
MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM

JEREMY BOOHER

Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th
century conjectured he had found all of them. It turns out he was correct, but it took until
the mid 20th century to prove this.

Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number
one. Then K is one of

Q(i),Q(
√
−2),Q(

√
−3),Q(

√
−7),Q(

√
−11),Q(

√
−19),Q(

√
−43),Q(

√
−67),Q(

√
−163).

There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular
functions and complex multiplication. It was dismissed since there were gaps in Heegner’s
paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct
proof [16], and then noticed that Heegner’s proof was essentially correct and in fact equiv-
alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in
logarithms [1].

Later, Serre [14] gave a new approach based on modular curve, reducing the class number
one problem to finding special points on the modular curve X+

ns(n). For certain values of n,
it is feasible to find all of these points. He remarks that when “N = 24 An elliptic curve
is obtained. This is the level considered in effect by Heegner.” Serre says nothing more,
and later writers only repeat this comment. This essay will present Heegner’s argument, as
modernized in Cox [7], then explain Serre’s strategy. We will work out unrecorded details of
the argument for level 24, find the elliptic curve, and relate it to Heegner’s original argument.

To answer the class number one problem, it is easier to generalize it to arbitrary orders
in imaginary quadratic fields. In the first section, we do this and recall a few classical
results about the class number of orders. Section 2 develops theory about the j invariant
and the class equation. Section 3 then studies other modular functions, especially Weber’s
modular functions, which are the building block’s of Heegner’s argument. Next we use
Weber’s functions to calculate the j-invariants of all known imaginary quadratic fields of
class number one so we can identify them based on their j invariant. Section 5 relates these
modular functions to the class number using class fields and theory of complex multiplication.
Heegner’s argument is presented in section 6. Changing direction, the next section deals with
the question of when modular curves are defined over the rationals, and section 8 describes
the connection Serre found between X+

ns(n) and the class number one problem. Finally,
section 9 solves the class number one problem using X+

ns(24) and relates it to Heegner’s
argument.

Solving the class number one problem requires a lot of background material. Things on the
level of Part III at Cambridge University will be used without proof and sometimes without
explicit mention. In particular, knowledge of basic algebraic number theory, the definitions
of global class field theory, the basic theory theory of modular forms and functions, and the
basic theory of elliptic curves over C will be essential. Slightly less basic but very important
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is the relation between the modular curve Γ\H∗ and modular functions and its interpretation
as a Riemann surface parametrizing elliptic curves with additional data. Besides these basic
assumptions, everything will be proven completely except for Theorem 37 which relies on an
unproven result about complex multiplication.

1. Class Numbers of Imaginary Quadratic Orders

The class group of an order O in an imaginary quadratic field K is the quotient of proper
fractional ideals by principal fractional ideals. Recall that a fractional ideal is proper if it
is invertible, and a fractional ideal is proper if its norm has no common factors with the
conductor of O. The class number of O, denoted by h(O), is the size of the class group. It
is also written h(D) where D is the discriminant of O.

If O = OK is the maximal order, this recovers the usual definition of class number. There
is a very easy way to check if h(OK) = 1.

Proposition 2. Let p be a prime p > 3 with p ≡ 3 mod 4. Then h(−p) = 1 if and only if(
l
p

)
= −1 for all primes l less than p/4.

Proof. Note
(
l
p

)
= −1 if and only if l is inert in Q(

√
−p)/Q. So if

(
l
p

)
= 1 there are ideals

of norm l. If h(−p) = 1, these ideals are principal, so there are half-integers x and y such
that x2 + py2 = l. As l is not a square y 6= 0 so l > py2 ≥ p/4.

Conversely,
(
l
p

)
= −1 implies every prime ideal of norm less than

√
p/4 is non-split,

hence principal. Every ideal class contains an integral ideal with norm in this range, so
h(−p) = 1. �

This relation between the splitting of primes and the class number is the basis of Serre’s
approach. The class number of a general order is related to the maximal order.

Proposition 3. Let O be an order of conductor f . Then

h(O) =
h(OK)f

[O×K : O×]

∏
p|f

(
1−

(
dK
p

)
1

p

)
where

(
dK
p

)
is the Kronecker symbol.

For more information about orders in imaginary quadratic fields and proofs, see Section 7
of Cox [7]. There is also a discussion of the connection between Gauss’s work on quadratic
forms and the modern formulation in terms of ideals.

The more general question of which imaginary quadratic orders have class number one
is no harder to answer, and in fact was investigated first (in terms of classes of quadratic
forms). There are several types of order for which the problem is simple.

Theorem 4 (Landau). Let n be a positive integer. Then

h(−4n) = 1 iff n = 1, 2, 3, 4, 7.

A very easy proof using quadratic forms is given in section 2 of Cox [7]. Another easy
case is when n is the product of two primes.

Theorem 5. Let n have at least two odd prime factors. Then h(−n) is even.
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This can be proven using the genus theory of quadratic forms (section 3 of Cox) or of
ideals (section 6 of Cox) [7].

The following theorem gives a complete list of orders with class number one.

Theorem 6. Let O be an order in an imaginary quadratic field, and D be its discriminant.
Then

h(D) ⇐⇒ D = −3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163.

This reduces to the class number one problem for maximal orders. The idea is to use
Proposition 3 to relate the class number of the order to that of the maximal order: the
details are in section 7 of Cox [7]. The heart of the matter is proving Theorem 1.

2. The j−invariant and Class Equation

The most famous modular function is the j−invariant. The following standard properties
and their proofs may be found in section 10 of Cox [7].

The j function is a function on lattices in C (equivalently, a modular function for SL2(Z))
and can be defined as

j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2

where g2 and g3 are the constants appearing in the differential equation for the Weierstrass
℘ function for the lattice L

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L).(1)

They are given by

g2(L) = 60
∑

ω∈L−{0}

1

ω4

g3(L) = 140
∑

ω∈L−{0}

1

ω6
.

The following result and its corollary are essential to the class number one problem. it
allows the identification of imaginary quadratic fields by their j−invariants.

Theorem 7. If L and L′ are lattices, then j(L) = j(L′) if and only if L and L′ are homo-
thetic.

Corollary 8. Let K and K ′ be imaginary quadratic fields. Then K = K ′ iff j(OK) =
j(OK′).

The j function can also be regarded as a function of the upper half plane by setting
j(z) = j([1, z]). It is a modular function for SL2(Z), and identifies the upper half plane and
infinity with the Riemann sphere. Its definition in terms of lattices can expressed in terms
of modular forms:

j(z) = 1728
g4(z)3

g4(z)3 − 27g6(z)2
= 1728

g4(z)3

∆(z)

where g2n is viewed as a normalization of the Eisenstein series of weight 2n and ∆(z) :=
g4(z)3 − 27g6(z)2 is interpretted as the modular discriminant.

It also has an integral q−expansion.
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Proposition 9. Let q = e2πiz. Then

j(z) = q−1 + 744 + 196884q + 21493760q2 + . . .

It is elementary, but very important later, that j(z) (or any function with a rational
q−expansion) is real on the positive imaginary axis.

2.1. Modular Functions for Γ0(N). Recall that the field of modular functions for SL2(Z)
is generated by the j−function. We will reprove this important fact and then go on to show
that j(z) and j(Nz) together generate the field of modular functions for Γ0(N) following
Section 11 of Cox [7].

Theorem 10. Every modular function for SL2(Z) is a rational function of j. If it is holo-
morphic on the upper half plane, it is a polynomial.

Proof. Let f(z) be a modular function for SL2(Z). It has a finite number of poles on the
fundamental domain as the Riemann sphere is compact and the poles of a meromorphic
function are isolated. Let Z be the set of poles, and m(z) be the multiplicity of the pole.

Assume that none of the poles occur at i or ρ = −1+
√
−3

2
for now. Define

g(z) := f(z)
∏
w∈Z

(j(z)− j(w))m(w).

Then g(z) is a holomorphic function on the upper half plane since j(z) − j(w) has a zero
of order 1 at w (note j′(w) 6= 0 for z 6= i, ρ). Now g(z) is meromorphic at infinity, so there
is a polynomial P (w) such that g(z)− P (j(z)) is holomorphic at infinity (simply cancel the
negative powers of q in the q expansion one by one). But the only holomorphic functions on
the Riemann sphere are constants. Therefore f(z) is a rational function of j(z).

If a pole occurs at i or ρ, a standard result in the theory of modular forms says the order
of vanishing is a multiple of k = 2 or 3). But j(z)− j(w) has a zero of order k so using the
factor (j(z)− j(w))m(w)/k makes the above argument work.

If f(z) were already holomorphic on the upper half plane, we need not introduce any
denominator. �

To deal with Γ0(N), we need information about the cusps. The following elementary
lemma from the theory of modular forms is the key.

Lemma 11. Let γ ∈ SL2(Z) and C(N) be the set of matrices

C(N) :=

{(
a b
0 d

)
: ad = N, a > 0, 0 ≤ b < d, gcd(a, b, d) = 1

}
.

Then there exists a γ̃ ∈ SL2(Z) such that(
N 0
0 1

)
γ = γ̃σ

for some σ ∈ C(N).

Proof. This is proven in many places, including section 11 of Cox [7]. �

Theorem 12. Let f(z) be a modular form for Γ0(N). Then f(z) is a rational function in
j(z) and j(Nz).
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The proof of this theorem is more involved. The first step is to show j(Nz) is a modular
function of weight N . Next we introduce the modular equation and use it write f(z) as a
rational function in j(z) and j(Nz).

Lemma 13. j(Nz) is a modular function for Γ0(N).

Proof. For

(
a b
Nc d

)
∈ Γ0(N), a direct calculation yields

j(N
az + b

Ncz + d
) = j(

a(Nz) + bN

c(Nz) + d
) = j(Nz).

The trickier part is the behavior at the cusps. If γ ∈ SL2(Z), it suffices to verify that j(Nγz)
is meromorphic at∞. But by the lemma we know that there is a σ ∈ C(N) and γ̃ ∈ SL2(Z)
such that

j(Nγz) = j(γ̃(σz)) = j(σz).

But e2πiσz = e2πi(az+b)/d = qa/de2πib/d so the q-expansion of j(Nz) has only finitely many
terms of negative degree. Therefore it is meromorphic at all of the cusps. �

Next we look at the modular equation. Let {γi}i be coset representatives of Γ0(N) in
SL2(Z), and consider the polynomial

ΦN(x, z) =
∏
i

(x− j(Nγiz))

Proposition 14. ΦN(x, z) is a polynomial in x and j(z).

Proof. Consider the coefficient of xk in Φm(x, z). It is a symmetric polynomial in the j(mγiz),
and is holomorphic on the upper half plane. It is invariant under the action of SL2(Z) as
the action simply permutes the cosets of Γ0(N) and hence leaves the product unchanged.
To see that it is meromorphic at infinity, simply expand j(Nγiz) as a q-series. It has only
a finite number of negative terms, and the coefficient is a polynomial in them. Thus the
coefficients are meromorphic at infinity. By Theorem 10, the coefficients of x are polynomials
in j(z). �

Therefore there exists a polynomial of two variables ΦN(x, y) ∈ C[x, y] such that

ΦN(x, j(z)) =
∏

(x− j(Nγiz)).

This is called the modular equation.

Proposition 15. The modular equation satisfies the following properties:

(1) ΦN(j(Nz), j(z)) = 0.
(2) ΦN(x, y) is an irreducible polynomial in x.
(3) ΦN(x, y) has integer coefficients.
(4) If N is not a perfect square, ΦN(x, x) is a polynomial of degree > 1 whose leading

coefficient is ±1.

Proof. To prove the first part, note that one of the coset representatives for Γ0(N) may as
well be chosen to be the identity matrix. Then one of the terms in ΦN(x, j(z)) is x− j(Nz).

