c′ and
Cm,m are parallel. Furthermore, because δm−b′(m − b′)(m − c′) = −(c′ − b′)2/4 ≤ 0, we
see that Cb′,c′ lies strictly below Cm,m unless b′ = c′ = m. Lemma 5.2 shows that D0,1 is
strictly above C−s,−s. Hence Db,c = γc,b(D0,1) is strictly above γc,b(C−s,−s) = Cm,m. This
shows that Db,c and Cb′,c′ are parallel.

Conversely, let b− sc = m but b′+ c′ 6= 2m. From what we have already seen we know
that Db,c and Cm,m are parallel and that Db,c lies above Cm,m. Moreover, the supporting
Euclidean lines of ψ(Cm,m) are asymptotes for ψ(Db,c).

By Lemma 5.5 the lines Cm,m and Cb′,c′ intersect and, depending on the sign of b′ +
c′ − 2m, limx→±∞(δx−b′(x − b′)(x − c′) − δx−m(x −m)2) = ±∞ or ∓∞, that is, ψ(Cb,c)
is unboundedly above ψ(Cm,m) sufficiently far to the right and ψ(Cb,c) is unboundedly
below ψ(Cm,m) sufficiently far to the left or the other way around. But ψ(Db,c) behaves
asymptotically like ψ(Cm,m) so that we obtain that ψ(Cb,c) is unboundedly above ψ(Db,c)
sufficiently far to the right and ψ(Cb,c) is unboundedly below ψ(Db,c) sufficiently far to
the left or the other way around. In any case, connectedness implies that ψ(Db,c) and
ψ(Cb′,c′), and thus Db,c and Cb′,c′ , have a point of intersection.

LEMMA 5.7 Two lines Db,c and Db′,c′ are parallel if and only if b− sc = b′ − sc′.

Proof. Suppose that b − sc = b′ − sc′ = m and, without loss of generality, that c < c′.
Let f(t, x) = e2s cot−1 x−m−st

t ((x − m − st)2 + t2) so that y = f(c, x) and y = f(c′, x)
describe the lines Db,c and Db′,c′ . For the partial derivatives ∂f

∂t
(t, x) one finds ∂f

∂t
(t, x) =

2e2s cot−1 x−m−st
t (s2 + 1)t. Hence ∂f

∂t
(t, x) > 0 and t 7→ f(t, x) is strictly increasing. In

particular, f(c, x) < f(c′, x) and Db,c and Db′,c′ have no finite point of intersection. This
shows that Db,c and Db′,c′ are parallel.

Conversely, let b−sc = m 6= m′ = b′−sc′. From Lemma 5.6 we already know that Db,c

and Cm,m are parallel and that Cm′,m′ and Db′,c′ are parallel. By Lemma 5.5 the lines Cm,m
and Cm′,m′ intersect so that the difference between the respective describing functions is
unbounded and takes on opposite signs for large positive x or large negative x. However,
ψ(Db,c) and ψ(Db′,c′) behave asymptotically like ψ(Cm,m) and ψ(Cm′,m′), respectively,
so that, as in the proof of Lemma 5.6, Db,c and Cb′,c′ have a point of intersection by
connectedness.

PROPOSITION 5.8 A is an affine plane.
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Proof. ¿From Proposition 5.4 we already know that A is a linear space, so it only remains
to verify the parallel axiom in A. This axiom is clearly satisfied for vertical lines. By
Lemmas 5.5, 5.7 and 5.6 each non-vertical line of A is characterised by an m ∈ R. Let
Bm be the collection of all lines Cm+c,m−c for c ≤ 0 and Dm+sc,c for c > 0. Any two lines
in Bm are parallel by Lemmas 5.5, 5.7 and 5.6. Let

f(c, x) =

{
δx−m−c((x−m)2 − c2), for c ≤ 0,

e2c cot−1(x−m
c
−s)((x−m− sc)2 + c2), for c > 0.

