
BRAUER GROUPS: TALK 2

JEREMY BOOHER

In this talk we will prove two theorems about the Brauer groups of schemes beyond Spec k. This
is only a taste of the many results found in Grothendieck’s Groupe de Brauer [2]. The proofs use
one of the fundamental techniques in studying the Brauer group: relating it to étale cohomology.
These results can be combined to give a circuitous proof of a fundamental result in local class field
theory.

Recall that a ring R is Henselian if it is local and Hensel’s lemma holds. This is equivalent to
any finite ring over R being a product of local rings. Local fields are familiar examples. Our first
result is due to Grothendieck.

Theorem 1. Let R be a Henselian ring with residue field k. Then the natural map Br(Spec R)→
Br(Spec k) is an isomorphism.

The second result is due to Auslander and Brumer, and relates the Brauer group of a DVR with
the Brauer group of its field of fractions.

Theorem 2 (Auslander-Brumer). Let R be a discrete valuation ring with quotient field K and
residue field k with absolute Galois group Gk. Then

0→ Br(Spec R)→ Br(Spec K)→ Hom(Gk, Q/Z)→ 0

is an exact sequence.

Note that Hom(Gk, Q/Z) is the dual of Gal(ksep/k). It is often denoted X(Gk). Putting these
together lets us calculate the Brauer group of a local field.

Corollary 3. Let K be a local field, a field complete with respect to a discrete valuation with finite
residue field k. Then H2(GalK , (Ksep)×) = Br(K) = Q/Z.

Proof. Let R be the ring of integers in K. The Auslander-Brumer theorem applies to R, giving a
short exact sequence

0→ Br(Spec R)→ Br(Spec K)→ Hom(Gk, Q/Z)→ 0.

We know that Br(Spec k) = 0 as the residue field is finite: we showed last time that every finite divi-
sion algebra is a field. Theorem 1 then shows that Br(Spec R) = 0, so Br(Spec K) = Hom(Gk, Q/Z).
But the absolute Galois group of a finite field is Ẑ, so Br(Spec K) = Q/Z. �

1. The Brauer Group and Étale Cohomology

Just as the topological Brauer group is related to H2(X,O×X), the Brauer group of a scheme is
related to the étale cohomology group H2(Xet, Gm). However, the relationship is not as tight as in
the topological setting. The main result is the following theorem.

Theorem 4. Let X be a quasi-compact scheme with the property that every finite subset is contained
in an open affine set. Then there is a natural injective homomorphism Br(X) ↪→ H2(Xet, Gm).

Quasiprojective schemes over affine schemes have this property. The group H2(Xet, Gm) is called
the cohomological Brauer group, and denoted Br′(X).

Date: February 04, 2013.

1



2 JEREMY BOOHER

Proof. This is Theorem IV.2.5 in Milne’s Étale Cohomology [4]. The proof is very similar in spirit
(if not in technical details) to the topological result in the last talk, so it will only be sketched.

The first step is to show that the sequence

0→ Gm → GLn → PGLn → 0

is an exact sequence in the étale topology. This relies on a version of the Noether-Skolem theorem.
Then one considers the connecting homomorphism in the long exact sequence of étale cohomology

δ : H1(Xet,PGLn)→ H2(Xet, Gm)

As in the topological case, the cohomology of GLn and PGLn is non-Abelian étale cohomology,
defined using cocycles. The technical conditions on X are to ensure that the derived functor
cohomology matches the étale Čech cohomology, so we may describe the map to H2(Xet, Gm)
by a map of cocycles. The hypotheses on X may be relaxed by using a more general theory of
non-Abelian cohomology as discussed in Milne.

Next, one identifies rank n2 Azumaya algebras with H1(Xet,PGLn). Since the automorphism
sheaf of Matn is PGLn by the generalization of Noether-Skolem and Azumaya algebras are étale
locally Matn, one can obtain a cocycle from an Azumaya algebra (details are found in the section
of twisted forms in III.4). Furthermore, Azumaya algebras which are endomorphism algebras of
locally free modules of rank n are the image of the map H1(Xet,GLn) → H2(Xet, Gm) just as in
the topological case.

Therefore on can map Azumaya algebras to H2(Xet, Gm) by combining these maps for all n.
A calculation with cocycles, similar to the one in the topological case, shows that this map turns
the tensor product of Azumaya algebras into the product in H2(Xet, Gm). The trivial Azumaya
algebras are the image of the H1(Xet,GLn), so this factors to give an injective map from the Brauer
group Br(X) to H2(Xet, Gm). �

The same argument as in the topological case shows the Brauer group is torsion (at least provided
X has finitely many connected components). There exist singular schemes where H2(Xet, Gm) is
not torsion, so the Brauer group is not identified with the cohomological Brauer group in all cases.
According to Milne, there are no known examples where Br(X) is not Br′(X)[tors]. In many familiar
cases, they are provably the same, such as for smooth schemes and for local rings of dimension at
most one [4, IV.2.15,17]. We will prove the case of Henselian local rings in the next section.