To prove the second, let m be the degree of ΦN viewed as a polynomial in x with coefficients
in C[y]. Note that because ΦN(j(Nz), j(z)) = 0, m is an upper bound for the degree of the
field extension C(j(z), j(Nz)) over C(j(z)). If we had equality, ΦN(x, j(z)) would be the
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minimal polynomial and hence irreducible. For γ ∈ SL2(Z), define ψγ : C(j(z), j(Nz)) →
C((z)) by ψγ(f)(z) = f(γz). This is an embedding of C(j(z), j(Nz)) into C((z)). Since j(z)
is a modular function for SL2(Z), C(j(z)) is fixed. The number of distinct such embeddings is
the degree of the extension C(j(z), j(Nz)) over C(j(z)). However, we know that j(Nγiz) 6=
j(Nγjz) unless i = j as the {γi} are a set of coset representatives for Γ0(N) in SL2(Z). Since
there are m distinct embeddings, ΦN is irreducible.

For the third part, we will show that any symmetric function f(z) in the j(Nγiz) is a
polynomial in j(z) with integer coefficients. By Lemma 11, we look at symmetric functions

in j(σz) for σ ∈ C(N). Simply writing down the q series, we see f(z) ∈ Q(ζN)((q
1
N )), the

ring of formal Laurent series over Q(ζN). The coefficients actually lie in Q. To verify this,

let ψk ∈ Gal(Q(ζN)/Q) send ζN to ζkN . For σ =

(
a b
0 d

)
,

ψk(j(σz)) =
ζabkN

q
1
N
a2

+
∞∑
n=0

cnζ
abk
N (q1/N)a

2n.

But writing abk = ab′ mod N and setting σ′ =

(
a b′

0 d

)
, we see that ψ(j(σz)) is j(σ′z).

Since the function is symmetric in the j(σz), the q−series is in Q((q
1
N )). We already know

the coefficients are algebraic integers as j(z) has integer coefficients, and that the only powers
of q appearing are integer powers, so it actually lies in Z((q)). To conclude it is a polynomial,
simply run through the proof of Theorem 10 and note that being in Z((q)) is enough to make
the resulting polynomial have integer coefficients.

For the last part, look at the q−series obtained by substituting j(z) for x. Use Lemma 11
to rewrite the factors in ΦN as

(j(z)− j(Nγiz)) = (j(z)− j(σz)) =
1

q
− σ−abN

qa/d
+
∞∑
n=0

dn(q
1
N )n

for σ =

(
a b
0 d

)
∈ C(N). Since N is not a perfect square, a = d will not occur, so the

terms q−1 and q−a/d are different. Therefore the term with lowest exponent has coefficient a
root of unity. Taking the product of all of these terms, we obtain the coefficient of the most
negative power of q in ΦN(j(z), j(z)) is a root of unity. Since it is an integer, it is ±1. This
is the leading coefficient of ΦN(x, x). �

It is now easy to prove Theorem 12. For a modular function f(z) for the group Γ0(N),
consider

G(x, z) = ΦN(x, j(z))
∑ f(γiz)

x− j(Nγiz)
=
∑
i

f(γiz)
∏
j 6=i

(x− j(Nγjz))

where the γi are coset representatives for Γ0(N) in SL2(Z). Viewed as a polynomial in x, the
coefficients are modular functions for SL2(Z) by an argument very similar to the one given
above for the modular equation. Thus they are rational functions in j(z). But then there is
a polynomial G′ in C(y)[x] such that

G(x, z) = G′(x, j(z)) ∈ C[x].
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Letting x = j(Nz) gives

G′(j(Nz), j(z)) = f(z)
∂ΦN

∂x
(j(Nz), j(z))

because by the product rule and choosing γ1 to be the identity matrix

∂ΦN

∂x
(j(mz), j(z)) =

∏
j 6=1

(j(Nz)− j(Nγiz)).

However, the previous proposition showed that ΦN is irreducible, hence separable, so the
partial derivative is non-zero. Thus we can conclude

f(z) =
G′(j(Nz), j(z))

∂ΦN

∂x
(j(Nz), j(z))

.(2)

In fact, we can strengthen this result when f(z) has rational coefficients.

Theorem 16. Let f(z) be a modular function for Γ0(N). If its q−expansion has rational
coefficients then f(z) ∈ Q(j(z), j(Nz)). Furthermore, if f(z) is holomorphic on the upper
half plane and z0 is a point in the upper half plane for which

∂ΦN

∂X
(j(Nz0), j(z0)) 6= 0

then the denominator of this rational function is nonzero so f(z0) ∈ Q(j(z0), j(Nz0)).

Proof. We already know the denominator of (2) has rational coefficients by Proposition 15.
To analyze the numerator, write

G′(j(Nz), j(z)) =
P (j(Nz), j(z))

Q(j(z))

for polynomials P (x, y) and Q(x) with

P (x, y) =
∑
j,k

aj,kx
jyk and Q(y) =

∑
l

bly
l.

Then multiplying through by the denominator, we obtain∑
j,k

aj,kj(Nz)jj(z)k = f(z)
∂ΦN

∂x
(j(Nz), j(z))

(∑
blj(z)l

)
.

Substituting the q−series for f(z), j(z), and j(Nz) and equating powers of q
1
N gives a

system of linear equations in the ai,k and bl. The coefficients are rational since f(z), j(z),
and j(Nz) have rational q−expansions and the polynomial ΦN(x, y) has rational coefficients
as well. Since there is a complex solution and all of the coefficients are rational, there is a
rational solution. Thus P and Q may be chosen to be rational polynomials.

The second statement follows by substituting z = z0. The numerator G′(j(Nz), j(z)) is a
polynomial in j(z) and j(Nz) as the coefficients of G′(x, j(z)) are holomorphic and invariant
under SL2(Z). By the same argument as above, we can force the coefficients to be rational.
Consequently by substituting z = z0 the numerator ends up in Q(j(z0), j(Nz0)) and the
denominator is a nonzero element of the same field. �

In practice, there is an easy way to tell when the above specialization argument will work.
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Proposition 17. Let O be an order in an imaginary quadratic field K with O× = {±1}.
Write O = [1, α] and assume the for some integer s we have s|trK/Q(α) and gcd(s2, NK/Q(α))
is square-free. Then for any positive integer N ,

∂ΦN

∂X
(j(Nα/s), j(α/s)) 6= 0.

Proof. Since ΦN((j(Nα/s), j(α/s)) = 0, it suffices to show j(Nα/s) is not a multiple root
of ΦN(x, j(α/s)), which reduces to showing j(Nα/s) 6= j(σα/s) for σ ∈ C(N) and σ 6=(
N 0
0 1

)
. If this were so, the corresponding lattices would be homothetic so that

λ[1, Nα/s] = [d, aα/s+ b].

However, the lattices [d, aα/s+ b] and [1, Nα/s] have index N in [1, α/s], so λ has norm 1.
Furthermore, sλ ∈ s[d, aα/s + b] ⊂ [s, α]. Writing sλ = us + vα for u, v ∈ Z and taking
norms gives

s2 = N(us+ vα) = u2s2 + usvtrK/Q(α) + v2NK/Q(α).

By the hypothesis, s2|v2NK/Q(α) and hence s|v. Thus λ ∈ [1, α]. But the only units in O
are ±1, so the two lattices were equal. �

The modular equation also shows that the j-invariant is often an algebraic integer.

Proposition 18. Let O be an order in an imaginary quadratic field, and a be a proper ideal.
Then j(a) is an algebraic integer of degree at most h(O).

Proof. Suppose there exists an α ∈ O such thatN = N(α) is square free and ΦN(j(αa), j(a)) =
0. But since j(αa) = j(a), this implies j(a) is a root of ΦN(x, x). By Proposition 15, the
leading coefficient is ±1 so j(a) is an algebraic integer. Furthermore, the conjugates of j(a)
are also solutions to ΦN(x, x) = 0. The roots of this equation are j(σa) for σ ∈ C(N).1

These take on only h(O) values, as σa is a proper fractional ideal and there are only h(O)
equivalence classes of such ideals. Thus the degree of j(a) is at most h(O).

Now let f be the conductor of O, and d the discriminant of the maximal order. It is

straightforward to see that α = f d+
√
d

2
has the required properties. For a proof of this, and

a proof that σa is proper, see Section 11 of Cox [7]. �

For the purposes of solving the class number one problem, additional modular functions
will be crucial.

3. Other Modular Functions

The next modular function to consider is the cube root of the j function, γ2(z). Then
we introduce Weber’s three modular functions, useful in calculating j(z), and study the
transformation laws of these functions.

1Added later: this seems to be wrong. Theorem 10.23 of Cox, or Proposition 2.1 of Silverman’s AEC give
the correct elementary argument that the degree is at most h(O).
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3.1. The Cube Root of the j−Function. Since the modular discriminant ∆(z) is non-
vanishing on the upper half plane, it has a holomorphic cube root which can be chosen to
be real valued on the positive imaginary axis. Define

γ2(z) := 12
E4(z)

∆(z)1/3
.(3)

It is a modular function as well.

Proposition 19. We have γ2(z + 1) = ζ2
3γ2(z) and γ2(−1

z
) = γ2(z).

Proof. Since j is a modular function for SL2(Z), the two desired equalities hold up to third
roots of unity. We know γ2 is real on the positive imaginary axis, so picking z = iy forces
−1
z

to be on the imaginary axis as well. Hence γ2(−1
z

) = γ2(z). For the second, write
j(z) = q−1h(q) where h is a holomorphic function on |q| < 1 with rational coefficients in its
Taylor series about 0. Pick a cube root u(q): note it has rational coefficients as well. Then

γ2(z) = q−
1
3u(q). Evaluating γ2(z + 1) using this gives γ2(z + 1) = ζ−1

3 γ2(z). �

Using this and induction on the length of a word of SL2(Z) in terms of

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
it follows that

γ2(
az + b

cz + d
) = ζac−ab+a

2cd−cd
3 γ2(z).

For example,

S

(
a b
c d

)
=

(
−c −d
a b

)
and

γ2(
−cz − d
az + b

) = γ2

(
−
(
az + b

cz + d

)−1
)

= γ2

(
az + b

cz + d

)
= ζac−ab+a

2cd−cd
3 γ2(z)

by induction. But

(−c)a− (−c)(−d) + c2ab− ab = −ab− cd+ ca(bc− 1) = ac− ab+ a2cd− cd mod 3

using ad− bc = 1. The inductive step for the matrix T is similar.
Now let

H :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 0 mod 3 or b ≡ c mod 3

}
.

It is clear that the congruence conditions make ac − ab + a2cd − cd ≡ 0 mod 3, so γ2 is
invariant under H. A standard calculation with the q−series shows it is meromorphic at the
cusps.

3.2. Definitions and Basic Properties of the Weber functions. Weber defined several
additional modular functions in terms of the Dedekind eta function. They are useful since
they provide effective ways to calculate γ2(z). Recall that with q = e2πiz, the eta function is
defined as

η(z) := q1/24

∞∏
n=1

(1− qn).

This converges to a non-zero holomorphic function on the upper half plane.
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Definition 20. The Weber functions f, f1, and f2 are defined to be

f(z) = ζ−1
48

η((z + 1)/2)

η(z)

f1(z) =
η(z/2)

η(z)

f2(z) =
√

2
η(2z)

η(z)

We get product formulas for f, f1, and f2 by canceling common factors in the definition.

Proposition 21. The Weber functions have the following product expansions:

f(z) = q−1/48

∞∏
n=1

(1 + qn−1/2)

f1(z) = q−1/48

∞∏
n=1

(1− qn−1/2)

f2(z) =
√

2q1/24

∞∏
n=1

(1 + qn)

The different functions are also dependent on each other.

Proposition 22. We have that f1(2z)f2(z) =
√

2 and f(z)f1(z)f2(z) =
√

2.

