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1 Effective Computability and Turing Machines

In Hilbert’s address to the International Congress of Mathematicians, he posed the
problem of devising a method to check whether a polynomial equation possessed any
integral solutions. In 1900 there was no machinery to formalize what Hilbert meant
by the phrase “To devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in rational integers”.
And no one dreamed that it was provably impossible to do so. A formal definition of
computation had to wait until the 1930s, when Alan Turing and his contemporaries
investigated Turing machines, the λ-calculus, µ-recursive functions, and Post systems
as models of computation. All of these methods of computation turn out to be
equivalent. In addition, although working before the construction of the first modern
computer, it is straightforward to write a computer program that will simulate an
arbitrary Turing machine and to describe a Turing machine that will simulate a
modern computer. Alonzo Church theorized that these methods of computations
embody what we think of as “effectively computable”. This is a hypothesis and not
a rigorous mathematical statement so it cannot be proven, but was widely accepted
after Turing’s work. Known as the Church-Turing thesis, it states “Every function
which would ‘naturally be regarded as computable’ can be computed by a Turing
machine.” In practice, we therefore rarely describe a Turing machine formally, but
instead say something informally such as “Given an input < M,x >, where M is
a TM and x is the input, run M on input x, and accept if it accepts or rejects”.
A formal definition of a Turing machine is in the appendix. This abstraction away
from the rigorous definition is analogous to the way that people program in high level
languages like Scheme or C and ignore assembly language and the details of computer
architecture.
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2 Decision Problems

The simplest class of problems to consider are those which, given an input, require
a yes or no answer. For example, given an integer, return yes if it prime and no
otherwise. These are known as decision problems. Formally, given an input alphabet
Σ and a subset A of Σ∗ (Σ∗ is the set of finite strings formed by concatenating elements
of Σ along with the string ””, and is called the Kleene-star of Σ), we want to determine
whether x ∈ Σ∗ is in A. To do so, we want a Turing machine M that will accept x iff
x ∈ A. The set {x ∈ Σ∗ : M accepts x} is called the language of M , and denoted by
L(M). We call a language A recognizable (recursively enumerable) if there is a Turing
machine M with L(M) = A. We call a language A co-recognizable (co-r.e.) if Σ∗−A
is recognizable. If a language is both recognizable and co-recognizable, it is called
decidable (recursive). In other words, a recognizable language is one where we can
always check if a string is in it, but we cannot tell if a string is not in it (because the
Turing machine M may not halt), a co-recognizable language has a Turing machine
that will halt and accept if the input is not in the set and may reject or never halt if
it is in the set, and a decidable language is one that has a Turing machine that will
always halt and give a yes or no answer as to whether its input is in the language.

The language {n ∈ N : n is prime} is decidable since a program that checks
whether any integer from 2 to

√
n is a factor can tell whether or not n is prime.

Here’s another example of a decidable language:

{< M >: M (a Turing machine) halts on the empty string within 55 steps }

Here, we use the notation < M > to denote some representation of the machine
M encoded using the symbols of Σ. The exact representation doesn’t matter, only
that such a representation exists. Since every TM encodes only a finite amount of
information (any computer program is finite) there is no problem in describing a
Turing machine in terms of a finite string. There are numerous possible encodings -
the most familiar is certainly that on a computer: all programs are stored in memory
as a sequence of bits, so there is a natural correspondence between programs and
natural numbers. Given some sort of representation, we let Mx denote the TM that
corresponds to the string x.

Additionally, there is a universal Turing machine U that given input < M,x > (a
description of a TM and input x) will essentially run M on x : accept if M accepts
x, reject if M rejects x, never halt if M never halts on x. Turing gave an explicit
construction of a universal machine and encoding in his papers, but in light of the
Church-Turing thesis we know this is possible because there are virtual machines for
languages like Java and Python that are computer programs that simulate a computer.

