
VIEWING MODULAR FORMS AS AUTOMORPHIC REPRESENTATIONS

JEREMY BOOHER

These notes answer the question “How does the classical theory of modular forms connect with
the theory of automorphic forms on GL2?” They are a more detailed version of talks given at
a student reading group based on Jacquet and Langland’s book [JL70]. They were given after
the first ten sections had been covered, which had discussed the local representation theory of
GL2(Qp), GL2(R), and GL2(C), and then defined the global Hecke algebra and automorphic forms
and representations. The aim was to connect the theory which had been developed with something
more familiar, and understand the motivation behind the theory which had been developed.

Given a cuspidal holomorphic modular form f(z) of weight k, level N , and nebentypus character
χ, we will describe how to associate an automorphic form F (g) on GL2(R)+ and an automorphic
form ϕf (g) on GL2(AQ). We attempt to collect all of the details necessary to understand what
properties F (g) and ϕf (g) possess, and make clear how these properties of automorphic forms
relate to classical properties of modular forms. In the case when f(z) is an Hecke eigenform, we
will also show there is an automorphic representation πf of GL2(AQ) associated to f containing
ϕf , and describe as much as possible its local components. In the process of doing so, we will
explain how the data of the Hecke eigenvalues is encoded in the local representations. This will
explain the sense in which the Hecke eigenvalues are local information, a fact that is not obvious in
the classical setting. It is possible obtain information about most of the local components by pure
thought. At primes that divide the level N , the situation is more complicated as supercuspidal
representations can arise. Loeffler and Weinstein describe the situation and an algorithm to deal
with these cases [LW12].

Example 0.1. For example, one of the newforms of level 99 with trivial nebentypus and weight 2
has q-expansion

f(z) = q − q2 − q4 − 4q5 − 2q7 + 3q8 + 4q10 − q11 + . . .

Using the algorithm as implemented in SAGE, we find that

• The infinite component is a discrete series of weight 2.
• At p = 2, the local component is an unramified principal series. The two unramified

characters send uniformizers to the roots of x2 + x+ 2. Note that the Hecke eigenvalue for
T2 is −1.
• At p = 3, the local component is a supercuspidal representation of conductor 2. Sage

computes a description in terms of two characters of extensions of Qp.
• At p = 11, the local component is a special representation of conductor one. It is the twist

of the Steinberg by the unramified character of Q×11 of order two. Note that the Hecke
eigenvalue is −1.

These notes assume the reader is familiar with the representation theory of GL2(Qp), GL2(R),
and GL2(C) over the complex numbers, in particular the classification of irreducible smooth ad-
missible representations. We also assume knowledge of the definition of automorphic forms and
representations on GL2(AQ), local and global Hecke algebras and the manner in which automorphic
representations decompose as restricted tensor products. This is essentially the material in the first
ten sections of Jacquet and Langland [JL70]. Other standard references for some or all of this
material include books by Bump [Bum97], Bushnell and Henniart [BH06], and Gelbart [Gel75].
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In Section 1, we relate quotients of the upper half plane to double coset spaces for GL2(R)+ and
GL2(AQ) as a preliminary step in transporting modular forms to GL2(R) and GL2(AQ). Section
2 then constructs the automorphic forms F (g) and ϕf (g) associated to a classical modular form f
and establishes their important properties. Using these automorphic forms, one can construct the
automorphic representation associated to f . In order to do so, we first review some facts about the
local representation theory of GL2(R) and GL2(Qp) in Sections 3 and 4. Besides a general review
of the classification results, we also include material that was not touched upon in the seminar
(or in [JL70]). In particular, Section 3 discusses (g,K) modules and the local Hecke algebra from
a different perspective than [JL70], and connects the action of U(gl2(C)) with explicit differential
operators on C∞(GL2(R)). Section 4 includes information about spherical representations and the
spherical Hecke algebra. Finally in Section 5 we use the multiplicity one theorem to construct
an irreducible automorphic representation πf containing ϕf and describe the local components as
much as is possible.

1. Preliminaries on the Upper Half Plane and Quotients

In this section, we will relate quotients of the upper half plane H with quotients of GL2(R) and
with quotients of GL2(AQ). We consider the group GL2 with center Z. The points over R with
positive determinant, GL2(R)+ = {g ∈ GL2(R) : det(g) > 0}, act on the upper half plane H via
fractional linear transformations.

The connection between functions on the upper half plane and functions on GL2(R) boils down
to the following observation: SL2(R) acts on H with stabilizer SO2(R). It is technically better to
work with GL2(R)+ and consider separately K = SO2(R) and the center Z(R)+ ⊂ GL2(R)+.

This idea and the Iwasawa decomposition give a convenient system of coordinates to use on
GL2(R)+. Because GL2(R)+ is the product of the maximal compact subgroup K and the Borel of
upper triangular matrices, every element can be expressed in the form

(1.1) g =

(
λ 0
0 λ

)(
y1/2 y−1/2x

0 y−1/2

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Letting this act on the upper half plane, we see that i is sent to x+ iy. Therefore using (x, y, θ, λ)
as coordinates on GL2(R)+ (subject to the obvious restrictions that λ > 0, y > 0, and θ ∈ [0, 2π))
gives a convenient coordinate system that is related to the standard coordinates on the upper half
plane in the sense that g · i = x+ iy.

Remark 1.1. This is a different coordinate system than is used in Bump’s book. In particular,

Bump uses the matrix

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
for his rotation matrix. This is an unnatural direction

to rotate, but simplifies certain formulas. In particular, actions of K by e−ikθ become actions by
eikθ such as in (3.1) and the action of K on automorphic forms, and negative signs are removed in
the differential operators for ∆ and L in Section 3.1.

We now turn to GL2(AQ). Recall that the strong approximation theorem states that for any com-
pact open subgroup K ⊂ GL2(Af) such that det(K) = A×f , we have GL2(AQ) = GL2(Q) GL2(R)K.
(This relies on the class number of Q being one.) A convenient compact open subgroup to work
with will be

K0(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 mod N

}
.