Proof. The first follows directly from the definitions. The second follows using the product
expansions by showing that

η(z)f(z)f1(z)f2(z) =
√

2
∞∏
n=1

(1− qn)

�

The next goal is to derive a theorem relating γ2(τ) with the Weber functions. It will
be used in section 4 to calculate the j-invariants of the imaginary quadratic fields of class
number one.

Theorem 23. We have that

γ2(τ) =
f(τ)24 − 16

f(τ)8
=

f1(τ)24 + 16

f1(τ)8
=

f2(τ)24 + 16

f2(τ)8
.

This will require some more work. The key is the following relation between special
values of the Weierstrass ℘-function and other modular functions. Fix a lattice [1, z]. Write
e1 = ℘(z/2), e2 = ℘(1/2), and e3 = ℘((z + 1)/2).

Lemma 24. With the above notation, we have that

e2 − e1 = π2η(z)4f(z)8

e2 − e3 = π2η(z)4f1(z)8

e3 − e1 = π2η(z)4f2(z)8.
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The proof requires the Weierstrass σ−function and will be given in the next section. For
now, it has several useful consequences.

Corollary 25. The modular discriminant has a product expansion

∆(z) = (2π)12η(z)24 = (2π)12q

∞∏
n=1

(1− qn).

Proof. The proof is based on the differential equation (1). The discriminant of the polynomial
4z3 − g2(z)x− g3(z) can be expressed in terms of the coefficients and in terms of the roots.
Since ℘′ is an odd function ℘′(ei) = 0 for i = 1, 2, 3, and it follows that

∆(z) = g2(z)3 − 27g3(z)2 = 16(e2 − e1)2(e2 − e3)2(e3 − e1)2.

Substituting and using Proposition 22 gives (2π)12η(z)24. �

It also gives an easy proof of Theorem 23.

Proof. Since the ei are the roots of 4x3 − g2(z)x− g3(z), we have

g2(z) = −4(e1e2 + e1e2 + e2e3).

Since e1 + e2 + e2 = 0, some algebra shows that

3g2(z) = 4((e2 − e1)2 − (e2 − e3)(e3 − e1)).

Using the lemma we obtain

3g2(z) = 4π4η(z)8(f(z)16 − f1(z)8f2(z)8).

Substituting into (3) gives

γ2(z) = f(z)16 − f1(z)8f2(z)8

Using Proposition 22 gives the first equality. The other two two follow through similar
formula for g2 in terms of the ei. �

3.3. The Weierstrass σ−function. The Weierstrass σ−function is less common than the
Weierstrass ℘−function, but the same techniques can be used to analyze it. The proof of
the following facts, necessary to establish Lemma 24, are given briefly here. Complete proofs
are found in Lang [10].

Definition 26. For a fixed lattice L = [1, τ ], define

σ(z) = z
∏

w∈L−{0}

(
1− z

w

)
ez/w+(1/2)(z/w)2 .

Its only zeros are at the lattice points and it is holomorphic. σ(z) is an odd function, but
is not quite periodic.

Proposition 27. There exist complex numbers η1 and η2 depending on the lattice (unrelated
to the η−function) such that

σ(z + τ) = −eη1(z+τ/2)σ(z) and σ(z + 1) = −eη2(z+1/2)σ(z).

Furthermore, η2τ − η1 = 2πi.
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Proof. Take the logarithmic derivative of σ, and write it as the series

ζ(z) =
1

z
+

∑
w∈L−{0}

(
1

z − w
+

1

w
+

z

w2

)
.

Differentiating it again gives −℘(z). Thus ζ(z + w) − ζ(z) is constant for w ∈ L. Call this
constant η1 and η2 for w = τ and w = 1. Then integrate and exponentiate. To evaluate the
constant arising from the integration, use the fact that σ is odd and evaluate at τ/2. To
obtain the relation between η2 and η1, integrate ζ around a fundamental parallelogram like
is done for the ℘-function. �

It is related to the more standard ℘-function.

Proposition 28. For w, z 6∈ L, we have that

℘(z)− ℘(w) = −σ(z + w)σ(z − w)

σ2(z)σ2(w)
.

Proof. Both sides are even elliptic functions in z. Compare the zeros and poles of both
sides. Both have double poles at z = 0 and zeros at w and −w. Therefore they agree up
to a multiplicative constant. To evaluate the constant, multiply by z2 and take the limit as
z →∞. �

In particular, this gives the following formula for the differences of the ei, taking into
account Proposition 27:

e2 − e1 = e−η2τ/2
σ( τ+1

2
)2

(σ(1
2
)σ( τ

2
))2

e2 − e3 = eη2(τ+1)/2 σ( τ
2
)2

(σ(1
2
)σ( τ+1

2
))2

e3 − e1 = eη1(τ+1)/2 σ(1
2
)2

(σ( τ+1
2

)σ( τ
2
))2
.

There is also a product formula. As usual, let q = e2πiz, but also define qτ = e2πiτ .

Proposition 29. With the above notation, we have

σ(z) =
1

2πi
eη2z

2/2(q
1
2 − q−

1
2 )
∞∏
n=1

(1− qnτ q)(1− qnτ /q)
(1− qnτ )2

.

Proof. Denote the product on the right side by g(z). Consider the quotient σ(z)
g(z)

. Using

Proposition 27 and some algebra we see that the quotient is an elliptic function with respect
to the lattice [1, τ ]. Comparing zeros we see that the quotient is holomorphic on C− L and
also holomorphic at 0 since the order of vanishing matches. Thus σ(z) and g(z) agree up to
a multiplicative constant. Let z → 0 to show the constant is one. �

Finally, setting z = 1
2
, z = τ

2
, and z = τ+1

2
and substituting the product formula into the

formulas for ei − ej gives Lemma 24.
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3.4. Transformation Laws for the Weber functions. As a first step to understanding
what kind of modular function the Weber functions are, we will investigate how they trans-
form under the generators of SL2(Z). The key fact is the transformation rule for the eta
function.

Proposition 30. The Dedekind eta function transforms as

η(z + 1) = ζ24η(z) η(
−1

z
) =
√
−izη(z)

where the branch of the square root is chosen so it is defined and positive on the positive
imaginary axis.

Proof. This is another standard fact. It is often deduced from the transformation properties
of the Eisenstein series of weight 2 by logarithmic differentiation. However, since the product
formula for ∆(z) has already been proven using the Weierstrass σ-function, there is a much
easier proof. Using Corollary 25, we see that

η

(
−1

z

)24

= z12η(z)24

as ∆(z) is a modular form for SL2(Z) of weight 12. Taking 24th roots gives that

η(
−1

z
) = ε

√
−izη(z).

The constant ε = 1 since η(z) is real on the positive imaginary axis. The fact that η(z+1) =
ζ24η(z) follows directly from the definition as a product in q. �

Since the Weber functions are defined in terms of η(z), the following transformation laws
for the Weber functions follow immediately.

Proposition 31. We have that

f(z + 1) = ζ−1
48 f1(z)

f1(z + 1) = ζ−1
48 f(z)

f2(z + 1) = ζ24f2(z)

and also that

f(
−1

z
) = f(z)

f1(
−1

z
) = f2(z)

f2(
−1

z
) = f1(z).

These can be pieced together to show that powers of the Weber functions are modular
functions for congruence subgroups. There are two approaches. The first is to use induction
on the word length in generators of the congruence subgroup with the above Proposition.
For example:

Proposition 32. f6 is a modular function for the group

H ′ := {
(
a b
c d

)
: b ≡ c ≡ 0 mod 8}
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Proof. This is similar to the proof that γ2 is a modular functions for the congruence subgroup
H in Section 3.1, so only a sketch will be given here. Since f(z)6 = ζ8f1(z+1)6, we will prove
that f61 is invariant under Γ(8) and then conjugate. The relevant formula, from Section 12 of
Cox [7], is that

f1(γz)6 = i−ac−(1/2)bd+(1/2)b2cf1(z)6 for γ =

(
a b
c d

)
, b ≡ 0 mod 2.

Cox shows that the matrices U =

(
1 0
1 1

)
and V =

(
1 2
0 1

)
generate the group of such

matrices. Then using Proposition 31 to compute f1(Uγz)6 and f1(V γz) and induction estab-

lishes this transformation rule. Taking the appropriate congruences on

(
a b
c d

)
shows f61 is

invariant under Γ(8). To check it is meromorphic at the cusps, use the same technique as
for γ2 using q−series. �

The alternative is to write down a general transformation law for the η function. It is
even more complicated than the above transformation law for f1, but can be proven by
induction in exactly the same way. The following version comes from Schertz [12]. Let

γ =

(
a b
c d

)
∈ SL2(Z) and multiply by −1 if necessary so c > 0 or c = 0 and d > 0. Then

η(γz) = ε(M)
√
cz + dη(z)

where

ε(γ) =


(
a
c

)
ζ
ab+2ac−3c+cd(1−a2)
24 if c ≡ 1 mod 2(

c
|a|

)
ζ
ab−ac+3a−3+cd(1−a2)
24 if a ≡ 1 mod 2, c 6= 0

ζb24 if c = 0

It is simple to use this to analyze the Weber functions. For example, we obtain the following.

Proposition 33. The function f2(z) is a modular function for Γ(24).

Proof. By the definition of f2(z),

f2(γz) =
√

2
η(2γz)

η(γz)
.

Using the above transformation law for η(z) gives something quite complicated. However, if
a ≡ d ≡ 1 mod 24 and b ≡ c ≡ 0 mod 24 and c 6= 0, the exponents of the twenty-fourth
root of unity is a multiple of 24. Thus we are left with

√
2

(
c
|a|

)
η(2z)(

c/2
|a|

)
η(z)

.

But as |a| = ±1 mod 8,
(

2
|a|

)
= 1. Thus

f2(γz) = f2(z).

This does not cover the case when c = 0, but that obviously follows from the third part of
the definition of ε(γ). The standard argument with q−series shows it is meromorphic at the
cusps of Γ(24). �
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4. Calculation of j−invariants for Imaginary Quadratic Fields of Class
Number 1

Later sections will give, following Heegner and Serre, a complete list of the j−invariants
of class number one fields of the form Q(

√
−p) with the prime p ≡ 3 mod 8 and p > 7. To

show that the known imaginary quadratic fields Q(
√
−11), Q(

√
−19), Q(

√
−43), Q(

√
−67),

and Q(
√
−163) exhaust all fields of this form, it suffices to show their j-invariants match the

list as there may be only one ring of integers with a given j−invariant. In this section we
will calculate these j−invariants following the approach outlined in Cox, Section 12.C [7].
The key tool is the formulas for γ2 in terms of the other Weber functions. We will estimate

those functions, and then use the fact that γ2(3+
√
−p

2
) is an integer when the class number is

one.
Let τ0 = 3+

√
−p

2
. From Proposition 22, we know that

f2(τ0) =

√
2

f1(2τ0)

and hence using the transformation rules in Proposition 31 that

f1(2τ0) = f1(3 +
√
−p) = ζ−1

48 f(2 +
√
−p) = ζ−2

48 f1(1 +
√
−p) = ζ−3

48 f(
√
−p).

Therefore f2(τ0) =
√

2ζ16
f(
√
−p) , and using Proposition 23 we conclude

γ2(τ0) = f2(
√
−p)16 +

16

f2(
√
−p)8

=
256

f(
√
−p)16

− f(
√
−p)8.(4)

The next step is to estimate f(
√
−p) using the product formula in Proposition 21. Letting

q = e2πi
√
−p = e−2π

√
p < e−6π and using the estimate 1 + q < eq, we obtain

f(
√
−p) = q−1/48

∞∏
n=1

(1 + qn−1/2) < q(−1/48)

∞∏
n=1

eq
n−1/2

.