Now that we know about representations and the universal Turing machine, let’s
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return to

L = {< M >: M (a Turing machine) halts on the empty string within 55 steps }

Let N be a TM that on input < M > runs M on the empty string (we can do
this since we have a universal machine). We can modify the universal machine so it
counts how many state changes M makes, and have it stop after 55 steps. If M halts
of its own accord, accept, otherwise reject after the 55th step. N always halts and
L(N) = L making L decidable.

3 The Halting Problem

It would very nice if we could tell whether running a TM M on input x will halt, since
if we could do this, any recognizable language would also be decidable. We could then
construct a machine that searches for counterexamples to an unsolved problem, and
check whether it halts (finds one) in order to see if the unsolved problem is true. So
how would we go about checking?

It is easy to see that some Turing machines never halt. Consider the machine that
starts at 1 and adds one repeatedly. When it gets to 0, it accepts. Although we know
this machine never ends, Turing showed that figuring this out for arbitrary Turing
machines is impossible.

Theorem 1. The language {< M,x >: M halts on input x} is recognizable but not
decidable.

Proof. This set is obviously recognizable: simply run M on x (using the universal
machine) and accept if M halts. Now, suppose for the sake of contradiction that
we had a machine H which decided the halting problem. In other words, H takes
< M,x > and accepts if M halts on x, and rejects if M does not halt. Let the machine
N work as follows: it takes its input x and writes < Mx, x > on the tape (remember
Mx is the TM whose representation is x). Then it runs H (using the universal TM)
on < Mx, x >, and accepts if H rejects, and enters an infinite loop if H accepts.

Now, N has a description y. Consider what N does on input y. Well, by our
construction it simply runs H on < My, y >, which checks what N does on y. If
H accepts, then by our construction N loops. However, H accepting on < N, y >
meant that N halted, contradicting the fact that N looped. Likewise, if H rejects,
this means that N accepts (and halts), which contradicts the fact that H rejected,
meaning N didn’t halt. Therefore, we have a contradiction in either case, so there
cannot exist a decider for the halting problem.

Corollary 2. The halting problem is not in co-recognizable. In other words, no Turing
machine can recognize all Turing machines that never halt.
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Proof. The halting problem is recognizable but not decidable. The set of all languages
that are recognizable and co-recognizable are the decidable languages, so if the halting
problem were co-recognizable then it would be decidable.

4 Other Undecidable Problems

Now that we know the halting problem is not decidable, we can use this to show
that many other problems are not decidable. A general way to do this is to assume
that we had a decider for the problem, and then use it to construct a decider for the
halting problem. Since the halting problem is not decidable, we have a contradiction,
and the first problem is therefore not decidable.

Consider the finiteness problem. Let

FIN = {< M >: L(M) is finite }

We will show this is not recognizable by reducing it to HP . (This is the negation of
the halting problem. HP = {< M,x >: M does not halt on x}) Obviously, HP is
co-recognizable but not recognizable. Now, let’s assume there is a TM F that accepts
input < M > if L(M) is finite (and may reject or not halt if L(M) is infinite). How
can we recognize HP using F? Given input < M,x > (a TM and an input x to check
if it halts on), construct a TM N that does the following:

1. On input y, erase y from the tape.

2. Write x on the input tape

3. Run M on x.

4. Accept if M halts.

Now, to check if a TM M halts on x, we just need to construct a description of
this machine N , and run F on N . If F accepts, then L(N) is finite. But since N
ignores its input, L(N) is finite means L(N) = ∅, so M does not halt on x. If F
rejects, then M does halt on x. Therefore, F recognizes HP , which contradicts the
fact that HP is not recognizable. Therefore, FIN is not recognizable. (One subtle
point: is it possible to construct a description of N based just on < M,x >? Yes it
is, and it should be obvious this is possible since compilers are computer programs
that produce other computer programs.)

It turns out FIN is not co-recognizable. This can be shown by deciding the
halting problem with a recognizer for FIN . Given an instance of the halting problem
< M,x >, produce a machine N that:
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1. On input y, save y on some unused section of the TM tape, and write x in the
input position.