The connection between the GL2(R)+ (or SL2(R)) and GL2(AQ) is the following proposition.

Proposition 1.2. For any positive integer N , there are natural isomorphisms

Γ0(N)\ SL2(R) ' Z(AQ) GL2(Q)\GL2(AQ)/K0(N)

Γ0(N)\GL2(R)+ ' GL2(Q)\GL2(AQ)/K0(N).
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Remark 1.3. Adding in an archimedean component to K0(N) such as SO2(R) would give a more
direct comparison with the upper half plane.

Proof. As GL2(Q) contains elements with negative determinant, we may modify the strong approx-
imation statement to conclude that

GL2(AQ) = GL2(Q) GL2(R)+K0(N).

Now consider the map given by including GL2(R)+ at the archimedean place and passing to the
quotient:

GL2(R)+ → GL2(AQ)→ GL2(Q)\GL2(AQ)/K0(N).

It is surjective by the strong approximation theorem.
Now let us analyze how close to being injective it is. Let g∞ and g′∞ have the same image. This

means there exist γ ∈ GL2(Q) and k0 ∈ K0(N) such that g′∞ = γg∞k0. The element γ is embedded
diagonally, so separate the real and finite adelic parts, writing γ = γ∞γf with γ∞ ∈ GL2(R) and
γf ∈ GL2(Af). As g∞ and g′∞ are completely in the archimedean place, we see that

g′∞ = γ∞g∞ and γf = k−10 .

The first says det(γ∞) > 0, and with the second it implies γf ∈ K0(N) ∩ GL2(Q) = Γ0(N).
Therefore g′∞ and g∞ differ by an element of Γ0(N). This proves the second isomorphism.

For the first, we just add the centers. Strong approximation (for Gm in this case) says that

Z(AQ) = Z(R)+Z(Q) (Z(AQ) ∩K0(N)) .

Therefore we obtain an isomorphism

Z(R)+Γ0(N)\GL2(R)+ ' Z(A) GL2(Q)\GL2(AQ)/K0(N).

But the left is isomorphic to Γ0(N)\SL2(R). �

2. Constructing the Automorphic Form Associated to a Modular Form

In this section, we will construct automorphic forms on GL2(R)+ and GL2(AQ) associated to a
holomorphic modular form. We are mainly interested in the adelic viewpoint, but constructing the
automorphic form adelically boils down to constructing it at the archimedean place and then making
a slight modification at the non-archimedean ones. The basic idea is to take the identification of
spaces in the previous section and set up a correspondence between functions on the upper half
plane, GL2(R)+, and GL2(AQ). Instead of actually working with the quotients, we will work with
functions which satisfy transformation laws.

In the course of the construction, we check the construction satisfies all of the requirements to
be an automorphic form to illustrate how the classical properties of modular forms appear in the
automorphic language as conditions such as K-finiteness.

Remark 2.1. The same story is true for Maass forms. For simplicity, we focus just on the case of
holomorphic modular forms.

2.1. Classical Modular Forms. Let f(z) be a modular form of level N and weight k ≥ 2 with
nebentypus character χ. Recall that this means:

(i) f is a holomorphic function on the upper half plane H = {z : Im(z) > 0}.

(ii) For

(
a b
c d

)
∈ Γ0(N), we have

f

(
az + b

cz + d

)
= χ(d)(cz + d)kf(z).(2.1)
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For γ =

(
a b
c d

)
∈ GL2(R)+, recall one defines j(γ, z) = (cz + d) and the slash operator

by (g|kγ)(z) = det(γ)k/2j(γ, z)−kg(γ · z). So this transformation rule can be rewritten as
f |kγ = χ(d)f for γ ∈ Γ0(N).

(iii) f is holomorphic at the cusps. If the cusp is infinity, this means that the q-expansion (where
q = e2πiz) is of the form

f(z) =
∑
n≥0

anq
n.

For a general cusp, pick γ ∈ SL2(Z) which takes infinity to that cusp ask that f |kγ be holo-
morphic at infinity. However, it is more convenient just to require that f |kγ be holomorphic
at infinity for all γ ∈ SL2(Z).

Recall that the coefficients an are Fourier coefficients, so may be computed (for any z ∈ H)
via the integrals

(2.2) an =

∫ 1

0
f(z + t)e−2πintdt.

The theory of modular forms is discussed in many places. Chapter 1 of Bump [Bum97] presents
the subject with a view towards connecting it with automorphic forms.

2.2. Automorphic Forms for GL2(R). The “classical” theory of automorphic forms for GL2(R)
is discussed in Chapter 2 of Bump [Bum97]. It is important motivation and technical ingredient in
the adelic theory (for example, spectral theory gives a decomposition of the space of automorphic
forms which is then translated to the adelic setting), but we will not assume knowledge of it. We
will just discuss how a modular form is an example of an automorphic form on GL2(R) before
moving on the adelic situation.

The observation that GL2(R)+ acts on the upper half plane with stabilizer K = SO2(R) suggests
how to connect modular forms on the upper half plane and automorphic forms on GL2(R)+. Given

a cusp form f , we consider the function defined on g =

(
a b
c d

)
∈ GL2(R)+ by

F (g) := (f |kg)(i) = (ad− bc)k/2(ci+ d)−kf

(
ai+ b

ci+ d

)
.

This is the automorphic form for GL2(R) associated to f . It has many nice properties.

(i) For γ =

(
a b
c d

)
∈ Γ0(N) it satisfies

F (γg) = (f |kγg)(i) = χ(d)(f |kg)(i) = χ(d)F (g).

(ii) For κ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
∈ K = SO2(R), we see that

det(gκ)k/2j(gκ, i)−k = det(g)k/2j(g, i)−ke−ikθ

as K is the stabilizer of i. Hence we see that

F (gκ) = det(g)k/2j(gκ, i)−kf (g · (κ · i)) = e−ikθF (g).

Note that this implies F is K-finite.