Summing the series in the exponent and using q ≤ e−6π shows that

f(
√
−p) ≤ q−1/48e

q1/2

1−q ≤ q−1/48e
q1/2

1−e−6π ≤ q−1/48e1.0001q
1
2

On the other hand, the inequality

q−1/48 < f(
√
−p)

follows immediately as q > 0. These two inequalities and (4) give the following bounds on
γ2(τ0):

256q1/3e−16.0016q − q−1/6e8.0008q ≤ γ2(τ0) ≤ 256q1/3 − q−1/6(5)

Let the difference between these bounds be E, so

E = 256q1/3+q−1/6e8.0008q
1
2−q−1/6−256q1/3e−16.0016q

1
2 = 256q1/3(1−e16.0016q

1
2 )−q−1/6(1−e8.0008q

1
2 )

For 0 < x < 1, we know that 1− e−x ≤ x
1−x , so this can be bounded by

E ≤ 256q1/3 16.0016q
1
2

1− 16.0016q
1
2

+ q−1/6(e8.0008q
1
2 − 1).

But this is less than 1/2 for q = e−2π
√
p for any of the p in our list. Therefore any integer

satisfying the inequalities (5) must equal γ2(τ0). This is enough to compute Table 1.
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Table 1. j−invariants of Imaginary Quadratic Fields of Class Number 1

γ2(3+
√
−p

2
) j(3+

√
−p

2
) = γ3

2(τ0)
Q(
√
−11) −25 −323

Q(
√
−19) −25 · 3 −963

Q(
√
−43) −26 · 3 · 5 −9603

Q(
√
−67) −25 · 3 · 5 · 11 −52803

Q(
√
−163) −26 · 3 · 5 · 23 · 29 −6403203

5. Modular Functions and Class Fields

Heegner used results due to Weber about when modular functions generate the ring class
field of an order in an imaginary quadratic field. Since Weber was working before the
development of class field theory, they were phrased in other ways. The solution to the
class number one problem is in fact much more elementary than the use of class fields would
suggest. Parts of both approaches will be discussed below.

Theorem 34 (First Main Theorem of Complex Multiplication). Let O be an order in an
imaginary quadratic field K, and let a be a proper fractional O−ideal. The j−invariant j(a)
is an algebraic integer and K(j(a)) is the ring class field of the order O.

This is Theorem 11.1 of Cox [7]. The proof is not simple, and relies on the Chebotarev
Density Theorem. In order to focus on the class number one problem, we will not prove the
general version of this theorem. Instead, following an observation by Stark [17] there is an
elementary argument that gives enough information for the application to the class number
one problem but uses nothing more than the class equation.

Proposition 35. Let p be a prime with p ≡ 3 mod 8. Suppose h(p) = 1. Then j(−3+
√
−p

2
)

is rational and K(j(
√
−p)) is a degree 3 extension of K for large enough p.

Proof. If h(−p) = 1, then by Proposition 3 it follows that h(−4p) = 3. Let K = Q(
√
−p)

and τ0 = −3+
√
−p

2
. Then using Proposition 18 we know [K(j(

√
−p)) : K] ≤ 3 and [K(j(τ0)) :

K] ≤ 1 and both j−invariants are algebraic integers. Sincej(τ0) is real, it must be rational.
To show j(

√
−p) generates a degree 3 extension over Q, it suffices to show that it is not

rational or quadratic.
Looking at the modular equation for m = 2, we see that

Φ2(x, τ0) = (x− j(τ0))(x− j(τ1))(x− j(τ2))

where τi = σiτ0 and σ1, σ2, σ3 are the elements of C(2):

σ1 =

(
2 0
0 1

)
σ2 =

(
1 0
0 2

)
σ3 =

(
1 1
0 2

)
.

Thus

Φ2(x, τ0) =
(
x− j(

√
−p)

)(
x− j

(
−3 +

√
−p

4

))(
x− j

(
−1 +

√
−p

4

))
.

Now both 1+
√
−p

4
and −1+

√
−p

4
lie in the interior of the usual fundamental domain provided

p > 16. In particular j(−3+
√
−p

4
) = j(1+

√
−p

4
) and j(−1+

√
−p

4
) are not real, as the only points

in the interior of the fundamental domain that are real are those with real part 0.
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We know that Φ2(j(
√
−p), τ0) = 0 by Proposition 15 since j(2τ0) = j(−3 +

√
−p) =

j(
√
−p). If j(

√
−p) is rational or quadratic, Φ2(x, τ0) will have a rational root. The above

argument shows that root must be j(
√
−p), so we only need to rule out the case that j(

√
−p)

is a rational integer. However, if we set q = e2πiτ0 then using the q-series expansion for j in
Proposition 9 shows

j(τ0) = 1/q + 744 + 196884q + 21493760q2 +O(q3)

j(
√
−p) = 1/q2 + 744 + 196884q2 +O(q4).

Squaring j(τ0) and canceling low order terms shows

j(τ0)2 − 1488j(τ0) + 160512− j(
√
−p) = 42987520q +O(q2).

By hypothesis the left side is a rational integer. The right side can be bounded between 0
and 1 when q is small enough using a technique similar to the one used in section 4. Stark’s
analysis showed p > 60 is sufficient. There are no integers between 0 and 1, so j(

√
−p) must

generate a cubic extension of K. �

The cube root of the j−function usually generates this field as well.

Theorem 36. Let O = [1, τ0] be an order of discriminant D in the imaginary quadratic field
K. If 3 6 |D, then γ2(τ0) is an algebraic integer and K(γ2(τ0)) is the ring class field of O.

This can be deduced with some work using the main theorem of complex multiplication,
as is done in Section 12 of Cox [7]. To focus on the class number one problem, we will omit
it. Actually, all we need is that γ2(τ0) ∈ Z when O is the ring of integers for Q(

√
−p) with

class number one and p > 7. An independent proof of this will be given in Section 9.2 using
the modular curve X+

ns(3).
There are also times when the ring class field can be generated using Weber’s functions.

Theorem 37. Let m ≡ 3 mod 4, and O = [1,
√
−m] be an order in K = Q(

√
−m). Then

f(
√
−m)2 is an algebraic integer and K(f(

√
−m)2) is the ring class field of O.

Weber gave an incomplete proof [18], which is part of the reason Heegner’s proof of the
class number one problem was thought to be flawed. Stark fixed it [17], but the proof, though
elementary, is integrated with the rest of Weber’s work. A modern proof is given in section
7 of Birch [4]. Here we will follow the more elementary presentation given by Cox [7]. It
requires the full force of Theorem 34 and one additional fact. Two proofs of this fact can be
found in Lang [10]: one uses the reduction of elliptic curves, the other is more analytic in
nature.

Theorem 38. Let O be an order in an imaginary quadratic field K, and let L be the ring
class field of O. Given proper fractional ideals a and b, define

σa(j(b)) := j(ab).

Then σa is a well-defined element of Gal(L/K) and a→ σa induces an isomorphism between
C(O) and Gal(L/K).

The key to proving Theorem 37 is to show that f(
√
−m)6 ∈ L. Let L be the ring class

field of O = [1,
√
−m], which we know to be K(j(

√
−m). The equation

f(
√
−m)24 − f(

√
−m)8γ2(

√
−m)− 16 = 0



18 JEREMY BOOHER

from Proposition 23 implies that if f(
√
−m)6 is in L, then as γ2(

√
−m) ∈ L by Theorem 36 we

know that f(
√
−m)8 ∈ L is as well. Then f(

√
−m)8/f(

√
−m)6 = f(

√
−m)2 is in L. Using the

above equation again shows j(
√
−m) ∈ K(f(

√
−m)2), so the class field L = K(f(

√
−m)2).

We will first show that f(
√
−m)6 is in the ring class field L′ for the order [1, 8

√
−m].

By Proposition 32, f(
az + b

cz + d
)6 = f(z)6 when b ≡ c ≡ 0 mod 8. Therefore for(

a b
c d

)
∈ Γ0(64), f

(
8
az + b

cz + d

)6

= f

(
a(8z) + (8b)

(c/8)(8z) + d

)6

= f(8z)6

so f(8z)6 is invariant under Γ0(64). It is also meromorphic at the cusps. To see this, use
Lemma 11 to write 8γz = γ̃σz where γ̃ ∈ SL2(Z) and σ ∈ C(8). Then using Proposition 31,
writing γ̃ in terms of the generators for SL2(Z) we get that f(8γz) = f(γ̃σz) is a root of

unity times f(σz), f1(σz), or f2(σz). But e2πiσz is a root of unity times a power of q
1
8 , so

the product formulas for the Weber functions imply the q−expansion of f(8γz) involves only

finitely many negative powers of q
1
8 . Hence f(8z)6 is a modular function for Γ0(64).

This is important because we know f(8z)6 is a rational function in j(64z), j(z) by Theo-
rem 16. We want to specialize at z =

√
−m/8. Proposition 17 with m = 64, s = 8 shows

that f(
√
−m)6 lies in the field Q(j(8

√
−m), j(

√
−m/8)). Write

f(
√
−m)6 = R(j(8

√
−m), j(

√
−m/8))

where R is a rational function with coefficients in Q. Since [1, 8
√
−m] and [1,

√
−m/8]

are proper fractional ideals in the order O′ = [1, 8
√
−m], the main theorem of complex

multiplication implies f(
√
−m)6 lies in the ring class field L′.

Finally consider the Galois extension L′/L. By class field theory, the Galois group is the
kernel of the map C(O′) → C(O). It is straightforward to check when ideals in imaginary
quadratic orders are principal, so a routine calculation shows that the ideals a = [8, 2+

√
−m]

and b = [8,
√
−m] generate the kernel, which is the group C4×C2 of order 8. By Theorem 38,

σa and σb generate the Galois group. To show that f(
√
−m)6 actually lies in L, it suffices to

show that

σaR(j(8
√
−m), j(

√
−m/8)) = R(j(8

√
−m), j(

√
−m/8))

σbR(j(8
√
−m), j(

√
−m/8)) = R(j(8

√
−m), j(

√
−m/8)).

But using the definition of σa and a direct calculation with the fractional ideals we have

R(j(a[1, 8
√
−m]), j(a[8,

√
−m])) = R(j([4, 3 + 2

√
−m]), j(8, 6 +

√
−m))

R(j(b[1, 8
√
−m]), j(b[8,

√
−m])) = R(j([1, 8

√
−m]), j([8,

√
−m])).

Note that in multiplying the fractional ideals we need the fact that m ≡ 3 mod 4. However,

if γ1 =

(
2 11
1 6

)
and γ2 =

(
0 −1
1 0

)
, a direct calculation also shows that

f(γ1

√
−m)6 = R(j([4, 3 + 2

√
−m]), j(8, 6 +

√
−m))

f(γ2

√
−m)6 = R(j(1, 8

√
−m), j(8,

√
−m)).

Writing γ1 and γ2 in terms of the generators for SL2(Z) and using Proposition 31 shows γ1

and γ2 fix f(z)6. All of this combines to show that f(
√
−m)6 is fixed by σa and σb and hence

f(
√
−m)6 lies in L. Therefore f(

√
−m)2 generates the ring class field as claimed. �
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6. Heegner’s Approach to the Class Number One Problem

Heegner started by using elementary results to find all imaginary quadratic fields Q(
√
−n)

with class number one except when n is a prime congruent to 3 modulo 8. He then used results
about the Weber functions to come up with two expressions for the minimal polynomial of the

algebraic integer −f2
(

3+
√
−p

2

)8

. One of the coefficients is the integer γ2(3+
√
−p

2
). Equating

coefficients gives a system of Diophantine equations with a finite number of solutions. This
gives a finite list j−invariants for imaginary quadratic fields of class number one.