(Thus y = f(c, x) describes the line with parameter c in Bm.) It readily follows that for
given x ∈ R the function c 7→ f(c, x) is continuous in c and that limc→±∞ f(c, x) = ±∞.
Hence every y ∈ R occurs for precisely one c ∈ R as y = f(c, x). The line corresponding
to this c is the parallel we are looking for.

THEOREM 5.9 Lk is a flat Laguerre plane. Furthermore, Lk is not ovoidal.

Proof. As mentioned at the beginning of this section, the verification that Lk is a Laguerre
plane is equivalent to showing that the derived incidence structures at (∞, 0) and (∞, 1)
are affine planes. This has been done in Propositions 5.1 and 5.8. The Laguerre cylinder
L is homeomorphic to S1×R by construction, see section 3. As we remarked in section 4,
each circle of Lk is homeomorphic to S1. Therefore, Lk is in fact a topological Laguerre
plane, see [4], 3.10.

Since each derived affine plane of an ovoidal flat Laguerre plane is Desarguesian, we
obtain from Proposition 5.1 that Lk cannot be ovoidal.

Note that circles can be defined in exactly the same way as in section 4 for arbitrary
k > 0, not just for k > 1. The resulting incidence structure is again a flat Laguerre plane.
For k = 1 one obtains the classical real Laguerre plane. We did not include this special
case for simplicity as the automorphism group of the classical real Laguerre has rather
different properties from the automorphism groups of the planes Lk, see the following
section. Furthermore, Lk and L1/k are isomorphic via the mapping (x, y)→ (−x,−y), so
that one obtains the full picture by restricting oneself to k > 1.

6 Automorphism group and Kleinewillinghöfer type

Every automorphism of a flat Laguerre plane is continuous and thus a homeomorphism
of Z. The collection of all automorphisms of a flat Laguerre plane L forms a group with
respect to composition, the automorphism group of L. This group is a Lie group of
dimension at most 7 with respect to the compact-open topology, see [14].

We say that a flat Laguerre plane has group dimension n if its automorphism group is
n-dimensional. All flat Laguerre planes of group dimension at least 5 have been classified;
see [8]. The classical flat Laguerre plane is the only flat Laguerre plane of group dimension
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at least 6 (and indeed has group dimension 7) and the flat Laguerre planes of group
dimension 5 are precisely the ovoidal Laguerre planes over proper skew parabolae, cf. [8],
Theorem 1.

Furthermore, in the same paper all flat Laguerre planes whose automorphism groups
are 4-dimensional and fix one point were classified, see [8], Theorem 2. There are two
families, one consisting of planes of shear type over a pair of two different skew parabolae
and the other consisting of the non-classical planes of translation type over a pair of skew
parabolae; the former planes contain two fixed parallel classes, the latter only one. All flat
Laguerre planes of group dimension 4 whose automorphism group fixes a parallel class
were determined by the second author. Our planes provide examples of flat Laguerre
planes of group dimension 4 such that neither is a parallel class fixed by the connected
component of the automorphism group containing the identity nor is the group transitive
on the cylinder. The other known flat Laguerre planes of group dimension 4 with this kind
of orbit structure are certain semi-classical Laguerre planes obtained by pasting along a
circle, see [13]. (The planes L(ϕ, id), in the notation of [13], with one of the describing
homeomorphisms being the identity and the other one, ϕ, being multiplicative.)

THEOREM 6.1 The 4-dimensional group Γ described in 3.5 is the full group of auto-
morphisms of Lk.

Proof. Since, on the one hand, the group Γ consists of automorphisms of Lk and has
dimension 4, the automorphism group of Lk must be at least 4-dimensional. On the other
hand, a flat Laguerre plane of group dimension at least 5 is ovoidal, see [8], Theorem 1,
hence by Theorem 5.9, Lk has group dimension 4.

Suppose that there is an automorphism of Lk that does not fix L0. Then Γ and thus
also Γ1 is transitive on Z. Hence Lk must be classical by [15] and thus each derived affine
plane must be Desarguesian—a contradiction to Proposition 5.1.