(iii) For γ =

(
λ 0
0 λ

)
∈ Z, we see

F (γg) = (f |kγg)(i) = (λ2)k/2 det(g)k/2λ−kj(g, i)−kf(g · i) = ω(γ)F (g)
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where ω(γ) is 1 when λ > 0 and is χ(−1) when λ < 0. Note that χ(−1) is arising because

of subtleties arising from the choice of square root involved in defining det(g)k/2: these are
already present in the classical theory of modular forms and are dealt with the same way.

(iv) We show the function F is bounded (if f was a modular form but not a cusp form, it would
be of moderate growth). First, a calculation shows that

Im

(
ai+ b

ci+ d

)k/2
=

(
det(g)

|ci+ d|2

)k/2
so it suffices to show that | Im(z)|k/2|f(z)| is bounded. At infinity, using the q-expansion we
see that for Im(z) > c

|f(z)| = |a1q + a2q
2 + . . . | ≤ C ′|q|

where the constant C ′ depends on c. But |q| = e−2π Im(z), so | Im(z)|k/2|f(z)| is bounded and
goes to zero as Im(z) goes to infinity. Using the action of SL2(Z), one can do a similar analysis
for any cusp. Then we use knowledge about fundamental domains in the upper half plane (or
the corresponding facts about Siegel domains for GL2) to reduce to this case by covering by
neighborhoods that is of this form around each cusp.

(v) Recall that the Lie algebra gl2(R) acts on the space of smooth functions on GL2(R) via the
derivative of the right translation action. So does its universal enveloping algebra U(gl2(C)).
This action commutes with a Laplacian operator ∆ which can be defined either by writing
down an element in the center of the universal enveloping algebra or abstractly (the negative of
the Killing form gives a Riemannian metric on GL2(R), and there is an associated Laplacian).
We defer the extensive calculations to show that F is an eigenfunction of ∆ with eigenvalue
k
2

(
1− k

2

)
to the analysis leading up to Corollary 3.3.

(vi) We finally interpret the condition of vanishing at the cusps. If a modular form f(z) vanishes
at the cusp at infinity, by (2.2) it follows that for all z ∈ H∫ 1

0
f(z + t)dt = 0.

In light of (1.1), elements of the form

g =

(
λ 0
0 λ

)(
y1/2 y−1/2x

0 y−1/2

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
send i to x+ iy. We calculate using (ii) and (iii) that

(2.3) F (g) = (f |kg)(i) = ω(γ)e−ikθyk/2f(z).

Furthermore, unwinding the left action of the unipotent matrix nt =

(
1 t
0 1

)
we see

F (ntg) = ω(γ)e−ikθyk/2f(z + t).

Therefore the cuspidality condition is equivalent to∫ 1

0
F (ntg)dt = 0

for all g ∈ GL2(R)+. Using the action of SL2(Z) on the cusps, there is a similar statement for
other cusps.

This construction is discussed in [Bum97, Section 3.2]: in terms of the theory of automorphic
forms on GL2(R), this shows that F lies in the space of cusp forms A0(Γ0(N)\GL2(R)+, χ, ω).
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2.3. Automorphic Forms for GL2(AQ). We now describe how to associate to f and F an auto-
morphic form ϕf on GL2(AQ). The idea is similar to that of GL2(R)+: we use Proposition 1.2 to
see a relation between the spaces and then connect functions on GL2(R) with functions on GL2(AQ)
that satisfy certain transformation properties. The adelic perspective makes it much clearer that
modular forms are arithmetic in nature and have local information at each prime.

Given a cusp form f , we define a function ϕf on GL2(AQ) as follows. We use strong approx-
imation to write an element of GL2(A) as a product where γ ∈ GL2(Q), g∞ ∈ GL2(R)+, and

k0 ∈ K0(N) = {
(
a b
c d

)
∈ GL2(Ẑ) : c ≡ 0 mod N}. Then we define

ϕf (γg∞k0) := F (g∞)λ(k0) = (f |kg∞)(i)λ(k0).

The function λ is an adelization of the Dirichlet character χ. Since f(z) is not quite invariant under
Γ0(N), in light of Proposition 1.2 it is no surprise that ϕf needs to incorporate a correction from
χ in order to end up K0(N)-invariant. We will first define λ and then check ϕf is well defined.

The character λ is defined to in two steps: first associate an adelic character ω to χ (the grossen-
character), then convert this to a character of GL2(AQ).

Defining ω is an exercise in class field theory. The strong approximation theorem states that

A×Q = Q× · R×>0 ·
∏
p

Z×p

Using the Chinese remainder theorem, we realize Z/NZ× as a quotient of
∏
p Z×p . Thus composing

with the inverse of χ gives us the grossencharacter ω =
∏
p ωp : A×Q/Q

× → C× that is trivial on

R×>0. More details are found in [Bum97, Proposition 3.1.2]. (Another way to express this is to
realize Z/NZ× as the ray class group over Q with modulus m = N∞.)

To get a character of K0(N), we define

λ

((
a b
c d

))
:= ω(d) =

∏
p|N

ωp(dp)

where dp denotes the Q×p component of d. Let πp ∈ A×Q be the image of p under the inclusion

Q×p ↪→ A×Q. We record some properties of ω and λ.

Lemma 2.2. If p - N , we have ω|Z×p = 1 and ω(πp) = χ(p). The archimedean component ω∞ is

trivial on R×>0. Thus if d is a positive integer prime to N , λ

((
a b
c d

))
= χ(d)−1.

Proof. By construction ωZ×p = 1. Using the decomposition from the strong approximation theorem,

we can write
πp = p · 1 · α

where α ∈
∏
p Z×p with αv = 1/p for v 6= p and αp = 1. Note that α reduces to 1/p in (Z/NZ)×.

Then ω(πp) =
(
χ(1p)

)−1
= χ(p).

By construction ω∞ is trivial on R×>0. To prove the last claim, it suffices to show that

χ(d) =
∏
p|N

ω−1p (dp).

But as ω is trivial on Q×, the right side is equal to
∏
p-N ωp(dp). If d were a rational prime

relatively prime to N , the first part of the lemma would imply this equals χ(d). Then extend by
multiplicativity. �

We now return to analyzing ϕf . The properties we established for the automorphic form F on
GL2(R) associated to f contain most of the work.
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Proposition 2.3. The function ϕf is well defined. It is an automorphic form with central character
ω, and is a cusp form.