All orders in imaginary quadratic fields with even discriminant and class number one have
already been determined by elementary methods (Theorem 4). Furthermore, we know that
if n has two or more odd prime factors, the class number is a multiple of two (Theorem 5).
Finally, if p ≡ 7 mod 8 then by Proposition 3

h(−4p) = 2h(−p)
(

1−
(
−p
2

)
1

2

)
= h(−p) = 1

and hence the list in Theorem 4 implies that p is seven2. Therefore we may assume that
p ≡ 3 mod 8. Note that in this case h(−4p) = 2h(−p)

(
1 + 1

2

)
= 3.

Let K = Q(
√
−p). By Proposition 35, K(j(

√
−p)) is a degree 3 extension of K. As

j(
√
−p) is real, Q(j(

√
−p)) is a degree 3 extension of Q. But Weber gave an alternate

description for the ring class field. By Theorem 37, K(f(
√
−p)2) = K(j(

√
−p)). Since

f(
√
−p) is real Q(f(

√
−p)2) is also a cubic extension of Q.

Now let τ0 =
3 +
√
−p

2
, and set α = ζ−1

8 f2(τ0)2. By Proposition 31,

f1(2τ0) = f1(3 +
√
−p) = ζ−1

16 f(
√
−p).

Furthermore, by Proposition 22 we know

α = ζ−1
8 f2(τ0)2 =

2

ζ8f1(2τ0)2
=

2

f(
√
−p)2

and so α and α4 generate the cubic extension Q(f(
√
−p)). In addition, by Theorem 23

γ2(τ0) =
f2(τ0)24 + 16

f2(τ0)8
(6)

so it follows that α is an algebraic integer. Heegner’s insight is that since both α and α4 are
algebraic integers in Q(f(

√
−p)), there are severe restrictions on their minimal polynomials.

On the one hand, we know that γ2(τ0) is an integer as it generates the ring class field for
[1, τ0] in Q(

√
−p) by Theorem 36, which was assumed to have class number 1. Then (6)

implies that α4 = −f2(τ0)8 is a root of the cubic equation

x3 − γ2(τ0)x− 16 = 0.(7)

On the other hand, α is the root of some cubic equation

x3 + ax2 + bx+ c = 0

where a, b, c ∈ Z as α is an algebraic integer. The equation for α4 puts strong constraints on
a, b, and c. Separating the even and odd degree terms and squaring, we get a monic cubic

2This is the most important place where the theory of orders and not just rings of integers is used.
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with α2 as a root:
x3 + (2b− a2)x2 + (b2 − 2ac)x− c2 = 0.

Write e = 2b − a2, f = b2 − 2ac, and g = −c2. Separating the even and odd degree terms
and squaring again, we get a monic cubic with α4 as a root:

x3 + (2f − e2)x2 + (f 2 − 2eg)x− g2 = 0

Since the minimal polynomial for α4 is unique, this is the same as the polynomial (7). This
gives the system of equations

2f − e2 = 0

f 2 − 2eg = −γ2(τ0)

g2 = 16.

Thus g = ±4. Since g = −c2, g = −4 and c = ±2. We may assume c = 2, as replacing α by
−α flips the signs of a and c. Therefore solving for γ2(τ0) in terms of a and b gives

γ2(τ0) = −f 2 − 8e = −(b2 − 4a)2 − 8(2b− a2).

There will be only a finite number of choices for a and b, which will then give all possible
values of γ2(τ0).

Since 2f − e2 = 0, we have that

2(b2 − 4a) = (2b− a2)2(8)

from which it follows that a and hence b are even integers. Let the integers x and y be given
by x = −a/2, y = (b− a2)/2. Then

2b2 − 8a = 2(b2 − 4a) = (2b− a2)2 = (b+ 2y)2 = b2 + 4yb+ 4y2

Solving for y2 in terms of a and b gives

y2 =
−b2 − 8a+ 2a2b

4
.

On the other hand, solving (8) for a4 shows that

2x(x3 + 1) = a4/8− a =
2b2 − 8a− 4b2 + 4ba2

8
− a =

−b2 − 8a+ 2a2b

4
.

Thus x and y are solutions to the Diophantine equation

2x(x3 + 1) = y2.(9)

This Diophantine equation can be solved using elementary methods. It has a finite number
of solutions.

Proposition 39. The only solutions to (9) are (x, y) = (0, 0), (−1, 0), (1,±2), and (2,±6).

We will prove this at the end of this section. For now, note that these correspond to
(a, b) = (0, 0), (2, 4), (−2, 8), (−2, 0), (−4, 28) and (−4, 4).

Using these solutions and the fact that γ2(τ0) = −(b2 − 4a)2 − 8(2b − a2) gives γ2(τ0) =
0,−96,−5280,−32,−640320, and −960. All of these are accounted for in the list of known
class number one fields presented in Table 1. Since there is at most one imaginary quadratic
field with given j−invariant by Corollary 8, our list of imaginary quadratic fields with class
number 1 is complete.



MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM 21

It is worth noting that nothing in this proof is particularly deep. Although phrased
in terms of ring class fields, the results in Section 5 can all be proven using much more
elementary methods at the expense of additional work. For example, we showed how to
replace Theorem 34 with the more elementary Proposition 35. Stark remarks that the class
number one problem could have been solved up to 60 years before he did using Weber’s
work: nothing more modern is required [17].

Proof. To solve 2x(x3+1) = y2, we will reduce it to one of four subsidiary equations solved in
Lemma 40 by standard techniques. We may deal with x = 0,−1 separately. Otherwise x and
x3 +1 are relatively prime so ±(x3 +1) is a square or twice a square. Thus x3 +1 = ±{1, 2}z2

for some integer z. These give three of the equations in the Lemma. For x3 + 1 = 2z2, we
need additional information. Substituting into the original equation gives 4xz2 = y2, so we
see x is a perfect square as well. Writing w2 = x gives the third equation in Lemma 40.
Taking the solutions to those equations and solving for y gives the list in the proposition. �

Lemma 40. The subsidiary Diophantine equations have the following integral solutions:

(1) The equation x3 + 1 = z2 has solutions (x, z) = (−1, 0), (0,±1), (2,±3).
(2) The equation x3 + 1 = −z2 has solutions (x, z) = (−1, 0).
(3) The equation w6 + 1 = 2z2 has solutions (w2, z) = (1,±1).
(4) The equation x3 + 1 = −2z2 has solutions (x, z) = (−1, 0).

These can all be proven by elementary methods. The first is the most involved. It was
solved by Euler. The strategy is first to show there are no positive integers b and c with
b 6= c, 3 - c, and bc(c2 − 3bc + 3b2) a perfect square using infinite descent. If x = a

b
is a

solution to x3 + 1 = z2, then set a + b = c and note that b(a3 + b3) = bc(c2 − 3bc + 3b2) is
a perfect square. Using the previous result, it is not hard to deduce we have all solutions.
More details are found at the end of Section 12 of Cox [7].

The remaining equations can be solved with the standard technique of factoring over a
ring of integers with class number one. For the second use Z[i], the third use Z[ω], and the
fourth Z[

√
−2].

There are also general methods to solve equations of this form. They are examples of
Mordell’s equation. Details on how to solve them are given by Hemerc̃itehemer. Even more
generally, there are methods to find all integral points on arbitrary elliptic curves. Such
an algorithm is implemented in Sage [11] and quickly finds that the only integral points
are those listed here. The algorithm Sage uses to find the integral points is described in
Cohen [6]. The basic idea is to bound the size of the coordinates of the integral points, then
cleverly cut down the search space so a brute force search is feasible. For the examples here,
this takes under a second. It is interesting that the bounds come from generalizations of
Baker’s work on lower bounds for logarithms, which gave one of the original solutions to the
class number one problem.

7. The Modular Curve H\X(N) as an Algebraic Curve

Serre approaches the class number one problem much more geometrically than Heegner
appears to. We will construct a curve X+

ns(n) on which special correspond to imaginary
quadratic fields of class number one. For small values of n, it is possible to find such points
and hence find all imaginary quadratic fields of class number one. The curve X+

ns(n) will be
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a quotient of the parameter space of elliptic curves with a basis for the n-torsion. We study
these quotients in general and find out when they are algebraic curves defined over Q.3

Consider the set of elliptic curves E over C with an isomorphism E[N ]→ Z/NZ×Z/NZ.
The same technique used to show X0(N) is a Riemann surface shows this is as well (see
for example Chapter 2 of Diamond and Shurman [8]). It can be compactified by adding in
the cusps to obtain a compact Riemann surface X(N). It is known as the modular curve of
elliptic curves with full level N structure. We are interested in when this a rational algebraic
curve. The approach adapts Chapter 7 of Diamond and Shurman [8] to the curve X(N).
However, it is essential to remember that the notation X(N) in Diamond and Shurman
is something different. It refers to Γ(N)\H∗, the parameter space for elliptic curves with
two points P and Q that generate the N torsion and also have specified Weil pairing. The
notation X ′(N) will be used here for this parameter space.

First, note that GL2(Z/NZ) acts on X(N) with

(
a b
c d

)
∈ GL2(Z/NZ) sending a pair

(E, (P,Q)) to (E, (aP + bQ, cP + dQ)). This preserves the fibres of the projection map
X(N)→ X(1) sending (E, (P,Q)) to E.

Let γ =

(
a b
c d

)
∈ GL2(Z/nZ) and let eN(P,Q) denotes the Weil pairing of P and Q.

Then by the bi-linearity of the pairing, eN(aP + bQ, cP + dQ) = eN(P,Q)det γ. The Weil
pairing is a continuous map from X(N) to the set of primitive Nth roots of unity, so the pairs
with specified Weil pairing are connected components of X(N). Each of these components
is a copy of X ′(N).

Since X(N) has multiple connected components, it is easier to do algebraic geometry
on a quotient with only one connected component. If the determinant map sends H <
GL2(Z/NZ) onto (Z/NZ)×, the quotient has only one component. Note that H\X(N) will
then equal ΓH\X ′(N) where ΓH = H ∩ SL2(Z/NZ). Alternately, this can be written as
Γ′H\H∗ where Γ′H are the elements of SL2(Z) that reduce modulo N to ΓH .

In summary, we have the following theorem.

Theorem 41. X(N) has φ(N) connected components, each isomorphic to X ′(N) = Γ(N)\H∗.
If H is a subgroup of GL2(N) such that det(H) = (Z/NZ)×, we have H\X(N) = ΓH\X ′(N)
where ΓH = H ∩ SL2(Z/NZ).

The next step is to determine the field of meromorphic functions on X ′(N) and the group
Gal(C(X ′(N))/C(X(1))). Let Ej be the universal elliptic curve

Ej : y2 = 4x4 − 27j

j − 1728
x− 27j

j − 1728
.

The name comes from the fact that for j 6= 0, 1728 it specializes to an elliptic curve with
j-invariant j.

Recall that for a lattice Λ = [τ, 1] there is an identification C/Λ → E sending z →
(℘(z), ℘′(z)) where E is the elliptic curve defined by

E : y2 = 4x3 − g2(τ)x− g3(τ).

3Added later: this section is sloppy about the issue of whether a rational form of a modular curve over
C actually represents the moduli problem. The difficulty is that there may be multiple curves over Q which
become isomorphic over C to a modular curve. Simply finding a rational defining equation is not enough.
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It will be convenient to rescale so that we map z →
(
g2(τ)
g3(τ)

℘(z),
(
g2(τ)
g3(τ)

) 3
2
℘′(z)

)
and end up

on the curve

Ej(τ) : y2 = 4x3 − g2(τ)3

g3(τ)2
x− g2(τ)3

g3(τ)2
.

Since g2(τ)3

g3(τ)2
= 27g2(τ)3

g32(τ)−∆(τ)
= 27j(τ)

j−1728
, this is in fact the universal elliptic curve.

The N torsion points for a lattice [1, τ ] are c+dτ
N

for 0 ≤ c < N and 0 ≤ d < N . The
x−coordinates of the N torsion points on the universal elliptic curve are the functions

f (c,d)(τ) =
g2(τ)

g3(τ)
℘τ

(
c+ dτ

N

)
.

