
BRAUER GROUPS: TALK 1

JEREMY BOOHER

In this first talk, we will discuss the topological Brauer group and the Brauer group of Spec k,
which are classically studied in the guise of central simple algebras. Most of this material is
presented in Grothendieck’s Groupe de Brauer I, found in [2]. Details about central simple algebras
are drawn from Chapter IV of Milne’s notes on Class Field Theory [3]. This presentation is partly
inspired by notes from a talk by Pete Clark [1].

1. The Brauer Group of a Topological Space

We first study the Brauer group of a topological space, which can be interpreted in many ways: as
classifying projective bundles up to projectivizations of vector bundles, as a quotient of the union
of the cohomology groups H1(X,PGLn), as classifying Azumaya algebras up to endomorphism
algebras of vector bundles, or as the torsion in H3(X,Z). We will prove these equivalences, which
are a model for the subsequent discussion of the Brauer group in algebraic geometry.

1.1. Projective Bundles. Just as K-theory classifies vector bundles on a space, the Brauer group
will help classify projective bundles. This is not the first place Brauer groups appeared historically,
but will be a convenient place to begin. For now, let X simply be a topological space, and consider
CPn bundles, by which we mean a fiber bundle with fiber CPn and structure group Aut(CPn) =
PGLn+1(C). If a bundle is trivialized on a cover {Uα} of X, then to specify the bundle all we need
to do is specify transition functions on all the Uα ∩ Uβ between the two trivializations, subject to
the constraint that they are compatible with the triple overlaps. But this gives a 1-cocycle, with
values in the structure group PGLn+1(C). As usual, changing the 1-cocycle by a coboundary yields
an isomorphic bundle. Therefore H1(X,PGLn+1(C)) classifies CPn bundles on X.

Note that since PGLn+1(C) is a non-Abelian group, this is not ordinary sheaf cohomology. We
can still define H1 via cocycles, but cannot define the usual Hn because the non-commutativity
interferes with the required calculations with cocycles, and prevents appealing to more abstract
machinery. This is similar to the situation in group cohomology, where H1(G,M) is defined for
non-Abelian G-modules via cocycles, but the higher ones are not.

There is one obvious class of projective bundles on X, those which we obtain by projectivizing
a complex vector bundle. Since H1(X,GLn+1(C)) classifies rank n + 1 vector bundles, again
via transition functions, the natural map on cocycles H1(X,GLn+1(C)) → H1(X,PGLn+1(C))
corresponds to projectivization. We are most interested then in H1(X,PGLn+1(C)) modulo the
image, although we do not yet have a group structure. We expect there to be one by analogy with
the Picard group and K-theory. This is easiest to do by reinterpreting the Brauer group.

1.2. Azumaya Algebras. By the Noether-Skolem theorem (Theorem 15 here), PGLn(C) is the
group of automorphisms of Matn(C) since all automorphisms are inner. So H1(X,PGLn(C)) can
also be interpreted as giving the transition functions for a sheaf of OX algebras that is locally
isomorphic to Matn(C). This leads to the study of Azumaya algebras.

Definition 1. An Azumaya algebra is an OX algebra that is locally isomorphic to the sheaf
Matn(C) on X for some n.
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Remark 2. It is equivalent to require that an Azumaya algebra be a finite, locally free OX module
A such that A⊗OX,x ' Matn(C) for every point x ∈ X.

By using cocycles, one can pass between Azumaya algebras and projective bundles.
As with the projective bundles, there is a class of Azumaya algebras which are boring: those

which arise as the endomorphisms of a vector bundle. These again are precisely the cocycles in
the image of H1(X,GLn(C)) in H1(X,PGLn(C)). The Brauer group can then be interpreted as
Azumaya algebras up to endomorphisms of a vector bundle. So two Azumaya algebrasA1 andA2 are
equivalent provided there are vector bundles E1 and E2 on X so that A1⊗End(E1) ' A2⊗End(E2).

Using Azumaya algebras, it is straightforward to define a group structure on Br(X). Given
Azumaya algebras A1 and A2 on X, their product is the tensor product A1⊗A2 which is obviously
a Azumaya algebra (of different rank). The inverse of A1 is the opposite Azumaya algebra Aopp

1 ,
since we may check locally and we know that if A is a matrix algebra then there is an isomorphism
A⊗Aopp ' End(A). Since End(A1 ⊗A2) ' End(A1)⊗End(A2), the product respects equivalence
of Azumaya algebras.