Proof. To check it is well defined, consider two decompositions γg∞k0 = g = γ′g′∞k
′
0. Looking at

the archimedean component of g gives γ∞g∞ = γ′∞g
′
∞, so det(γ−1∞ γ′∞) > 0. The finite components

give that

γfk0 = γ′fk
′
0,

so γ−1f γ′f ∈ K0(N). Hence γ−1γ′ =

(
a b
c d

)
=∈ K0(N) ∩ GL2(R)+ = Γ0(N). Then the transfor-

mation law for F implies that

F (g∞) = F (γ−1γ′g′∞) = χ(d)F (g′∞).

But by the lemma, χ(d)−1 = λ

((
a b
c d

))
= λ(γ−1γ′) = λ(k0(k

′
0)
−1). Hence

F (g′∞)λ(k′0) = F (g∞)λ(k0).

Thus ϕf is well defined.
To check that it is an automorphic form, there are a number of things to verify. It is smooth,

because F is smooth in the archimedean sense and λ is locally constant. The following list of
properties is based on the properties of F given in Section 2.2.

(i) Left invariance under GL2(Q) follows by definition. (But note well-definedness used the left
invariance of F .)

(ii) Taking K = K0(N) SO2(R), for k = k0k∞ ∈ K we have that

(2.4) ϕf (gk) = F (g∞k∞)λ(kk0) = e−ikθF (g∞)λ(k)λ(k0) = e−ikθλ(k0)ϕf (g)

In particular, it is K-finite.
(iii) For g ∈ GL2(AQ) and z ∈ A×Q, we can check that

ϕf

((
z 0
0 z

)
g

)
= ω(z)ϕf (g).

This is immediate for z ∈ Q×, z ∈ R×>0, and z ∈ Z×p , and follows in general using strong
approximation.

(iv) ϕf is bounded because we know that F is.
(v) Letting Z be the center of the universal enveloping algebra of gl2(R), ϕf is Z-finite. This is

because the action of Z is just in the archimedean component and we know that F is Z-finite
(and furthermore is an eigenfunction).

(vi) The cuspidality condition is that for all g ∈ GL2(AQ),∫
Q\A×Q

ϕf

((
1 x
0 1

)
g

)
dx = 0.

To evaluate the integral on the left, we use Q×\A×Q ' R×>0 · Ẑ× and write the quotient
measure as a product. But at the archimedean place the integral is 0 because we know that
F is cuspidal.

�

Remark 2.4. In fact, this construction gives an isomorphism between Sk(N,χ) and the space
of functions on GL2(AQ) satisfying certain properties: see [Gel75, Proposition 3.1] for a precise
statement.
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Thus from a cuspidal holomorphic modular form f , we have constructed a cuspidal automorphic
form ϕf ∈ A0(GL2(Q)\GL2(AQ), ω).

The next thing to do is to analyze the automorphic representation generated by ϕf . We must
first review the local archimedean and non-archimedean representation theory.

3. Background at the Archimedean Places

In this section we will review material about representations of GL2(R), starting with how the
Lie algebra acts and what this action looks like in the coordinates of (1.1). We then review the
classification of (g,K)-modules and the local Hecke algebra.

3.1. The Action of gl2(R). Recall that via the adjoint representation, the Lie algebra gl2(R)
acts on GL2(R) and hence gives an action of the space of smooth functions on GL2(R) via right
translation. For X ∈ gl2(R) and a smooth function f , the action is given by

(X · f)(g) =
d

dt
f(g exp(tX))|t=0.

In the case of GL2, as I + tX is a path in GL2(R), for small t, tangent to the one parameter
subgroup exp(tX), an alternate expression is

(X · f)(g) =
d

dt
f(g(1 + tX))|t=0.

The following elements in gl2(R) are important:

R̂ =

(
0 1
0 0

)
, L̂ =

(
0 0
1 0

)
, Ĥ =

(
1 0
0 −1

)
, I =

(
1 0
0 1

)
Using these, we can define an element in the universal enveloping algebra

∆ =
−1

4

(
Ĥ2 + 2R̂L̂+ 2L̂R̂

)
.

One shows that ∆ is in the center. In fact, the center is a polynomial algebra generated by ∆ and I.
The action of ∆ gives the Laplace operator. We will sketch how one derives an explicit description
of this operator in terms of the (x, y, θ, λ) coordinate system on GL2(R)+.

To do calculations, it is also convenient to work with related elements in the complexification:

R =
1

2

(
1 i
i −1

)
, L =

1

2

(
1 −i
−i 1

)
, H = −i

(
0 1
−1 0

)
Z =

(
1 0
0 1

)
, ∆ = −1

4
(H2 + 2RL+ 2LR)

These are related via the Cayley transform to R̂, L̂ . . .. Recall the Cayley transform is conjugation
by

C = −1 + i

2

(
i 1
i −1

)
.

It corresponds to the transformation taking the upper half plane into the unit disc. The actions of
R and L are easier to compute. We will sketch a derivation of a formula for ∆ using this.

Proposition 3.1. On the space of smooth functions, the action of ∆ is given by

−y2
(
∂2

∂x2
+

∂2

∂y2

)
− y ∂2

∂x∂θ
.
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Proof. The idea is simple: write down the exponential for an element like R̂ or H and evaluate the
derivative. Doing calculations is unavoidable, but necessary for what we wish to do.

For example, let us do H. First consider W =

(
0 −1
1 0

)
. By definition, for a function f and

g ∈ GL2(R)+, (W · f)(g) = d
dtf(gkt)|t=0. By evaluating the matrix powers in the definition of the

exponential, we see that

exp(tW ) = κt =

(
cos(t) − sin(t)
sin(t) cos(t)

)
Expressing g in (x, y, θ, λ) coordinates using (1.1), we have

g exp(tW ) =

(
λ 0
0 λ

)(
y1/2 y−1/2x

0 y−1/2

)
κθ+t

This is (x, y, θ+ t, λ) in that coordinate system, so the derivative evaluated at zero is ∂
∂θf(g). Using

the action of W , one immediate gets the action of H.
Likewise, we can easily deal with R̂ in the case of g having θ = 0. For then

g exp(tR̂) =

(
λ 0
0 λ

)(
y1/2 y−1/2x

0 y−1/2

)(
1 t
0 1

)
=

(
λ 0
0 λ

)(
y1/2 y−1/2(x+ yt)

0 y−1/2

)
.