Let γ be an automorphism of Lk. Using a rotation ρt, if necessary, we may assume
that γ fixes the point (∞, 0). But then γ induces a collineation of the derived affine plane
at (∞, 0), that is, a collineation γ̃ of Mk. In Mk it now follows that γ̃ is a composition
of collineations of the form γa,b,c and σ.

Any isomorphism between Laguerre planes Lk and Lk′ induces an isomorphism of the
corresponding group actions. Being the unique 1-dimensional orbit, the distinguished
circle L0 must therefore be mapped to L0 under any isomorphism. Since the Moulton
planes Mk are mutually non-isomorphic, we obtain the following corollary by passing to
derived affine planes at points of L0.

COROLLARY 6.2 The flat Laguerre planes Lk are mutually non-isomorphic.

Kleinewillinghöfer [6] classified Laguerre planes with respect to central automorphisms,
that is, automorphisms that fix at least one point such that central collineations are in-
duced in the derived projective plane at one of the fixed points. In [11] and [17] flat
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Laguerre planes were considered and their so-called Kleinewillinghöfer types were investi-
gated, that is, the Kleinewillinghöfer types with respect to the full automorphism group.
In particular, all possible types of flat Laguerre planes with respect to Laguerre transla-
tions and Laguerre homotheties were completely determined. Examples for some of the
possible Kleinewillinghöfer types of flat Laguerre planes can be found in [11] section 6
and [17] but there are still a few open cases. One of them is Kleinwillinghöfer type II.G.1
in which there is a circle C such that the group of all C-homologies and the groups of all
(|p|, B(p, C))-translations for p ∈ C are linearly transitive; see [11] or [17] for a definition
of these kinds of automorphisms. (Here B(p, C) denotes the tangent bundle of all circles
that touch the circle C at the point p.)

THEOREM 6.3 Lk is of Kleinewillinghöfer type II.G.1.

Proof. The maps γa,0,1 for a > 0 and σ from Section 3 are automorphisms, see Propo-
sition 4.1. They fix exactly the points of the circle L0, that is, each is an L0-homology.
Furthermore the group

{γa,0,1 | a > 0} ∪ {γa,0,1σ | a > 0}
is transitive on each parallel class minus its point of intersection with L0. This shows
that the set of circles for which the automorphism group of Lk is linearly transitive with
respect to Laguerre homologies contains L0.

Since L0 is fixed by every automorphism of Lk, one sees that L0 is the only circle for
which Γ can be linearly transitive with respect to Laguerre homologies. This shows that
Lk must have type II with respect to Laguerre homologies.

Likewise, the automorphisms γ1,b,1 for b ∈ R fix each circle Lc and each point on the
infinite parallel class Π∞ = {∞} × R, that is, γ1,b,1 is a (Π∞, B(∞, L0))-translation in
the notation of [11]. Furthermore the group {γ1,b,1 | b ∈ R} is transitive on each circle
Lc minus the point (∞, 0). Applying the rotations ρt this therefore shows that the set of
all tangent bundles for which the automorphism group of Lk is linearly transitive with
respect to Laguerre translations contains each bundle B(p, L0) for p ∈ L0.

L0 being fixed by every automorphism implies that B(p, L0) for each p ∈ L0 are the
only tangent bundles for which Γ can be linearly transitive with respect to Laguerre
translations and there cannot be any G-translations. This shows that Lk must have type
G with respect to Laguerre translations.

Finally, assume that Γ is linearly transitive with respect to some Laguerre homotheties.
Then the centres of the Laguerre homotheties must be on L0 and Γ must be (p, q)-transitive
for all distinct p, q ∈ L0. But this implies that the derived affine plane at any point of L0

is Desarguesian—a contradiction to Proposition 5.1. This shows that Lk must have type
1 with respect to Laguerre homotheties.
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[6] R. Kleinewillinghöfer. Eine Klassifikation der Laguerre-Ebenen. PhD thesis, TH Darm-
stadt, 1979.

[7] S. Lang. SL2(R). Reading, Addison Wesley, 1975.
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[17] G.F. Steinke. More on Kleinewillinghöfer types of flat Laguerre planes. Preprint.