Denote the collection of these functions by x(Ej[N ]).

Theorem 42. C(X ′(N)) equals C(j, x(Ej[N ])). Gal(C(X ′(N))/C(X(1))) = SL2(Z/NZ)/{±1},
and the action of γ ∈ SL2(Z/NZ) on C(X ′(N)) via γ(f) = f◦γ agrees with the Galois group’s
action.

The first step is to show that the Ej[N ] are meromorphic functions defined on X ′(N).
Writing the function in terms of lattices,

f (c,d)(λΛ, (λP, λQ)) =
λ−4g2(Λ)

λ−6g3(Λ)
(λ−2℘Λ(cP + dQ))

so we conclude that f (c,d) transforms correctly under Γ(N).

Next, a basic calculation shows that for

(
a b
c d

)
= γ ∈ SL2(Z)

f (c′,d′)(γz) =
(cz + d)4g2(z)

(cz + d)6g3(z)
℘γz

(
c′(cz + d) + d′(az + b)

(cz + d)N

)
= f (c′′,d′′)(z)

where [d′′, c′′] = [d′, c′]γ.
To check they are meromorphic at the cusps, note that we may move any cusp to infinity

using an element of SL2(Z). But f (c,d)(γτ) = f (c′,d′)(τ). Thus it suffices to check that f (c,d) are

meromorphic at infinity. g2(τ)
g3(τ)

certainly is, and a simple calculation shows limτ→∞ ℘τ (
c+dτ
N

)

is finite. Therefore we have the following containment of fields:

C(X(1)) = C(j) ⊂ C(j, x(Ej[N ])) ⊂ C(X(N)).

Now note that if f (c,d)(z) = f (c′,d′)(z) then ℘z(
c+dz
N

) = ℘z(
c′+d′z
N

) and hence

c+ dz

N
= ±c

′ + d′z

N
mod Λ = [1, z].

Thus (c, d) = ±(c′, d′) mod N . Therefore f (c,d)(γz) = f (c′,d′)(z) implies that γ ∈ ±Γ(N).
Now consider the map

θ : SL2(Z)→ Aut(C(X ′(N)))

defined by θ(γ) acting on f ∈ C(X ′(N)) by sending it to f ◦ γ using the action of SL2(Z) on
X ′(N). This is a group homomorphism, and ±Γ(N) certainly lie in the kernel. On the other
hand, if γ ∈ ker θ, then γ fixes all of the f (c,d). But that implies γ ∈ ±Γ(N). Therefore we
conclude

θ(SL2(Z))
∼→ SL2(Z/NZ)/{±1} ⊂ Aut(C(X ′(N))).
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Since θ(SL2(Z)) fixes exactly C(X(1)) ⊂ C(X ′(N)), C(X ′(N))/C(X(1)) is Galois with group
θ(SL2(Z)). Since C(j, x(Ej[N ])) is only fixed by the identity, it is all of C(X ′(N)). Note that
the Galois group is compatible with the action of SL2(Z) on X ′(N) since we constructed it
in terms of the action. �

We can finally prove the desired theorem.

Theorem 43. Let H be a subgroup of GL2(Z/NZ) that surjects onto (Z/NZ)× by the de-
terminant map. Then H\X(N) is a connected algebraic curve defined over Q.

Let HQ be the Galois group Gal(Q(µN , j, x(Ej[N ]))/Q(j)).4 Generators for the N−torsion
can be selected so the x−coordinates are pτ = f (1,0)(τ) and qτ = f (0,1)(1). Then the
x−coordinate of any N -torsion point is a linear combination of these, say apτ + bqτ . Note a
and b are unique modulo N .

Now any σ ∈ HQ permutes the N−torsion points, so(
pστ
qστ

)
= ρ(σ)

(
pτ
qτ

)
for some linear transformation ρ(σ) ∈ GL2(Z/NZ). The assignment

ρ : HQ → GL2(Z/NZ)/{±1}
is a group homomorphism.

Now let σ ∈ HQ and let µ be a primitive Nth root of unity with eN(P,Q) = µ. Then
σ(eN(P,Q)) = eN(P σ, Qσ) = eN(P,Q)det(ρ(σ)) by the bi-linearity of the Weil pairing. Thus
we have

(10) µσ = µdet(ρ(σ)).

Consider the extension Gal(j, µN , x(Ej[N ]))/Gal(j, x(Ej[N ])), also Galois. The above cal-
culation with the Weil pairing shows that any element σ of this Galois group must fix µ as
det(ρ(σ)) = 1. Thus µ ∈ Q(j, x(Ej[N ])).

Now we consider the following fields and Galois groups: Q(j, x(Ej[N ])), Q(µN , j), and
Q(j), with HQ = Gal(Q(j, x(Ej[N ]))/Q(j)) and HQ(µN ) = Gal(Q(j, x(Ej[N ]))/Q(µN , j)).
Restricting ρ to HQ(µN ), we get

HQ(µN ) → SL2(Z/NZ)/{±1}
This map is injective since if σ ∈ HQ(µN ) fixes pτ and qτ then x(Ej[N ]) must be fixed as well.

Now we recall a standard but very useful fact about compositums. It is proven in section
7.6 of Diamond and Shurman [8].

Lemma 44. Let k and F be field extensions of f with F/f Galois, and let K = kF . Then
K/k is Galois and there is a natural injection

Gal(K/k) ↪→ Gal(F/f)

with image Gal(F/(k ∩ F )).

In particular, this implies that Gal(Q(µN , j)/Q(j)) = Gal(Q(µN)/Q) = (Z/NZ)×.
This will also let us transfer knowledge about function fields over C to function fields

over Q. Letting f = Q(µN , j), F = Q(j, x(Ej[N ])), k = C(j), and K = C(j, x(Ej[N ])),
this implies Gal(C(j, x(Ej[N ]))/C(j)) injects into HQ(µN ) with image Gal(F/k∩F ). But we

4This extension is Galois: the algebraic part of the argument in Theorem 42 adapts to show this.
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know that Gal(C(j, x(Ej[N ]))/C(j)) = SL2(Z/NZ)/{±1} by Theorem 42. Since these are
finite groups and ρ is an injection in the other direction, the groups must be isomorphic. By
Galois theory, k ∩ F = C(j) ∩Q(j, x(Ej[N ])) = Q(µN , j). Intersecting with Q shows that

(11) Q(j, x(Ej[N ])) ∩Q = Q(µN).

Finally, we know 2|HQ| = 2|HQ(µN )||Gal(Q(µN , j)/Q(j))| = | SL2(Z/NZ)||(Z/NZ)×| =
|GL2(Z/NZ)|. Therefore HQ = GL2(Z/NZ)/{±1}.

It remains to consider which curves are defined over Q. LetH be a subgroup of GL2(Z/NZ).
Let

K1 := (Q(j, µN , x(Ej[N ])))H
′
.

If the determinant map is surjective, then H ′ permutes the roots of unity by (10). Thus
K1 ∩Q(µN) = Q, so using (11)

K1 ∩Q = Q and K1 = (Q(j, x(Ej[N ])))ΓH/{±1}.

Therefore the curve with function field K1 is defined over Q.
Finally, recall from Theorem 42 that the action of ΓH ⊂ SL2(Z/NZ) on X ′(N) is com-

patible with the Galois action of ΓH/{±1} ⊂ Gal(C(j, x(En[N ]))/C(j)) on C(X ′(N)), so
H\X(N) = ΓH\X ′(N) has function field

K2 = C(j, x(Ej[N ]))ΓH/{±1}.

Now extend the curve K1 from the rationals to the complex numbers. K1 = K2, so since
H\X(N) and the extension have the same function fields they are isomorphic over C. There-
fore H\X(N) is an algebraic curve defined over Q. �

Note that if this were done for X0(N), the minimal polynomial for the extension would
be the modular equation as the field of meromorphic functions is C(j(z), j(Nz)). However,
the approach taken in Section 2 r is more explicit and give additional information.

8. X+
ns(n) and The Class Number One Problem

Let n be a positive integer. In this section we will construct a non-split Cartan subgroup
of GL2(Z/nZ), use it to define the modular curve X+

ns(n), and relate it to the class number
one problem. This is the approach presented in Serre [14] (and Chen [5] and Baran [3]).

Let R = {1, α} be an order in an imaginary quadratic field. Let the minimal polynomial
for α be x2 − ux+ v ∈ Z[x]. R/pR is either Fp2 or Fp × Fp depending on whether the prime
p ∈ Z splits in R. Let A = R/nR. Note that {1, α} is a basis for A over Z/nZ.

Definition 45. A Cartan subgroup of GL2(Z/nZ) is the image of A× acting on A by
multiplication. If A is not split at p for every prime dividing n, then this subgroup is called
a non-split Cartan subgroup. Denote it by Cns(n).

Although Serre gives a more general definition [14], all non-split Cartan subgroups turn
out to be conjugate so nothing is lost.

For every prime p that divides n, let r = vp(n) and consider the ring automorphism σp of
order 2 that acts as

σp(α) ≡ α mod pr and σp(α) ≡ α mod n/pr.

(It exists by the Chinese remainder theorem.) Using the basis, it gives a matrix Sp in
GL2(Z/nZ). It is clear that for different primes the matrices commute.

Next we consider the normalizer of Cns(n).
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Lemma 46. Denote the normalizer of Cns(n) in GL2(Z/nZ) by C+
ns(n). It is generated by

Cns(n) and the elements Sp for p|n. In particular, if v is the number of prime divisors of n
the size of the normalizer is

n22v
∏
p|n

(1− 1

p2
).

Proof. The proof follows Baran [3]. The first step is to deal with the case n = pr and
determine the normalizer. If k is in the normalizer of Cns(p

r), it acts by conjugation on
Cns(p

r) giving a map tk : Cns(p
r)→ Cns(p

r). Identifying Cns(p
r) withA×, tk extends to a ring

automorphism of A. Since any such ring automorphism will preserve the minimal polynomial
of α (reduced modulo pr), either tk(α) = α or u−α. Thus as a linear transformation tk(z) = z
or tk(z) = σp(z) for z ∈ A. For Z ∈ Cns(pr) corresponding to multiplying by z, this implies

kZk−1 = Z or kZk−1 = SpZSp

as the linear transformation SpZSp corresponds to multiplying by σp(z). As Sp has order 2,
either k or Spk commutes with Cns(p

r). Linear algebra shows the centralizer of Cns(p
r) is

itself, so k ∈ Cns(pr) or k ∈ SpCns(pr). Thus the normalizer of Cns(p
r) is generated by Sp

and Cns(p
r) as claimed. For composite n the result follows through the Chinese remainder

theorem as Sp and Sp′ commute for p 6= p′.

The size of this group is the product of the size of Cns(n) = |A×| = n2
∏
p|n

(
1− 1

p2

)
and

the group generated by the Sp. The latter has size 2r since the Sp are of order 2 and commute
with each other. �

Next we will check that det : C+
ns(n)→ (Z/nZ)× is a surjection.5

Proof. Given an integer r relatively prime to n, we first need to find an α ∈ R such that
NK/Q(α) ≡ ±r mod pm. Recall the norm of α is the determinant of the transformation
multiplication by α. Let p be a prime dividing n. By hypothesis, it is inert in K, so Kp is
a quadratic extension of Qp. By the elementary properties of the Hilbert symbol for local
fields (see Serre [13] Chapter III), we know that Q×p /NKp/Qp(K

×
p ) is a group of order 2. Thus

there exists an α ∈ K×p such that NKp/Qp(α) = ±r. It is easy to see α ∈ Rp. Now pick an
αp ∈ R with αp ≡ α mod pm. Note this implies NK/Q(αp) ≡ ±r mod pm.