This has coordinates (x+ yt, y, 0, λ), so R̂ sends f to

y
∂f

∂x
(g)

If θ is not zero, things are more complicated because one needs to rearrange the product. The
Cayley transform helps with this. Additional calculations can be found in [Bum97, Proposition
2.2.5]. Note that Bump uses −θ for a coordinate in the rotation matrices which changes some
signs. These calculations give the formula for ∆. �

Remark 3.2. For future use, we also record that the action of L is given by

e2iθ
(
−iy ∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ

)
If we had worked in more generality and identified Maass forms of weight k with automorphic
forms, the operators R and L would correspond to the raising and lowering operators for Maass
forms.

Using this description, we can finally show that the automorphic form F on GL2(R) we associated
to a cusp form is an eigenfunction of ∆.

Corollary 3.3. Let f be a holomorphic modular form of weight k and F the associated automorphic
form on GL2(R)+. Then

∆F =
k

2

(
1− k

2

)
F

Proof. Unraveling the definition of F , we compute that

F (g) = (f |kg)(i) = e−ikθyk/2f(x+ iy)

using the coordinates in (1.1). Now we compute that

∆F = −e−ikθ
(
yk/2+2fxx + yk/2+2fyy + kyk/2+1fy +

k

2

(
k

2
− 1

)
yk/2f + y(−ik)yk/2fx

)
.

Since f is holomorphic, fxx + fyy = 0 and ifx = fy. Therefore we have that

∆F = −e−ikθ k
2

(
k

2
− 1

)
yk/2f =

k

2

(
1− k

2

)
F. �
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3.2. (g,K)-Modules. Let g = gl2(R) and K = O2(R). Recall that a (g,K)-module for GL2(R) is
a vector space V with representations πK and πg of K and g such that

(1) The representations of g and K are compatible in the sense that an element X ∈ Lie(K)
acts the same way using πg action and through the infinitesimal action of K on V (this
refers to the action dπK of Lie(K) on V ).

(2) V is an algebraic direct sum of finite dimensional irreducible representations of K
(3) For X ∈ g and k ∈ K we have πK(k)πg(X)πK(k−1) = πg(Ad(k)X) as operators on V .

Such a module is admissible if each irreducible representation of K appears with finite multiplicity.
Let σk be the representation of SO2(R) given by sending a matrix with angle θ to e−ikθ. Then

any (g,K) module V decomposes as a direct sum

V =
⊕
k

V (k)(3.1)

where V (k) is the isotypic component of V corresponding to σk. Calculations with the Lie algebra

show that R̂ and L̂ raise and lower k by two. Similarly, H acts by k on V (k) and Λ acts by
k
2 (1 − k

2 ). For details, see [Bum97, Proposition 2.5.2]. There is also a classification of irreducible
(g,K) modules in [Bum97, Theorem 2.5.5] or [JL70, Section 5].

• If the representation is finite dimensional, it is a twist of the natural representation on degree
n homogeneous polynomials in two variables. In this case V (n− 2), V (n− 4), . . . , V (2− n)
are one dimensional, and all the other V (k) are zero. (This is the symmetric power of the
standard representation.) Twisting means multiplying by χ ◦ det where χ is a character of
R×.
• We could have

V =
⊕

k≡ε mod 2

V (k)

where the V (k) appearing are one dimensional and ε = 0 or 1. This is a principal series
representation π(χ1, χ2) where χ1 and χ2 are characters of R×. (Such a representation is
irreducible provided χ1χ

−1
2 is not of the form sign(y)ε|y|n−1 where n ≡ ε mod 2.)

• Otherwise V is a discrete series or limit discrete series. In this case, there is a positive
integer k such that V (l) 6= 0 precisely when l = ±(k + 2n) with n ∈ Z≥0.

Concretely, the discrete series can be realized as the K-finite vectors in the representation
of GL2(R)+ on the space of holomorphic functions f : H → C such that∫

H
|f(z)|2yk dxdy

y2
<∞.

The action is given by sending f to f |k(g−1).

Remark 3.4. This suggests the discrete series are connected with classical modular forms. We will
see they are the component at infinity for the automorphic representation associated to a modular
form.

3.3. Hecke Algebra. We will give a modern definition of the Hecke algebra in this context: this
is slightly different approach than in [JL70, Section 5]. A summary is found in [Bum97, Section
3.4] with references given to Knapp and Vogan [KV95]. One definition of the Hecke algebra HG is
as the algebra of compactly supported distributions on GL2(R) that are supported on K and are
K-finite under left and right translation. However, there is a description more closely connected to
(g,K)-modules.

Let HK denote the space of smooth functions on K which are K-finite under left and right
translation by K. These can also be viewed as distributions by integrating over K. The universal
enveloping algebra U(gl2(C)) may be identified with distributions supported at the identity by
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having U(gl2(C)) act on functions and then evaluate at the identity. For X ∈ gl2(C), this gives the
distribution

f 7→ d

dt
f(exp(tX))|t=0.

We record two important facts.

Proposition 3.5. The natural map HK ⊗U(Lie(K)) U(gl2(C))→ HG is an isomorphism.

Proposition 3.6. Let V be a (g,K)-module. Then V is a smooth module for HG, and every smooth
module arises in this way.

4. Background at the Non-Archimedean Places

In this section, we review classification of irreducible admissible representations of GL2(Qp), and
the theory of spherical representations.

4.1. Representations of GL2(Qp) and Hecke Algebras. Recall that a representation of GL2(Qp)
on V is admissible if it is smooth and if for every compact open subgroup K ′ ⊂ GL2(Qp) we have

dimV K′ <∞. There is a classification of irreducible admissible representations, found in [Bum97,
Chapter 4] or [JL70, Sections 2-4] or [BH06, Section 9].