Definition 3. The Brauer group of X, denoted by Br(X), is the group of Azumaya algebra up to
equivalence.

Using the discussion in terms of cocycles, the Brauer group can be interpreted as the union of
the H1(X,PGLn+1(C)) as n varies modulo the images of H1(X,GLn+1(C)).

1.3. Computations of the Brauer Group of a Topological Space. There are several useful
representations of the Brauer group of X besides projective bundles and Azumaya algebras.

Proposition 4. Let X be a topological space. Br(X) is an Abelian torsion subgroup of H2(X,O×X).

Theorem 5. Let X be a finite CW complex. Then Br(X) ' H2(X,O×X)[tors] ' H3(X,Z)[tors].

The first statement is elementary, but the second requires some significant topology and is due
to Serre. To be clear, as X is simply a topological space OX is the sheaf of continuous complex
valued functions on X.

Proof. From the short exact sequence of sheaves

1→ O×X → GLn(C)X → PGLn(C)X → 1

we obtain an exact sequence of non-Abelian cohomology

H1(X,GLn(C))→ H1(X,PGLn(C))
δ→ H2(X,O×X)

The connecting homomorphism δ gives a map from Azumaya algebras that are locally Matn(C)
to H2(X,O×X). It is injective since the kernel is H1(X,GLn(C)), which correspond to the trivial
Azumaya algebras which are endomorphisms of vector bundles. The fact that δ(A1) · δ(A2) =
δ(A1 ⊗ A2) can be verified by a computation with cocycles. By piecing together the maps for all
n, this shows that Br(X) injects into H2(X,O×X) and that the resulting map is a homomorphism.

It remains to show that Br(X) is torsion. Any element comes from some H1(X,PGLn(C)) for
some n. Consider the pair of short exact sequences

1 // O×X // GLn(C)X // PGLn(C)X // 1

1 //

OO

µn //

OO

SLn(C)X //

OO

PGLn(C)X //

OO

1

OO
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and the corresponding exact sequences of cohomology

H1(X,GLn(C)) // H1(X,PGLn(C)) // H2(X,O×X)

H1(X,SLn(C)) //

OO

H1(X,PGLn(C)) //

OO

H2(X,µn)

OO

Since H2(X,µn) is n-torsion and the middle map is an isomorphism, the image of H1(X,PGLn(C))
in H2(X,O×X) is n-torsion. �

To prove the theorem, we first need a consequence of the exponential exact sequence that has
nothing to do with Brauer groups.

Lemma 6. Let X be a paracompact topological space. Then H2(X,O×X) ' H3(X,Z).

Proof. We consider the exponential exact sequence

0→ Z→ OX → O×X → 1.

Since OX is acyclic, part of the long exact sequence of cohomology reads

0→ H2(X,O×X)→ H3(X,Z)→ 0. �

Therefore we can just work with H3(X,Z), and attempt to show its torsion is the Brauer group.
We rely on the following fact, which we will sketch a proof of at the end: the classifying space
BPGL∞(C) is homotopy equivalent to K(Q/Z, 2)×K(Q, 4)×K(Q, 6)× . . ..

Assuming this, given a torsion element x ∈ H3(X,Z), the long exact sequence of cohomology
coming from 0→ Z→ Q→ Q/Z→ 0 over X reads

H2(X,Q)→ H2(X,Q/Z)
d→ H3(X,Z)→ H3(X,Q).

Since H3(X,Q) is torsion free, the image of x is zero, so x is dy for some y ∈ H2(X,Q/Z). But
an element of this cohomology class is equivalent to a map from X to K(Q/Z, 2) up to homotopy.
Since K(Q/Z, 2) is a factor of a product homotopy equivalent to BPGL∞(C), this gives a map from
X to BPGL∞(C), which corresponds to a PGLn(C) bundle on X for some n. This gives a way to
construct a bundle given a torsion element of H3(X,Z), which one checks gives an inverse to the
inclusion Br(X) ↪→ H3(X,Z)[tors].