Do this for each prime divisor p of n. Use the weak approximation theorem to pick β ∈ R
such that b ≡ αp mod pm for all pm|n. But then NK/Q(β) = ββ ≡ αpαp ≡ ±r mod pm.
Since Sp has determinant −1 when viewed as transformation modulo pm and determinant 1
for the other primes, we can multiply to obtain a transformation with determinant r mod pm

for each prime p. Thus it has determinant r modulo n. �

Now define ΓC+
ns(n) ⊂ SL2(Z) to be the subgroup that reduces modulo N to elements of

C+
ns(n). Because SL2(Z)/Γ(N) ' SL2(Z/nZ), the index of ΓC+

ns(n) in SL2(Z) is the index

of C+
ns(n) ∩ SL2(Z/nZ) in SL2(Z/nZ). The size of SL2(Z/nZ) is n3

∏
p|n

(
1− 1

p2

)
, and the

index of C+
ns(n) ∩ SL2(Z/nZ) in C+

ns(n) is φ(n) as the determinant map is surjective. Thus

[SL2(Z) : ΓC+
ns(n)] is nφ(n)

2v
where v is the number of primes dividing n.

Combined with the theory from the previous section, this implies there is a modular curve
X+
ns(n) with the following properties:

5In any particular case this is simple to check, so this argument is unnecessary for specific uses of C+
ns(n).
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• X+
ns(n) parametrizes equivalence classes of (E,ϕ) where E is an elliptic curve and

ϕ is an isomorphism E[n] → Z/nZ × Z/nZ. Two pairs are equivalent if E = E ′

and ϕ ◦ ϕ−1 ∈ C+
ns(n) ⊂ GL2(Z/nZ). Note that the cusps are not part of this

identification.
• This is isomorphic to ΓC+

ns(n)\H× and is an algebraic curve over Q.

• There is a projection X+
ns(n) → X(1) given by mapping (E,ϕ) → E. The degree is

just the index of ΓC+
ns(n) in SL2(Z) which has already been calculated to be nφ(n)

2v
.

Information about the rational points on this curve will let us solve the class number one
problem. The reductions used in Heegner’s proof allow us to only consider maximal orders.

Theorem 47. Let K be an imaginary quadratic field with class number one, and n be an
integer such that all primes dividing n are inert in K. Any elliptic curve E with complex
multiplication by K gives rise to a unique rational point on X+

ns(n) with integral j invariant.

Proof. Let K be an imaginary quadratic field of class number one with ring of integers
OK . The set of elliptic curves over C with complex multiplication by OK (up to complex
isomorphism) are in bijection with the class group by viewing the curve as a lattice (see C.11
of Silverman [15]). Since the class number is one, all curves with complex multiplication by
OK are isomorphic over C, they all have j−invariant j(OK). It must be rational as it is fixed
by Gal(C/Q).6 Since an elliptic curve over any algebraically closed field of characteristic 0
is uniquely determined by its j−invariant, there is a unique elliptic curve E defined over Q
with this j-invariant. Now pick an identification ϕ : E[n] → Z/nZ × Z/nZ. The absolute
Galois group Gal(Q/Q) acts on E[n], so we get a homomorphism

ρn : Gal(Q/Q)→ GL2(Z/nZ).

We will show that the image lies in the subgroup C+
ns(n). Assuming this, let σ ∈ Gal(Q/Q).

We know that Eσ = E and ϕ◦ρn(σ)◦ϕ−1 ∈ C+
ns(n) so (E,ϕ) = (E,ϕ)σ is a rational point on

X+
ns(n). Therefore OK gives rise to a unique rational point (E,ϕ) with j(E) = j(OK) ∈ Z.
It remains to prove the claim about the image of ρn. The map OK → End(E[n]) coming

from complex multiplication factors through nOK as nEnd(E[n]) = 0. Identifying Aut(E[n])
with GL2(Z/nZ) via ϕ, we see that the image of (OK/nOK)× is a non-split Cartan sub-
group Cns(n). The image of Gal(Q/K) will commute with Cns(n) since it fixes OK . The
image of Gal(Q/Q) will not. Since Cns(n) is its own centralizer, ρn(Gal(Q/K)) ⊂ Cns(n).
K is an imaginary quadratic field, so ρn(Gal(Q/Q)) will normalize ρn(Gal(Q/K)), thus
ρn(Gal(Q/Q)) is contained in C+

ns(n). �

If K is an imaginary quadratic field of discriminant d and class number 1, then all primes

less that 1+|d|
4

are inert (Proposition 2). If p is the largest prime dividing n, then every
imaginary quadratic field with class number 1 and discriminant greater than or equal to 4p
will give a rational point with integral j-invariant on X+

ns(n). For special values of n, it is
feasible to find all such points. For example, Chen [5] and Baran [2], [3] do this for a variety
of small n including n = 9, 15, 16, 20, and 21.

9. The Class Number One Problem and X+
ns(24)

Serre writes that for “N = 24 an elliptic curve is obtained. This is the level considered in
effect by Heegner.” He provides no details, and Heegner’s approach seems to have nothing

6Alternately, use Proposition 35 (or the stronger Theorem 34).
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to do with X+
ns(24). In this section we will find the rational points with integral j-invariant

on X+
ns(24) by looking at X+

ns(8) and X+
ns(3). Any such point on X+

ns(24) naturally maps to
rational points on X+

ns(8) and X+
ns(3). These are nicer because they turn out to have genus

0.

9.1. Computing the Ramification of X+
ns(n) over X(1). The map from X+

ns(n)→ X(1)
is a map of degree nφ(n)/2v. That means the generic fibre is nφ(n)/2v points. The only

places where this fails to happen are the cusps and the elliptic points of X(1), ρ = −1+
√
−3

2

and i. Let H = ΓC+
ns(n), so X+

ns(n) = H\X(1). We have the following computational result.

Proposition 48. Let Γ ⊂ SL2(Z) contain ±1. For z′ ∈ Γ\H∗ above z ∈ X(1), the ramifi-
cation index at z′ is [SL2(Z)z : Γz′ ] where the subscripts denote stabilizers. If σ ∈ SL2(Z)/Γ
and σ(z) = z′, the ramification index can also be computed by [SL2(Z)z : σ−1Γσ ∩ Γz].

All of this material is standard in the theory of modular forms, and found for example in
Diamond and Shurman [8].

Therefore, if we have a set of coset representatives for H in SL2(Z) it is a mechanical
calculation with finite groups to find the ramification indices. There are general results
about the ramification in Baran [3], including formulas for the genus and number of elliptic
fixed points. We only need results for n = 3, 8 so it is much simple to do it by hand.

We only consider the case n = pr. For every m ∈ (Z/prZ)×/{±1}, choose a ym ∈
(Z/prZ)[α]× with N(ym) = m. Let the set of all ym be denoted by Y (pr).

Lemma 49. A set of coset representatives for C+
ns(p

r)∩SL2(Z/prZ) in SL2(Z/prZ) are given
by the linear maps that transform the basis {1, α} of A as

1→ y−1 and α→ y(α + x)

where x ∈ Z/prZ and y ∈ Y (pr).

Proof. We know the index of C+
ns(p

r) ∩ SL2(Z/prZ) in SL2(Z/prZ) is prφ(pr)/2. There are
pr · φ(pr)/2 elements listed above. It suffices to show they all lie in distinct cosets.

Now unwinding definitions shows C+
ns(p

r) ∩ SL2(Z/prZ) consists of the transformation of
the form

1→ y and α→ yα, N(y) = 1

and transformations of the form

1→ y and α→ yα, N(y) = −1

The latter is multiplication by y followed by σp, which is complex conjugation as pr has only
one prime divisor.

If two pair (x, y), (x′, y′) ∈ (Z/prZ) × Y (pr) lie in the same coset, then there is a β ∈
(Z/prZ)[α]× with N(β) = 1 such that multiplying by β relates the two maps, or N(β) = −1
and multiplying by β and then conjugating relates the two. Thus comparing what the
transformations do to 1,

y−1 = (y′)−1β or y−1 = y′−1β.

It follows N(y) = ±N(y′), so y = y′ as both are in Y (pr). Looking at what the trans-
formations do to α, it follows x ≡ x′ mod pr. Thus all of the coset representatives are
distinct. �
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Through the isomorphism SL2(Z)/Γ(pr) → SL2(Z/prZ), these cosets representatives lift
to give cosets for ΓC+

ns(pr)
in SL2(Z).

It is now completely elementary to compute the ramification of X+
ns(8) above X(1) and of

X+
ns(3) above X(1) using Proposition 48. The results are that:

• X+
ns(3) is degree 3 over X(1). It is ramified above ρ and ∞ with index 3, while there

are three unramified (elliptic) points above i.
• Xns(4) is degree 4 over X(1). It is ramified with index 4 above ∞. There are three

points above i, one ramified of index 2 and the other two σ1 and σ2 elliptic. There
are two points above ρ, ρ1 being elliptic and ρ2 being ramified of index 3.
• Xns(8) is degree 4 over Xns(4). There are two points above ∞ each with index 2.

There are three points above each of σ1 and σ2, one ramified of index 2 and the other
two elliptic. There are two points above ρ1, one ramified of index 3 and the other
elliptic. All of the remaining points are unramified.

To compute the genus, we will look at how the Riemann surfaces branch over X(1) and
the standard result that if µ is the index of a congruence subgroup, ei is the number of
elliptic fixed points of order i, and e∞ is the number of cusps, then

g = 1 +
µ

12
− e2

4
− e3

3
− e∞

2
.

In particular, X+
ns(3), X+

ns(4), and X+
ns(8) are genus 0. X+

ns(24) has genus 1. Baran [3]
calculates the genus more generally.

9.2. Computing Uniformizers. Because they are genus 0 and defined over Q, we will
look for an identification X+

ns(n) → P1 that is defined over Q. This is called a uniformizer.
The j−function is a uniformizer for X(1). We will compute the following relations between
uniformizers.

Theorem 50. There exists a uniformizer s : X+
ns(3)→ P1 defined over Q such that j = s3.

In particular, for any imaginary quadratic field giving a rational point on X+
ns(3), the j

invariant will be a cube of a rational number. Since the j invariant is an algebraic integer,
its cube root is an integer. This gives the promised proof of the piece of Theorem 36 we
needed.

Theorem 51. There exists a uniformizer t : X+
ns(4)→ P1 such that

j = −214t(t− 1)3.

Furthermore, t(σ1) = 5
4

+
√
−2
4

and t(σ2) = 5
4
−
√
−2
4

.

Theorem 52. There exists a uniformizer u : X+
ns(8)→ P1 such that

t =
−16u

(4u2 + 4u− 1)2
.

Putting the second and third together, we obtain

Corollary 53. There exists a uniformizer w : X+
ns(8)→ P1 such that

j = −218w(16w + (4w2 + 4w − 1)2)3

(4w2 + 4w − 1)8
.

By picking a different uniformizer the denominator takes on a nicer form.
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Corollary 54. There exists a uniformizer v : X+
ns(8)→ P1 such that

j = −217(v + 1)3 (8(v + 1)3 + (v2 − 2)2)
3

(v2 − 2)8
.

Proof. This follows from setting w =
1

2v + 2
and simplifying algebraically. �

All of the theorems about uniformizers are proven using the ramification data, following
Chen [5] and Baran [3]. Suppose u is a uniformizer for X+

ns(N), and j the uniformizer for
X(1). Since j(ρ) = 0 and j(∞) = ∞, by working over C and comparing poles and zeroes
there is a relation

(12) j = λ

∏
z above ρ

(u− u(z))e(z)∏
z above ∞

(u− u(z))e(z)

where λ is a constant and e(z) is the ramification index of z over ρ or ∞. Since u can be
varied using the automorphisms of P1, by appropriately selecting u the constants can be
made rational giving the desired uniformizer.