• All finite dimensional irreducible admissible representations are one dimensional, and factor
through the determinant.
• There are principal series representations π(χ1, χ2) where χ1 and χ2 are characters of Q×p .

When χ1χ
−1
2 6= | · |±1p , it is irreducible.

• There are special representations, which are irreducible infinite dimensional subquotient of

π(χ1, χ2). These are all twists of the Steinberg representation, which occurs for χ1 = | · |1/2p

and χ2 = | · |−1/2p .
• There are super-cuspidal representations.

The Hecke algebra H(G) for G = GL2(Qp) is the convolution algebra of locally constant com-
pactly supported functions. There is a natural action of H(G) on representations of GL2(Qp) given
by

π(φ)v =

∫
G
φ(g)π(g)vdg.

Smooth representations of G are the same as H(G)-modules.
Recall that idempotent elements of H(G) are given by normalized characteristic functions of

compact open subgroups K. The characteristic function of K = GL2(Zp) is an idempotent for the
usual measure.

Definition 4.1. The spherical Hecke algebra H(G,K) is defined to be 1KH(G)1K , the space left
and right K-invariant elements of H(G). An smooth admissible representation (π, V ) is called
spherical (or unramified) if V K 6= 0. A non-zero element is called a spherical vector.

The spherical vectors are a H(G,K)-module. We sketch some of the key facts about spherical
vectors as these concepts were not included in [JL70],

Let Tp and Rp be the characteristic functions of K

(
p 0
0 1

)
K and K

(
p 0
0 p

)
K.

Theorem 4.2. The spherical Hecke algebra H(G,K) is commutative. In particular, it is a poly-
nomial algebra generated by Tp, Rp, and R−1p .

Proof. Using the transpose map, one defines an anti-involution of the spherical Hecke algebra. Then
one checks that a basis for H(G,K), given by characteristic functions for double cosets of K, are
invariant under transpose [Bum97, Theorem 4.6.1]. Using the p-adic Cartan decomposition, one
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can describe all double cosets for K. Decomposing them as a union of left cosets, one can build all
of them out of Tp, Rp, and R−1p . For details, see Propositions 4.6.4 and 4.6.5 in [Bum97]. �

Remark 4.3. The identification of H(G,K) with the polynomial algebra is known as the Satake
isomorphism.

The other key fact says that the spherical vectors determine the representation.

Theorem 4.4. For an irreducible unramified representations (π, V ), V K is one dimensional.
There is an equivalence of categories between irreducible unramified representations and irreducible
H(G,K)-modules sending V to V K .

Proof. It is easy to see that V K is an irreducible H(G,K)-module, and it is automatically finite
dimensional. As H(G,K) is commutative, it is one dimensional. [Bum97, Theorem 4.6.2]

A quasi-inverse is defined in [BH06, 4.3 Proposition]. It sends a H(G,K)-module M to an
irreducible submodule of U = H(G)⊗H(G,K)M . The key content is using Zorn’s lemma to construct

a maximal subspace X ⊂ U for which XK = 0. Anything outside X must generate U together
with X. Hence the quotient U/X is an irreducible submodule with (U/X)K = M . One checks this
is an equivalence of categories. �

Thus the way Tp and Rp act completely determines an unramified representation. It is convenient
to record their action using Satake parameters: if Tp and Rp act by λ and µ, the Satake parameters

are the roots of x2 − pk/2−1λx+ µpk−1.

4.2. Classification of Irreducible Spherical Representations. We now analyze which irre-
ducible representations are spherical.

If (π, V ) is one dimensional, then GL2(Qp) acts by χ ◦ det where χ is a quasi-character of Q×p .

This is spherical if χ is unramified: in other words, if χ is trivial on Z×p .
The principal series π(χ1, χ2) can be realized as the space of smooth functions f : G → C such

that

f(bg) = χ1 ⊗ χ2(b)δ(b)
1/2f(g)

where b =

(
a b
0 d

)
is in the standard Borel B. Here χ1 ⊗ χ2(b) = χ1(a)χ2(d) and δ(b) = |a/d| is

the modular character. The Iwasawa decomposition gives that G = BK, and so a candidate for a
spherical function is

fsph(bk) = χ1 ⊗ χ2(b)δ(b)
1/2.

This function is well defined provided it is trivial on K ∩B. All such matrices are upper triangular
and have units on the diagonal, so provided χ1 and χ2 are unramified (trivial on Z×p ), fsph is well
defined and gives a spherical vector.

To determine the H(G,K) action on π(χ1, χ2)
K , we just need to understand how Tp and Rp act.

The double coset for Tp decomposes as

K

(
p 0
0 1

)
K =

p−1⋃
b=0

(
p b
0 1

)
K ∪

(
1 0
0 p

)
K
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Then we expand

Tpfsph =

∫
K

p−1∑
b

fsph

((
p b
0 1

)
g

)
+ fsph

((
1 0
0 p

)
g

)
dg

= fsph

((
p b
0 1

))
+ fsph

((
1 0
0 p

))
= p · χ1(p)|p|1/2 + χ2(p)|p|−1/2

= p1/2(χ1(p) + χ2(p)).

The double coset for Rp is the single coset

(
p 0
0 p

)
K, so

Rpfsph =

∫
K
fsph

((
p 0
0 p

)
g

)
dg

= fsph

((
p 0
0 p

))
= χ1(p)χ2(p).

Proposition 4.5. The only spherical representations are χ◦det with χ unramified, and irreducible
π(χ1, χ2) with χ1 and χ2 unramified.