Example 5. We already have one case where we know the cohomological Brauer group equals the
Brauer group: that of Spec k. By analyzing central simple algebras over a field, we determined that
Br(k) = H2(Gk, (ksep)×). On the other hand, Br(Spec k) injects into H2((Spec k)et, Gm) which
equals H2(Gk, (ksep)×) by Grothendieck’s Galois theory.

2. The Brauer Group of Henselian Rings

We aim to understand the Brauer group of Henselian local rings. The main result will be
following: our proof is adapted from Milne [4, IV.2].

Theorem 6. Let R be a Henselian ring. Then Br(Spec R) = Br′(Spec R).

The key is understanding when an element lies in the image.

Proposition 7. Let A be a local ring, X = Spec A and γ an element of the cohomological Brauer
group Br′(X). Then γ lies in the image of Br(X) → Br′(X) if and only if there is a finite étale
surjective map Y → X such that γ maps to 0 in Br′(Y ).

Proof. We may pass to a further étale extension, so Y = Spec B may be assumed to be a Galois cover
of X.1 Recall the Hochsilde-Serre spectral sequence for this cover says there is a spectral sequence

1This means the automorphisms of Y over X act simply transitively on fibers.
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with Ep,q
2 = Hq(G, Hp(Yet, Gm)) that converges to Hn(Xet, Gm). This spectral sequence follows

from Grothendieck’s composition of functors spectral sequence plus realizing that Hp(G, Γ(Y, I)) =
0 for any injective sheaf because this can be interpreted as Čech cohomology of I for the cover
Y over X. Now as B is a Galois cover of local ring A, it is semilocal and hence we know that
H1(Yet, Gm) = 0 by interpretting it as the Picard group. Therefore E1,q

2 = 0 for all q, and the E2

page looks like

H2(G, H0(Yet, Gm)) 0 . . .

H1(G, H0(Yet, Gm)) 0 H1(G, H2(Yet, Gm))

H0(G, H0(Yet, Gm)) 0 H0(G, H2(Yet, Gm))

We have that E1,1
∞ = 0, E0,2

2 = E0,2
∞ and E2,0

3 = E2,0
2 because of the vanishing column. But then

E2,0
∞ = ker(E2,0

2 → E0,3
3 ), so E2,0

∞ is a submodule of E2,0
2 . The convergence of the spectral sequence,

plus the vanishing of E1,1
∞ , gives the short exact sequence

0→ H2(G, H0(Yet, Gm))→ H2(Xet, Gm)→ E2,0
∞ → 0.

The hypothesis that an element γ is in ker(H2(Xet, Gm) → H2(Yet, Gm) means that it maps
to 0 in H0(G, H2(Yet, Gm)), so such elements are automatically coming from an element γ′ ∈
H2(G, H0(Yet, Gm)). Conversely, every such element maps to 0 in E2,0

∞ ⊂ H0(G, H2(Yet, Gm)). But
an element H2(G, H0(Yet, Gm)) can be represented by a two cocycle with coefficients in B×. Just
as in the case of central simple algebras, we can use this cocycle to write down the multiplication
law on an Azumaya algebra over X that splits over Y , and conversely. �

We also need a lemma about étale covers of Henselian local rings.

Lemma 8. Let R be a Henselian local ring with residue field k. There is an equivalence between
étale covers of R and étale covers of k given by restricting to the special fiber.

Proof. Let K be the field of fractions of R. Given an étale extension l of k, a finite separable
extension, pick a primitive element α. Lift the minimal polynomial of α to a polynomial f(x) ∈ R[x],
and adjoin a root to obtain a finite extension L of K. Let S be the integral closure of R in L.
Because R is Henselian and S is finite over R, S is a product of local rings. It is also an integral
domain, so S is local with residue field l. Finally S is an étale extension of R because L/K is
separable as f(x) has distinct roots in the residue field. �

Corollary 9. With the same notation, H2((Spec R)et, Gm) = H2((Spec k)et, Gm).

We can now prove Theorem 6. Let R be a Henselian ring, k its residue field, and K its field
of fractions. Let γ be an element of Br′(Spec R), m the closed point of Spec R, with residue field
k. As H2((Spec R)et, Gm) = H2((Spec(k))et, Gm) = Br(k), there is a corresponding central simple
algebra over k. By the theory of central simple algebras, this is split over some finite separable
extension l/k. This corresponds to an étale cover Spec S → Spec R. Then the commuting diagram

H2((Spec S)et, Gm) ∼ // Br(l)

H2((Spec R)et, Gm)

OO

∼ // Br(k)

OO

shows that γ maps to 0 in H2((Spec S)et, Gm) = Br′(Spec S). Then apply the proposition. �
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Theorem 1 is immediate: both R and its quotient are Henselian, and

Br′(Spec R) = H2((Spec R)et, Gm) = H2((Spec k)et, Gm) = Br′(Spec k).