Finally, it remains to sketch why the classifying space BPGL∞(C) is homotopy equivalent to
K(Q/Z, 2)×K(Q, 4)×K(Q, 6)× . . . First, what is PGL∞(C)? There are natural maps PGLn(C)→
PGLnk(C) for k ≥ 1 which send A to the block diagonal matrix with A in each of the k blocks
on the diagonal. (This corresponds to taking the tensor product with the k by k identity matrix.)
PGL∞(C) is the limit of this system. We first work with GL∞(C), constructed in an analogous
way.1 Now PGLn(C) = GLn(C)/C×, so we embed GLn(C)→ GLnk(C) and consider

1 // C× //

��

GLn(C) //

��

PGLn(C) //

��

1

1 // C× // GLnk(C) // PGLn(C) // 1

The maps between the diagonally embedded C× are the identity, and in the limit we have

1→ C× → GL∞(C)→ PGL∞(C)→ 1.

First, note the maps between the homotopy groups of C× are the identity, so in the limit the
only non-trivial homotopy group of the first term is π1(C×) = Z.

1This is not the same as including GLn(C) inside GLn+1(C) as is often done.



4 JEREMY BOOHER

Since GLn(C) is homotopy equivalent to U(n), we understand the homotopy groups in the limit
by Bott periodicity: the homotopy groups of U(∞) are 0, Z, 0, Z, . . .. For fixed k and large n,
this means that πl(U(n)) is 0 or Z depending on the parity of l. What are the maps of homotopy
groups induced by U(n) → U(nk)? Sending A to a block diagonal matrix with k copies of A on
the diagonal can be seen to be homotopy equivalent to sending A to the block diagonal matrix
with Ak in one entry and the the identity in the remaining diagonal entries. Therefore the map
is multiplication by k, so taking the limit of this system gives Q. Since GL∞(C) has the same
homotopy groups of Ω BGL∞(C), we find that πk(BGL∞(C)) = Q for k = 2m, m ≥ 1, and 0
otherwise.

Finally, we use the exact sequence 1 → C× → GLn(C) → PGLn(C) → 1 in the limit to relate
BPGL∞(C) to BGL∞(C). This tells us BGLn(C) is a fiber bundle over BPGLn(C) with fiber
BC×. BC× has Z as its second homotopy group, and no other non-trivial ones. Therefore the
long exact sequence of homotopy groups in degree three or higher shows that πk(BGL∞(C)) =
πk(BPGL∞(C)). In low degree it reads

. . .→ 0→ 0→ π3(BPGL∞(C))→ Z→ Q→ π2(BPGL∞(C))→ 0.

As the map Z = π2(BC×) → π2(BGL∞(C)) = Q is certainly non-zero, BPGL∞(C) has homo-
topy groups 0, 0, Q/Z, 0, Q, 0, Q, 0 . . . Finally, an additional argument is needed to show that
BPGL∞(C) is homotopy equivalent to a product K(Q/Z, 2)×K(Q, 4)×K(Q, 6) . . .

2. The Brauer Group and Central Simple Algebras

We now turn to the Brauer group of a field, which historically was studied first. However, we
still motivate the discussion by thinking about projective bundles on Spec k.

2.1. The Brauer Group in Algebraic Geometry. In the last section, we used the Brauer group
of a topological space X to classify projective bundles. What happens if we try to use a scheme X
with the Zariski topology? The difficulty is that defining a projective bundle to be locally trivial
with fiber Pn in the Zariski topology is a bad condition. While for modules being fiberwise free is
equivalent to being locally free, this no longer holds for projective bundles. This is clearest in the
algebraic description: there is no reason to expect a R−algebra A such that Ap ' Matn for every
prime p of R to be a matrix algebra over R. The right notion is to require a projective bundle to
be étale locally trivial.

Definition 7. A projective bundle P on a scheme X is a morphism P → X such that for all x ∈ X
there is an étale neighborhood U of x so that the base change of P to U is the projective bundle
PnU → U .

When X = SpecK, such a bundle is called a Severi-Brauer variety. This criteria can be refor-
mulated in terms of algebras.

Definition 8. An Azumaya algebra A on X is an OX -algebra which as a module is locally free of
finite rank and such that in an étale neighborhood U of any point x ∈ X, the base change to U is
isomorphic to a matrix algebra over U .

We can then define the Brauer group like before, using endomorphism algebras of vector bundles
to define an equivalence relation and tensor products to define an operation. As before, the inverse
to the monoid operation is given by the opposite algebra.