2. Run M on x for |y| (length of y) steps.

3. Accept if M has not halted. Reject if M has halted by this time.

If M does not halt on x, then N accepts y, which means L(N) = Σ∗, so < N >
is not in FIN . If M halts on x in t steps, N accepts inputs of length less than t and
rejects longer ones, which means that L(N) is finite. Therefore, < N > is in FIN
iff M accepts x, so we can tell when a machine does not halt with a recognizer for
FIN . Therefore, since HP is not recognizable, FIN is not co-recognizable. But we
already showed that FIN is not recognizable, which means no Turing machine can
always determine whether a TM N accepts a finite number or an infinite number of
strings.

Another undecidable problem that does not deal directly with the behavior of
Turing machines is the Post Correspondence problem. Consider the set of “dominos”

{ b
ca
,
a

ab
,
ca

a
,
abc

c
}

The goal is to place them in a linear order (with repeats) so that the string on the top
reads the same as the string on the bottom. Each domino may be used arbitrarily
many times. For example, a solution to the sample problem is

a

ab

b

ca

ca

a

a

ab

abc

c

However, in general solving this problem is undecidable. By clever encodings, it is
possible to represent the computational history of a Turing machine (what it did at
each time step of its computation) as strings in the Post correspondence problem
so that they can fit together in a solution iff they Turing machine has an accepting
computation. Therefore, being able to solve the Post correspondence problem (or
even detect if there is a solution) would decide the halting problem. As opposed to
halting problem, this problem seems more natural since it does not directly reference
Turing machines.

Finally, consider Hilbert’s 10th problem, to devise an algorithm to determine
whether a given Diophantine equation has any solutions. Yuri Matijasevic showed
in 1970 that this is undecidable too. Although specific cases like linear Diophantine
equations are easily solvable, there is no universal method to determine the solvability
of Diophantine equations.
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5 Rice’s Theorem

We’ve seen two examples of problems about Turing machines that are undecidable.
In fact, the only questions about Turing machines that we’ve been able to answer so
far are trivial ones such as whether a given machine halts in a fixed number of steps
or has a certain number of states. This is no coincidence.

Definition 3. A property is a map P from the set of TM to {0, 1} (false/true) such
that L(M) = L(M ′) implies P (M) = P (M ′). If L(M) = A, the language A has the
property if P (M) = 1. A property is nontrivial if there exist TM M and M ′ such that
P (M) = 1 and P (M ′) = 0.

This rather arcane definition simply says that properties must depend on the
language a machine describes, not the specifications of the machine. For example, a
computation taking at most 55 steps is rather meaningless, since I can write a machine
for an identical language by modifying the machine to first calculate 10 digits of π
and then solving the problem. The quality “takes at most 55 steps” is not a property
since it doesn’t say anything about the language, only the machine.

Theorem 4. If P is a nontrivial property, then the problem “Does L(M) have prop-
erty P” is undecidable.

Proof. Since P is nontrivial, we may as well assume that ∅ does not have the property
and there is a language A that has the property. Let K be the TM with L(K) = A.
The language under consideration is P−1(1) (the set of Turing machines M for which
P (M) = 1). We’ll reduce the halting problem to this problem. Given < M,x >,
produce a TM N that on input y :

1. Saves y onto some unused section of the TM tape.

2. Writes x on the tape.

3. Runs M on x.

4. If M halts on x, run K on y: accept if it accepts.

If M halts on x, then N accepts if K accepts y, which means y ∈ A and L(N) = A.
If M does not halt, then y is not accepted, so L(N) = ∅. Therefore, if M halts on x,
L(N) ∈ P , and if M does not halt, L(N) /∈ P . Therefore, a decider for the language
L = {M : P (M) = 1} would decide the halting problem. Since HP is not decidable,
the language L is undecidable.
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6 The Arithmetic Hierarchy

Now that there are so many undecidable problems, it would be nice to have a measure
of “how hard” they actually are. For example, FIN should be harder than HP, since
we can at least recognize the language of halting Turing machines, while we cannot
recognize the finite or infinite languages. However, there are many languages that
are neither recognizable nor co-recognizable, and we still need some way to compare
them. This leads to the notion of an oracle.