Proof. Let (V, π) be spherical. Let Tp act on V K by λ and Rp act by µ. Note that µ is invertible
as Rp is invertible in the Hecke algebra. The Satake parameters α1 and α2 are the roots of the

quadratic x2 − pk/2−1λx + µpk−1. Let χ1 and χ2 be the unramified quasi-characters such that
χ1(p) = α1

pk−1/2 and χ2(p) = α2

pk−1/2 . If π(χ1, χ2) is irreducible, its K-fixed vectors have the same

Satake parameters. This forces V ' π(χ1, χ2).
So the only remaining possible case is when π(χ1, χ2) is not irreducible. This happens only when

α1α
−1
2 = p±1. Without loss of generality, we may assume that α1α

−1
2 = p, so by our knowledge

of the principal series we know π(χ1, χ2) has a one dimensional invariant subspace. But then this
must be the K-fixed vectors, so the representation is one dimensional. �

Remark 4.6. The conductor measures how far a representation is from being spherical. Let K0(c)
denote matrices in GL2(Zp) with lower left entry a multiple of pc, and let (π, V ) be an infinite
dimensional representation of GL2(Qp) with central character ω. Then there exists a c ≥ 0 such
that

{v ∈ V : π(g)v = ω(g)v ∀g ∈ K0(c)}
is non-zero by a theorem of Casselman. The smallest such c for which this holds is called the
conductor of π. In that case, the space is one dimensional. A non-zero element is called a new
vector.

For the principal series and Steinberg representation, it is relatively simple to find a new vector
and compute the conductor by generalizing the construction of a spherical vector [Sch02]. In the
case of the irreducible principal series π(χ1, χ2), the conductor is the sum of the conductors of χ1

and χ2. For the Steinberg, the conductor is 1. For a supercuspidal representation, the conductor
is least two. Furthermore, the central character of a supercuspidal has conductor at most [ r2 ]
(see [AL78, Theorem 4.3’]).

5. The Automorphic Representation Associated to a Modular Form

Let f be a holomorphic modular form of level N and nebentypus character character χ. Suppose
further that it is a cusp form and an eigenfunction for the Hecke operators Tp for p - N . We have
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associated an adelic automorphic form ϕf ∈ A0(GL2(Q)\GL2(AQ), ω). In this section, we will
prove the following result:

Theorem 5.1. The automorphic form ϕf lies in an unique irreducible admissible automorphic
representation πf ⊂ A0(GL2(Q)\GL2(AQ), ω).

The representation πf can be expressed as a restricted tensor product ⊗′vπf,v. We would also like
to describe the components πf,v in terms of the properties of f . After reviewing some facts about
the Hecke algebra and connecting it to the classical Hecke operators, we state the strong multiplicity
one theorem and then turn to proving Theorem 5.1 and discussing the local components.

5.1. The Hecke Algebra and Hecke Operators. The global Hecke algebra HGL2(AQ) is defined
to be the restricted tensor product of the local Hecke algebras for the archimedean and non-
archimedean places of Q reviewed in the previous two sections. For this to be defined, we needed
to specify a spherical idempotent in all but finitely many of the local Hecke algebras. We use the
characteristic function of GL2(Zp) in HGL2(Qp).

The representation πf can be viewed as a HGL2(AQ)-module. There is a factorization πf = ⊗′vπf,v
where πf,v is a HGL2(Qv)-module. This also means that there is a spherical vector in almost all of
the πf,v (a vector invariant under the action of GL2(Zv)). Such vectors are unique up to scaling.

The first step is to connect the classical Hecke operators with the adelic ones. We stud-
ied the Hecke operator Tp ∈ HGL2(Qp) given by convolution with the characteristic function of

Hp = GL2(Zp)
(
p 0
0 1

)
GL2(Zp) in Section 4. In the following proposition,

(
a b
c d

)
p

will denote an

element of GL2(AQ) with specified matrix at p and the identity elsewhere.

Proposition 5.2. Let f be a modular form of level N , and suppose p is a prime such that p - N .
Then Tp(ϕf ) = ϕp1−k/2Tpf

.

Proof. It suffices to check equality for g = g∞ ∈ GL2(R)+ because ϕf is left GL2(Q)-invariant and
because of Remark 2.4.

Recall that the double coset decomposes as

Hp =

p−1⋃
b=0

(
p b
0 1

)
GL2(Zp) ∪

(
1 0
0 p

)
GL2(Zp)

We calculate that

Tp(ϕf )(g) =

p−1∑
b=0

∫
Zp

ϕf

(
g

(
p b
0 1

)
p

k

)
dk +

∫
Zp

ϕf

(
g

(
1 0
0 p

)
p

k

)
dk.

As p - N , the p component of K0(N) is GL2(Zp) and λ is trivial on it (Lemma 2.2). So by
Remark 2.4, ϕf is right invariant under GL2(Zp). Hence∫

Zp

ϕf

(
g

(
p b
0 1

)
p

k

)
dk = ϕf

(
g

(
p b
0 1

)
p

)
because the volume of Zp is one. There is a similar expression for the other coset. Therefore we
unwind to see that

Tp(ϕf )(g) =

p−1∑
b=0

ϕf

(
g

(
p b
0 1

)
p

)
+ ϕf

(
g

(
1 0
0 p

)
p

)
.

Now let z = g∞ · i, and note that

g∞

(
p b
0 1

)
p

=

(
p b
0 1

)
Q

((
p b
0 1

)−1
∞
g∞

)
α
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where αv =

(
p b
0 1

)−1
for v 6= p,∞ and is the identity otherwise. Observe that λ(α) = 1. Therefore

ϕf

(
g∞

(
p b
0 1

)
p

)
= F

((
p b
0 1

)−1
∞
g∞

)
= p−k/2 det(g∞)k/2j(g∞, i)

−kf

(
z − b
p

)
.

Doing the same for the remaining coset gives

ϕf

(
g∞

(
1 0
0 p

))
= pk/2 det(g∞)k/2j(g∞, i)

−kf (pz) .

Therefore we conclude that

pk/2−1Tp(ϕf )(g) =

(
p−1∑
b=0

1

p
det(g∞)k/2j(g∞, i)

−kf

(
z − b
p

))
+ pk−1 det(g∞)k/2j(g∞, i)

−kf(pz)

= det(g∞)k/2j(g∞, i)
−k(Tpf)(z)

= ϕTpf (g∞)

using the standard normalizations of the classical Hecke operators. �

Similarly, we interpret the operator Rp given by convolution with the characteristic function of(
p 0
0 p

)
GL2(Zp) to

Proposition 5.3. For p - N , we have Rpϕf = χ(d)ϕf .