What happens when we apply this to X = SpecK? Although it seems that projective bundles
over a one point space must be trivial, since we are using the étale topology there is actually
something interesting going on. An Azumaya algebra over SpecK is a finite dimensional K-algebra
A such that there is a finite separable extension K ′/K so that the base change AK′ ' Matn(K ′)
for some n. These objects were studied in the guise of central simple algebras.
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Definition 9. A central simple algebra over a field K is a finite dimensional associative K-algebra
that is simple and whose center is exactly K.

Example 10. Let K be a field and Kal an algebraic closure. Then Matn(K) is a central simple
algebra over K. In some cases (like a finite field) these are the only examples. A non-trivial example
is the quaternions H over R. The complex number C over R are not an example, as the center is
larger than R.

2.2. Basic Theory of Central Simple Algebras. The connection between central simple alge-
bras and Azumaya algebras is given in the following proposition.

Proposition 11. Let K be a field. The following are equivalent.

(1) A is a central simple algebra over K.
(2) There exists an n such that AKal ' Matn(Kal).
(3) There exists an n and a finite separable extension L/K such that AL ' Matn(L).
(4) A is of the form Matr(D) where D is a division algebra over K, and K is the center of A.

This shows that we can interpret Brauer group in terms of central simple algebras: two algebras
A1 and A2 are said to similar (equivalent in the Brauer group) if A1⊗KMatn1(K) ' A2⊗KMatm(K)
for some n,m: the group operation is tensor product.

Proof. A complete proof of this statement is non-trivial, and is scattered throughout [3, Chapter
IV]. Here is a sketch.

Wedderburn’s theorem states that every simple algebra is a matrix algebra over a division algebra
over K, so (1) and (4) are equivalent. The idea behind Wedderburn’s theorem is to pick a simple A
module S, and consider the centralizer D of A in Endk(S). Schur’s lemma implies this is a division
algebra, and the double centralizer theorem says A equal EndD(S). But then S is a free module
over D, so EndD(S) is Matr(D

opp).
Now define Br(L/K) to be the the kernel of the map Br(K)→ Br(L) given by tensoring with L,

so it consists of central simple algebras over K which become matrix algebras after a base change
to L. In this case, we say that L splits the algebra. For the implication (1) implies (2), we take
L = Kal. We know by (4) that A ⊗K L is Matn(D) for a division ring D over L. But since L is
algebraically closed, and any element α ∈ D generates a finite commutative algebra L(α) over L,
we have D = L. This shows that (2) holds for any central simple algebra. In fact, a finite extension
suffices because the basis elements Matn(Kal) generate a finite extension of K. A further analysis
shows a separable extension suffices, so (3) follows.

The implication that (3) implies (1) follows by descent: AL = Matn(L) is a central simple algebra
over L, if A were not simple then AL would be a direct sum as well, and if the center of A was
larger than K then the center of AL would be the base change and hence larger than L as well. �

Remark 12. Because every central simple algebra is of the form Matn(D) for some division algebra
D over K, and Matn(D) ' Matn(K) ⊗k D, the Brauer group also classifies division algebras over
K.

There is also a nice relationship between the maximal subfield of A and the fields that split A.

Proposition 13. Let A be a central simple algebra over K. Then [A : K] = r2. For a subalgebra
L of A, the following are equivalent.

(1) L is equal to its centralizer in A.
(2) L is degree r over K.
(3) L is a maximal commutative K-subalgebra of A.
(4) L splits A: there is an isomorphism AL ' Matr(L).

In this case L may be taken to be étale (finite separable) over K.
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We omit the proofs, which again are from [3, Chapter IV]. Finally, we want a criteria for when
an extension splits an algebra that does not depend on the field being a subalgebra.

Proposition 14. Let A be a central simple algebra over K. A field L of finite degree over K splits
A if and only there is a central simple algebra B similar to A that contains L and is split by L.

Finally, we mention the Noether-Skolem theorem, which is an important technical result about
maps of central simple algebras.

Theorem 15. Let A be a simple algebra and B a central simple algebra. For any homomorphisms
f, g : A→ B, there exists an invertible b ∈ B such that for all a ∈ A

f(a) = bg(a)b−1.

Corollary 16. The automorphism group of Matn(K) is PGLn(K).

Proof. The Noether-Skolem theorem is true if B is a the matrix algebra Matn(K), since we can
interpret the homomorphisms as giving two actions of A on Kn. But the structure theory for simple
k-algebras imply A-modules with the same dimension are isomorphic. The isomorphism gives the
desired element of B.