Definition 5. An oracular Turing machine is a normal Turing machine with access
to a yes/no oracle for a language L. At any step, the Turing machine may query the
oracle with a string x and immediately learns whether x ∈ L.

The most common oracle to study is an oracle for the halting problem. Denote this
oracle by HP0. With this oracle, the halting problem is decidable, since a machine,
given an instance of the halting problem, simply returns whatever answer the oracle
gives it. Likewise, the language {< M,x >: M accepts x} is decidable relative to this
oracle.

Definition 6. Inductively define HP0 to be an oracle for the halting problem, and
HPn to be an oracle for the language {< M,x >: Mhalts on x} where M is a Turing
machine with access to the oracle HPn−1. Let Σn be languages recognizable by oracular
Turing machines with access to the oracle HPn−1, Πn languages co-recognizable by
these Turing machines, and let ∆n = Σn ∩ Πn. Let Σ0 be the recognizable languages
for Turing machines with access to no oracle, and Π0 the co-recognizable ones. ∆0 is
the decidable languages.

For example, we know HP ∈ Σ0 but not in Π0. It is obviously in ∆n for n ≥ 1. In
addition, Σn,Πn ⊂ ∆n+1. The collection of all these classes is called the Arithmetic
Hierarchy. There are plenty of technical details to check to make sure this doesn’t
collapse and is well-defined[1]. The most interesting result is the following theorem,
due to Post.

Theorem 7. Σn is the languages of the form

∃x1∀x2∃x3 . . . QnxnP (x1, x2, . . . , xn)

Πn is of the form
∀x1∃x2 . . . Qn−1xnP (x1, x2, . . . , xn)

where P is any formula of first order logic and Qn is ∀ if n is even, ∃ otherwise.
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Although there are some details to check, the proof of the theorem boils down
to the following idea. To check a statement of the first form, the Turing machine
can make an exhaustive search of all x1. Then, for each x1, it uses the oracle HPn−1

to check whether an exhaustive search through the x2 . . . xn to determine whether
∀x2∃x3 . . . QnxnP (x1, x2, . . . , xn) ever terminates. (To do this formally, use induction
to show this subproblem will be in Πn−1.) As the machine searches through the x1,
if it ever finds an x1 that makes the sub-formula true, it returns true. Clearly then,
this language is in Σn. A similar idea works for Πn.

This gives a proof that FIN is not that hard after all.

FIN = {M : ∃t∀x, |x| > t→M does not accept x}

so it is in Σ1. It can be shown that FIN /∈ Π1, so the smallest class containing FIN
is Σ1. In contrast, there are other natural problems which are outside of ∆2.

7 And now

This is just a taste of computability theory. There is a whole theory about models of
computation with less resources than TM, such as finite automata, context-free gram-
mars, and push-down automata. These are incapable of recognizing many common
languages, such as

{anbncn : n ≥ 0}
Sipser’s book[3] is an excellent reference on this topic and most others. For more
information on the arithmetic hierarchy, see [2] or [1]. Sipser also contains a longer
discussion of the Post correspondence problem.

8 Appendix

8.1 A Formal Definition of a Turing Machine

A Turing machine has an infinite (in one direction) tape, with one cell highlighted as
the current cell. The machine also keeps track of its current state, and it has a book
of rules for determining what to do based on its current state and what is written in
the current cell. Every rule tells the machine to do three things: change the current
state, write a symbol in the current tape cell, and then move the current cell left or
right. To begin a computation, the input is written on the tape (starting in the first
cell) and the machine begins in the first cell and in the start state. In addition, the
machine has two special states, the accept or reject states, and entering one of them
signals that the machine has finished and gives a yes or no answer. More formally,
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Definition 8. A deterministic, one tape Turing machine is a 9-tuple