For a warm up, we will compute the uniformizer for X+
ns(3). First, note that the (unique)

points P and Q above ∞ and ρ will be rational. To see this, note that j(∞) and j(ρ)
lie in P1

Q and that the uniformizer is a rational function. This implies that acting by any

element of Gal(Q/Q) on Xns([)3 sends P and Q to points above ∞ and ρ since the j value
is unchanged. But these are the unique points above ∞ and ρ, so P and Q are rational.

Now using an automorphism of P1
Q, we may assume that our uniformizer s satisfies s(∞) =

∞ and s(ρ) = 0. These conditions determine s up to scaling. Then (12) combined with the
ramification data from the last section says that

j = λs3.

Now λ will be a rational cube (evaluate on a point corresponding to a class number one field,
where we have calculated j to be a cube), so by rescaling s we get j = s3.

The uniformizers for X+
ns(4) and X+

ns(8) use the same idea, but involve more work. If t is
a uniformizer for X+

ns(4), note that t(ρ1), t(ρ2), and t(∞) are rational since ∞ is the unique
point above ∞, and ρ1 and ρ2 are the unique points above ρ with ramification index 1 and
3. Use an automorphism of P1

Q so that t(∞) =∞, u(ρ1) = 1 and t(ρ2) = 0. Then (12) says

j = λt(t− 1)3.

To compute λ, note that we have additional ramification data over i. There are three points
above i, which means that if we evaluate the right side of equation at i, getting 1728, there
must be a double root. Thus there should exist A,B,C such that

λt(t− 1)3 − 1728 = λ(t2 + At+B)(t− C)2.
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Expand this and note that it must be the zero polynomial. Thus all of the coefficients are
zero, so we obtain a system of equations

−B2Cλ− 1728 = 0

−AC2λ+ 2BCλ− λ = 0

2ACλ− C2λ−Bλ+ 3λ = 0

−Aλ+ 2Cλ− 3λ = 0

Solving the system gives λ = −214, A = −5
2

and B = 27
16

. We also need to evaluate t(σ1)
and t(σ2). They have ramification index 1, so are the roots of t2 + At + B = 0. Thus

t(σ1) = 5
4

+
√
−2
4

and t(σ2) = 5
4
−
√
−2
4

.
The uniformizer for X+

ns(8) over X+
ns(4) is similar but much nastier. There are only two

rational points that help, the two points over ρ1. Choose w so that the elliptic point is sent
to 0 and the ramified point is sent to infinity. Since t(ρ1) = 0, the uniformizer satisfies

t = λ
w

(Aw2 +Bw − 1)2
(13)

as there are two points, ramified of order 2, above ∞. We need to specify λ. Unfortunately,
it is only clear in hindsight to pick λ = −1

2
, so we choose λ later. The other data we have is

that

λ
w

(Aw2 +Bw − 1)2
− t(σ1) = 0

has a double root and likewise for t(σ2). This gives systems of equations, but they are more
complicated than is pleasant to solve by hand. Sage [11] can be used to solve them with
some effort.7 Of course, given the solution it is easy to verify it has the required properties.
This establishes all of the required relations between uniformizers.

9.3. Solving the Class Number One Problem. To solve the class number one problem,
we are looking for rational points on X+

ns(24) with integral j invariant. Such a point projects
to rational points on X+

ns(8) and X+
ns(3). In order for the j invariant to be integral, it is clear

that the uniformizer t must be an integer, while v is (only) rational. Thus we need to find
all rational v and integer s such that

s3 = −217(v + 1)3 (8(v + 1)3 + (v2 − 2)2)
3

(v2 − 2)8
.(14)

Theorem 55. The only solutions (v, s) to (14) are

(∞, 0), (−2,−32) (0.− 96) (−3,−960) (2,−5280) (3,−640320)).

7To do this, rewrite the denominator as w2 +A′w+B′ and let λ = 2. Then let α = t(σ1), α = t(σ2), and
write down the double root condition for t(σ1). This gives 4 equations, three of them multiples of α. Solve
these for the roots, keeping A′ and B′ as free variables. This is possibly but nasty as it involves square roots.
Then change variables so one of the variables is the square root. There are two families of solutions, one of
which makes the fourth equation (the one not a multiple of α) impossible. Now do the same for t(σ2). The
two remaining equations are too nasty to be solved exactly but can be solved numerically. However, if λ = 1
(the obvious first choice) the numerical equation solver doesn’t find the correct solution. λ = 2 works. This
gives a solution with A′ and B′ not rational. However rescaling w finally gives the stated uniformizer with
rational coefficients. If we pick the correct value of λ, −1 with the denominator we’re using, the system of
two equations that could only be solved numerically, which are two cubics, turn out to have integer solutions.
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These correspond to the imaginary quadratic fields

Q(
√
−3),Q(

√
−11),Q(

√
−19),Q(

√
−43),Q(

√
−67), and Q(

√
−163)

Proof. Let v = x
y

where x and y are relatively prime, and let t = −s. We obtain that

t3 =
217y(x+ y)3 (8(x+ y)3y + (x2 − 2y2)2)

3

(x2 − 2y2)8
.(15)

Suppose a prime p divides x2− 2y2. Then if p 6= 2, if p|x is must also divide y, contradicting
the fact that x and y are relatively prime. Likewise p does not divide y. If x+y ≡ 0 mod p,
then x = −y mod p so x2 − 2y2 = −x2 6= 0 mod p, a contradiction. Thus it follows that
vp(y), vp(x+y), and vp(8(x+y)3y+ (x2−2y2)2) are all 0. This implies vp(t) < 0. But t ∈ Z,
so the only prime dividing x2 − 2y2 is 2. If 2|x2 − 2y2, then x must be even. Since x and y
are relatively prime, y is odd and hence two exactly divides x2 − 2y2. Therefore it suffices
to find all (x, y) such that x2− 2y2 = ±1 or x2− 2y2 = ±2 and t is an integer. The amazing
thing is that these equations reduce to the same four Diophantine equations in Lemma 40
that solved the class number one problem in Heegner’s method.

If x2 − 2y2 = ±1, for t to be an integer we need the right side of (15) to be a cube. The
only terms which are not cubes are 217y. Thus we see that y = 2z3 for some integer z. Then
x2 = 2(2z3)2 ± 1. Writing w := 2z2, we obtain x2 = w3 ± 1. Both of these equations are
solved by Lemma 40.

If x2 − 2y2 = ±2, then for t to be an integer the right side of (15) must be a cube. The
denominator is 28, so the only non-cube term is y. Thus y = z3 for some integer z and we
have x2 = 2z6 ± 2. It is clear x is even. Writing x = 2x2, we see that 4x2

2 = 2z6 ± 2, so
2x2

2 = z6± 1. The positive case is covered in Lemma 40. In the negative case, letting w = z2

and multiplying the equation by −1 gives −2x2
2 = (−w)3 +1, the last equation in Lemma 40.

Using the changes of variables to find v = x
y
, only some of these correspond to integer

solutions to the original equations x2 − 2y2 = ±1,±2. For those that do, the table lists the
value of v and t. Since any two imaginary quadratic fields with the same class number are
the same, we identify all the sufficiently large imaginary quadratic fields of class number one
using Table 1. This completes the second proof of the class number one theorem. �

Table 2. Integral Points and the Quadratic Fields of Class Number 1

Equation Solutions v t Quadratic Field
x2 = w3 + 1 (−1, 0) none

(0,±1) ∞ 0 Q(
√
−3)

(2,±3) ±3 -640320, -960 Q(
√
−163), Q(

√
−43)

x2 = w3 − 1 (1, 0) none
z6 + 1 = 2x2

2 (±1,±1) ±2 -5280, -32 Q(
√
−67), Q(

√
−11)

(−w)3 + 1 = −2x2
2 (1, 0) 0 -96 Q(

√
−19)

Serre wrote that for “N = 24, an elliptic curve is obtained.” The above argument produces
4 elliptic curves as subsidiary results, but the main equation does not seem to be an elliptic
curve. However, looking back at equation (14) we see that t will be rational whenever 4

(v2−2)2

is a cube. as the remaining terms are cubes. This is the same as 4(v2 − 2) being a cube.
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Thus t is rational whenever v is a rational solution to

u3 = 4v2 − 8 =⇒ (v′)2 = u3 + 8

where v′ = 2v. This is an elliptic curve of rank 1, so there are infinitely many rational
solutions. Since t must also be an integer only finitely many of these are relevant, but the
argument presented above is easier than trying to find which rational points on the curve
give integral values of t directly.

Finally, note that Q(
√
−7) is missing from this list. This is because 2 is split. The class

number one condition only implied that primes less than 1+7
4

= 2 are inert, so this is not a
problem. But every imaginary quadratic field with discriminant at least 12 does appear as
predicted.

9.4. The Relationship with Heegner’s Argument. The fact that this solution reduced
to the same Diophantine equations as Heegner’s method suggests they are closely related.
Essentially, what happened is that the modular functions in Heegner’s proof are explicit
descriptions of functions on X+

ns(n). The connection between γ2 and the uniformizer s for
X+
ns(3) is simplest, so we will start with that.
Section 3.1 showed that γ2(z) was a modular function on

H\H∗

where H was found to be

H :=

{(
a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 0 mod 3 or b ≡ c mod 3

}
.

However, we can also write down ΓC+
ns(3) using explicitly R = Z[i] and the description of

C+
ns(3) in Lemma 49. They are exactly the matrices of H. Thus γ2 is the uniformizer for

X+
ns(3) over X(1). Using the analytic formula j = γ3

2 , we immediately get Theorem 50
without thinking about ramification.

So what happens for X+
ns(24)? Even the uniformizer for X+

ns(8) looks vastly more com-
plicated than anything appearing in Heegner’s proof. On the other hand, Theorem 23 looks
like the relation between two uniformizers. One of the uniformizers is γ2, the other would
be one for a curve above X+

ns(3). It can’t be one for X+
ns(24) over X+

ns(3) since X+
ns(24) has

genus 1. So instead of thinking of uniformizers, it is better to think of minimal polynomials.
Theorem 23 can be interpreted as giving the minimal polynomial f22 over C(X+

ns(3)) = C(γ2).
The next question is for which congruence subgroup is f22 a modular function. By Propo-

sition 33, we know it has level 24. We also have a description of C+
ns(24). We can lift each

element (or find generators and lift them), write the result in terms of the generators of
SL2(Z), and use Proposition 31 to see if f22 is invariant under C+

ns(24). It is easy to verify
with a computer that of the 192 elements of C+

ns(24), f22 is invariant under 64. Thus it is a
modular function on a curve X that admits a degree 3 map to X+

ns(24). Choose this map
so it is rational, and let f be a modular function on X defined over Q. If P ∈ X+

ns(24)
is a rational point, then the three points Qi above P are permuted among themselves by
Gal(Q/Q). This forces f(Qi) to be an algebraic number of degree 3. This is exactly the
situation we see in Heegner’s proof, as α2 is an algebraic integer of degree 3 whenever the
quadratic field has class number one. So in some sense Heenger’s argument finds the rational
points on X+

ns(24) by looking at an even larger curve.
The resulting Diophantine equation is much nicer than the one obtained from combining

X+
ns(8) and X+

ns(3) because f22 is invariant under more than the 64 elements of SL2(Z/24Z)
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in C+
ns(24) found above. A computer search on SL2(Z/24Z) finds it is invariant under 256

elements (for example, it is invariant under

(
1 1
22 23

)
which is not in C+

ns(24)). Let Y be

the corresponding curve. By comparing sizes of subgroups of SL2(Z/24Z), it follows that
the projection Y → X+

ns(3) is of degree 12, which matches the explicit polynomial for f22
produced in Theorem 23. Thus Heegner’s approach really is essentially the same as Serre’s
approach with N = 24, but is cleaner because it works on a related modular curve to simplify
the relations between the modular functions.
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