In general, we use the matrix algebra B ⊗K Bopp ' EndK(B). The above argument applies to
the algebras A⊗KBopp and B⊗KBopp and homomorphisms f ⊗1 and g⊗1, so there is an element
b ∈ B ⊗K Bopp so that

(f ⊗ 1)(a⊗ b′) = b(g ⊗ 1)(a⊗ b′)b−1

for a ∈ A and b ∈ Bopp. Taking a = 1, we see that b lies in the centralizer of K ⊗K Bopp in
B ⊗K Bopp, which is just B ⊗K K as B is central. Thus b = b0 ⊗ 1. If we take b′ = 1, we see that

f(a)⊗ 1 = b0g(a)b−10 ⊗ 1.

This completes the proof. �

2.3. The Brauer Group and Cohomology. Just as for a topological space, the Brauer group
of a field has an interpretation in terms of cohomology, in this case group cohomology. As usual,
the Galois cohomology group H2(Gal(L/K), L×) will be denoted by H2(L/K).

Theorem 17. Let K be a field, and L a finite Galois extension of K. The relative Brauer group
Br(L/K) is isomorphic to H2(L/K).

Taking the limit over extensions of K and checking compatibility gives the following.

Corollary 18. Let K be a field, and Ksep separable closure. Then the Brauer group Br(K) is
isomorphic to H2(Ksep/K).

We will sketch the direct construction of the isomorphism between Br(L/K) and H2(L/K). It
is also possible to construct an isomorphism using descent [4, Chapter X].

Let A be a central simple algebra over K, and L an étale subalgebra so that [A : K] = [L : K]2.
(This means L splits A and L is its own centralizer in A by Proposition 13.) Applying the Noether-
Skolem theorem to σ ∈ Gal(L/K) and the identity automorphism, we see there are elements
eσ ∈ A× such that

σa = eσae
−1
σ .

If fσ is another such set of elements, eσf
−1
σ centralizes L and hence lies in L. Therefore the eσ are

unique up to scaling by L×. Now let ϕ(σ, τ) ∈ L× be the element such that

eσeτ = ϕ(σ, τ)eστ .

Then expanding eρeσeτ in terms of ϕ in two different ways using the associative law shows that

ϕ(ρ, σ)ϕ(ρσ, τ) = ϕ(σ, τ)ρϕ(ρ, στ)
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so ϕ is a 2-cocycle. A calculation shows a different choice of eσ leads to a cohomologous 2-cocycle,
so we have a map from such algebras to H2(L/K).

To go the other direction, start with a 2-cocycle. Define an algebra structure on the L vector
space spanned by eσ for σ ∈ Gal(L/K) by requiring

σ(a)eσ = eσa and eσeτ = ϕ(σ, τ)eστ .

It turns out that this is a central simple algebra over K, which obviously contains L and has degree
[L : K]2. A further calculation shows that changing ϕ by a coboundary produces an isomorphic
algebra.

These two processes give an identification between central simple algebras A over K containing
a field L such that [A : K] = [L : K]2 with the cohomology group H2(L/K). The final step is to
identify the Brauer group with this collection of central simple algebras. Given two such central
simple algebras, if they are similar then they are matrix algebras over the same division algebra. But
degree considerations force them to be isomorphic. Conversely, Proposition 14 shows ever central
simple algebra split by L is similar to a split one that contains L, and hence by Proposition 13 is of
the required form. Finally, some additional algebra checks this bijection is a group homomorphism.

Example 19. With this interpretation, it is possible to give easy proofs of classical theorems of
Frobenius and Wedderburn. The first states that the only division algebras over R are R, C, and
H. The second says every finite division algebra is a field.

Any division algebra over R is a central simple algebra over its center, which must be either R or
C. We know that Br(C) = 0 as C is algebraically closed. Using the cohomological interpretation,
Br(R) is H2(Gal(C/R),C×). Since Gal(C/R) is cyclic of order 2, we have an explicit description
of H2(C/R) as the fixed points of complex conjugation modulo norms, which is R×/R>0 ' Z/2Z.
The trivial element if R, the non-trivial element is the quaternions.

To show every finite division algebra is a field, we must show that the Brauer group of a finite field
k is trivial. It is a standard calculation in Galois cohomology using Hilbert 90 and the Herbrand
quotient that H2(kal/k) is zero [3, Lemma III 1.4].
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