M = (Q,Σ,Γ, �, , δ, s, t, r)

where Q is a finite set of states, Σ is a finite set whose elements are the input alphabet,
and Γ is a finite set containing Σ whose elements are the tape alphabet. ∈ Γ−Σ is
the blank symbol, � ∈ Γ − Σ is the endmarker, δ : Q × Γ → Q × Γ × {L,R} is the
transition function, s ∈ Q is the start state, t ∈ Q is the accept state, and r ∈ Q is
the reject state. (Note: δ(p, a) = (q, b, d) means when in state p with symbol a on the
current tape cell, change to state q, write b on the tape, and move in direction d (left
or right).) For simplicity, let’s restrict δ so that the endmarker � is never overwritten
or moved beyond (so that we don’t have to specify what the machine does if it attempts
to move off the tape). Furthermore, we require that M never leave the accept or reject
state (so that we can talk about a computation finishing when it accepts or rejects).

Now, M runs on x (x is the input, a string of letters in the input alphabet Σ)
as follows: first � is put in the first cell of the tape to mark the tape end, then x is
written on the tape, one letter in each cell, and finally the rest of the tape is filled
with the blank symbol . The current cell is set to be the first (containing �), and the
current state is s. Then the Turing machine runs by repeatedly calculating δ(p, b),
where p is the current state and b is the symbol in the current cell. This is a 3-tuple
(q, b, d), and the current state becomes q, the letter b is written in the current cell,
and then the current cell moves either left or right (d).

Here’s an example of a Turing machine. (This description could be made com-
pletely rigorous using the 9-tuple above, but in practice this is never done since it’s
nearly impossible to understand and painful to produce.) Our goal is to accept or
reject (give a yes or no answer) to the question of is a sequence of a’s, b’s, and c’s of
the form anbncn (n a’s followed by n b’s followed by n c’s). For example, ”aabbcc”
should be accepted, as should ”abc” and ”” (the empty string), while ”abbc”, bac,
and the like should be rejected. Remember that the machine starts with the input
(x) written on the tape and the head at the endmarker. We want the machine to scan
from left to right, and check that all the a’s come before the b’s and the b’s come
before the c’s. It is easy to do this using separate states for ”seen an a” ”seen a b”
and ”seen a c”. If this condition is not satisfied, the machine should enter the reject
state. When the machine sees an empty cell (the end of the input), it should write
a special symbol (say #) there. Next, it successively sweeps left and right between
the � and #, and at each pass it replaces the first a, the first b, and the first c it sees
with a blank ( ). If it does not see one or two of the letters on a pass between the
� and #, then it should reject, and it should accept if it saw no letters at all. Thus,
this machine accepts if the input was of the form anbncn, and rejects otherwise. In
particular note that this machine will always halt, since on each pass after the first it
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crosses out an a, and since the input is of finite length there are only a finite number
of a’s.

8.2 Alternate Types of Turing Machines

Our definition of Turing machines has many possible generalizations. For example,
instead of allowing our tape to be unbounded only in one direction, why don’t we let
it extend infinitely in both directions? However, this alteration will not effect what
the Turing machine can do, since we can simulate this “two way” Turing machine
on a normal Turing machine. We’ll let cell 2n of the standard TM represent the nth

cell to the right of some fixed cell on the two-way tape, and cell 2n + 1 represent
the nth cell to the left of the fixed cell. Through rewriting the transition function
δ, we can convert a two way Turing machine into a normal Turing machine. This
will sometimes change the time complexity of a problem, but it will not effect what
Turing machines can do.

Another extension could be to make the TM nondeterministic, which means that
instead of having just a single state and a single tape, at every step it can “branch”
and make multiple choices. For example, in state x with a written in the current cell,
it might go either left or right. All of the branches are executed at the same time, and
if any branch accepts or rejects, the entire machine accepts or rejects. However, this
too is computationally equivalently to a normal Turing machine (although it certainly
looks like it will work faster than a normal TM). To convert a NTM to a TM, we just
need to use something like parallel processing (or multi-threading) where we execute
steps of each of the branches in sequence. Therefore, nondeterministic TM have the
same computing power as regular TM.
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