3. The Auslander-Brumer Theorem

The first proof that the Brauer group of a discrete valuation ring equals the Brauer group of its
residues is due to Auslander and Brumer [1]. It is of a commutative algebra flavor, and uses Galois
cohomology instead of the Azumaya algebras used by Grothendieck. We first need a compatibility
theorem between the Brauer group of a discrete valuation ring and the cohomological definition that
Auslander and Brumer study. Throughtout, R is a discrete valuation ring, K is its field of fractions,
L is the maximal unramified extension of K, S the integral closure of R in L, and G = Gal(L/K).

Proposition 10. With the previous notation, Br(Spec R) = H2(G, S×).

Proof. This uses an explicit understanding of Galois cohomology over a DVR and its relation to
étale cohomology. This is presented in detail in Stein’s notes on Galois cohomology [5], which
follow Mazur’s discussion of Galois cohomology of number fields. In particular, one shows that
H2((Spec R)et, Gm) = H2(G, S×) by combining Theorem 27.6 with the interpretation of the étale
sheaf Gm as a Galois module over the DVR in example 23.5. Thus Br′(Spec R) = H2(G, S×).
The cohomological Brauer group equals the Brauer group in this situation: we proved this only for
Henselian rings, but it holds more generally for local rings of dimension 1 [4, IV.2.17]. �

Furthermore, we need a finer result on the splitting of central simple algebras.

Proposition 11. Every central simple algebra over a non-archimedean local field K is split by an
unramified extension.

Proof. This is a relatively standard step in the approach to local class field theory via Brauer groups
- additional details are found in Milne [3, IV.4]. The idea is to mimic basic algebraic number theory
in the ring of integers of a division algebra. Let D be a division algebra over K. Let OK be the ring
of integers and k the residue field of K. From the theory of central simple algebras, we know that
[D : K] = n2. One checks that there is an extension of the valuation to D, defined by considering
the field extension of K generated by an element of D, and then defines the ring of integers OD and
its maximal ideal mD as usual. Furthermore, we know that l = OD/mD is a finite division algebra
and hence a field. Picking a primitive element and lifting to α ∈ D, L = K(α) is a subfield of D.
Thus f = [l : k] = [L : K] ≤ n, since the maximal subfield in D is of dimension n. Since K(α)
is unramified over K, we just need to show that K(α) splits D. By the theory of central simple
algebras, this happens if L is maximal, ie if f = n.

We can also look at the ramification of this division algebra: the usual proofs go through and
show that me

D = mKOD for some integer e. The ramification degree e satisfies e ≤ n by considering
how the valuation extends. By filtering OD ⊃ mD ⊃ m2

D ⊃ . . . ⊃ mKOD, we see that each quotient
has dimension f over k, while the chain is of length e. Thus OD/mKOD has dimension ef . Since
D is of dimension n2 over K, we see that ef = n2. Thus e = f = n. �

Now we construct a short exact sequence of Galois cohomology.

Proposition 12. There is a split short exact sequence

0→ H2(G,O×L )→ H2(G, L×)→ H2(G, Z)→ 0.

Proof. For any finite unramified extension M of K, we have a short exact sequence of GM =
Gal(M/K) modules

0→ O×M →M× → Z → 0.
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It is split by choosing a uniformizer π ∈M×. Taking the long exact sequence in group cohomology,
we see that

0→ H2(GM ,O×M )→ H2(GM ,M×)→ H2(GM , Z)→ 0
is exact: the other degrees do not contribute as the short exact sequence was split. Now take the
limit over all unramified extensions. �

We can now prove the Auslander-Brumer theorem by identifying the cohomology groups in
this sequence. Since H2(G, Z) ' H1(G, Q/Z) (consider the connecting homomorphism in 0 →
Z → Q → Q/Z → 0), the rightmost term is naturally Hom(G, Q/Z). Since the extension is the
maximal unramified one, G is the Galois group of the residue extension, Gk. Thus H2(G, Z) '
Hom(Gk, Q/Z) = X(Gk). Proposition 10 shows H2(G,O×L ) = Br(R). Finally, recall we showed that
H2(GK , (Ksep)×) is the Brauer group of a field by taking the limit over finite separable extensions
of central simple algebras split by the extension, which were described cohomologically. Since every
central simple algebra split over some separable extension, the limit was the Brauer group. Since
we know that in this case every central simple algebra splits over an unramified extension, we may
use the maximal unramified extension instead and still obtain the Brauer group. This completes
the proof. �
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grothendieck, s.l. kleiman ... [et al.]., Advanced studies in pure mathematics, Masson, 1968.

3. J. S. Milne, Class field theory, http://www.jmilne.org/math/CourseNotes/CFT.pdf.

4. J.S. Milne, Étale cohomology, Princeton Mathematical Series, Princeton University Press, 1980.
5. William Stein, A short course on galois cohomology, 2010.