Proof. We simplify

(Rpϕf )(g∞) =

∫
GL2(Zp)

ϕf

(
g∞

(
p 0
p 0

)
p

k

)
dk = ϕf

(
g∞

(
p 0
0 p

)
p

)
.

But we can rearrange

g∞

(
p 0
0 p

)
p

=

(
p 0
0 p

)
Q

((
p 0
0 p

)−1
∞
g∞

)
α

where αv =

(
p 0
0 p

)−1
for v 6= p,∞ and is the identity elsewhere. We see that

ϕf

(
g∞

(
p 0
0 p

)
p

)
= F

((
p 0
0 p

)−1
g∞

)
λ(α).

Now λ(α) = χ(p) by Lemma 2.2, and F is left invariant under Z(R)+. Thus

Rpϕf = χ(p)ϕf . �

5.2. Proof of Theorem 5.1. The proof will use the multiplicity one theorem, a proof of which
may be found in [JL70, Section 11] or [Bum97, Section 3.5].

Theorem 5.4 (Multiplicity One). Let (π, V ) and (π′, V ′) be two irreducible admissible subrepresen-
tations of A0(GL2(Q)\GL2(AQ), ω). Assume that πv ' π′v for all but finitely many places. Then
V = V ′.

Using this, we now prove Theorem 5.1. Let f be a cusp form and Hecke eigenform. By the general
theory, the space of automorphic forms decomposes as a direct sum. Let (π, V ) be one irreducible
factor such that the projection of ϕf is non-zero. We will show that all of the local components of
π at places not dividing N or infinity are determined by f . Let p - N be prime. We know that ϕf
is invariant under right translation by K0(N), so in particular the local component πp contains an
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element which is left and right GL2(Zp)-translation invariant. It is an eigenvector for Tp and Rp
with eigenvalues determined by f , and this action determines the action of H(GL2(Qp),GL2(Zp)).
In other words, the local component πp is an spherical representation of Hp that is completely
specified in terms of f . By the multiplicity one theorem, this forces ϕf to lie in a unique irreducible
(π, V ), proving the theorem.

Remark 5.5. It is also easy to analyze the component at infinity. The version of the multiplicity
one statement proven in Bump is slightly weaker in that it needs an isomorphism at the archimedean
places, so it is worth spelling this out.

From Section 3, we know quite a bit about the potential (g,K)-modules at infinity. In partic-
ular, the formula for the lowering operator in Remark 3.2 allows us to calculate that for F (g) =

e−ikθyk/2f(x+ iy) we have

L · ϕf = e2iθ
(
−iy ∂F

∂x
+ y

∂F

∂y
+

1

2i

∂F

∂θ

)
= e2πθ

(
−ie−ikθyk/2+1fx + e−ikθ

k

2
yk/2f + e−ikθyk/2+1fy +

1

2i
(−ik)e−ikθyk/2f

)
= 0

where the last step uses that f is holomorphic so fy = ifx. So any irreducible automorphic
representation to which ϕf projects non-trivially contains a vector on which L acts by zero. We

already know that ∆ acts by k
2

(
1− k

2

)
. Using the classification of irreducible (g,K)-modules, we

see the only one with this property is the discrete series of weight k. This should not be a surprise,
as one realization of this representation includes a holomorphic modular form.

It is harder to characterize the local component πf,p for p|N . A recent paper by Loeffler and
Weinstein gives an algorithm for computing the local components [LW12]. The hard case is when
the local component is supercuspidal. We sketch a description of the non-supercuspidal cases using
the concept of conductor from Remark 4.6.

We say that πf,p is p-primitive if the conductor is minimal among the conductors of the p-
components of twists of f by characters. An irreducible principal series π(χ1, χ2) is primitive if at
least one of the characters is unramified. The conductor is the sum of the conductors for χ1 and
χ2, so if both were unramified we could twist to reduce the conductor. A special representation
is a twist of a Steinberg, and the unramified twists the Steinberg representation have minimal
conductor (one).

So suppose πf,p is p-primitive, and let pr be the largest power of p which divides N . We know
that r is the conductor of πf,p. Recall ωp is the p-component of the central character, and was
defined so that it is trivial provided χ factors through Z/(N/pr)Z×.

We know that the central character of a supercuspidal representation has conductor at most [ r2 ].
Furthermore, we know supercuspidals must have conductor at least 2. So if ωp has conductor more
than [r/2], πp must be a principal series representation. The only p-primitive one is π(χ1, χ2) with
χ1 having conductor r and with χ2 unramified. If r = 1 and ωp is unramified, πp must be a twist
of a Steinberg by an unramified character. The remaining cases must then be supercuspidal.

The conclusion of this analysis is the following theorem.

Theorem 5.6. Let f(z) =
∑
n≥1

anq
n be a cuspidal eigenform of weight k, level N and nebentypus

character χ. Let πf be the associated irreducible automorphic representation, with πf = ⊗′vπf,v.
For a prime p|N , ωp is the p-component of the central character.

• For v =∞, the local component πf,∞ is a discrete series of weight k.
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• For p - N , the local component πf,p is an unramified principal series. On the spherical

vector, Tp and Rp act via multiplication by app
1−k/2 and χ(p). The Satake parameters are

therefore the roots of x2 − apx+ χ(p)pk−1.
• Suppose N = prN ′ where p - N ′ and that f is a new form at p and that f is p-primitive.

If the conductor of πf,p is pr, the local factor is the principal series π(χ1, χ2) where χ1 is

unramified and satisfies χ1(p) = ap/p
(k−1)/2 and χ1χ2 = ωp.

• With the same notation, if r = 1 and ωp is unramified, then the local factor πf,p is the twist

of the Steinberg representation by an unramified character χ1 such that χ1(p)p
(k−2)/2 = ap.

• Otherwise the local component at p is supercuspidal, and can be described by the algorithm
in [LW12].

An example of the automorphic representation associated to a weight 2 level 99 modular form
is included in the introduction.
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