
CONSTRUCTIONS WITH FRACTIONAL IDEALS

JEREMY BOOHER

In preparation for the proof of the Main Theorem of Complex Multiplication, for an Abelian
variety A0 over K with CM type (Φ, L) we need to construct an isomorphism θ so that

A0

ξσ,P
//

&&NNNNNNNNNNNN Aσ0

NΦ(p)−1 ⊗OL A0

θ

OO

This talk will explain what all of the objects in this commutative diagram are, and construct θ.
Most of the material comes from Section A.2.6 of the draft CM lifting book [1].1

1. The Serre Tensor Construction

The first thing we need to do is make sense of the tensor product of an Abelian variety with
CM by OL with a finitely generated projective OL-module. This is an example of the Serre tensor
construction.

1.1. The Construction. Before discussing the general construction, let us look at the situation
over the complex numbers.

Example 1. Let A be an Abelian variety over C with complex multiplication by OL. Write A = V/Λ
where V is a complex vector space and Λ is a lattice in V . Let M be a projective, finitely generated
OL module. Observe that M ⊗OL V is a finite dimensional complex vector space, and M ⊗OL Λ
is a lattice in it. If M is a free module, this is obvious. Otherwise, there is a module N so that
M⊕N = OnL, and hence M⊗OLV is a sub-vector space of a finite dimensional complex vector space
OnL⊗OL V . Likewise, M ⊗OL Λ sits inside the lattice OnL⊗OL Λ. Then A′ = (M ⊗OL V )/(M ⊗OL Λ)
is a complex torus. In fact, it is also the analytification of an Abelian variety. A′ is a direct factor
of the Abelian variety OnL ⊗OL A = An, so A′ is an analytic submanifold of a complex projective
manifold. By GAGA, it is algebraic.

Note that the C-valued points of A are just V/Λ, and since M is flat (it is assumed projective),

M ⊗OL V/Λ ' A
′.

In general, let R be a ring, A a R-module scheme over S (an S group scheme with the additional
structure of an R-action), and let M be a finitely generated projective R-module. The Serre tensor
construction makes sense of M ⊗R A.

Theorem 2. The functor that sends an S-scheme T to M⊗RA(T ) is representable by an R-module
scheme over S.

The representing object is denoted M ⊗R A.
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Proof. It is clear that if M = Rn, then the functor is represented by An.
In general, M∨ = Hom(M,R) is finitely generated and projective as M is, and hence finitely

presented. Write
Rm → Rn →M∨ → 0.

Apply HomR(·, A(T )) to get the short exact sequence

0→ HomR(M∨, A(T ))→ HomR(Rn, A(T ))→ HomR(Rm, A(T )).

Identifying these with tensor products, we have a short exact sequence

0→M ⊗R A(T )→ Rn ⊗R A(T )→ Rm ⊗R A(T ).

Thus the functor sending T to M ⊗R A(T ) is representable as it the kernel of a homomorphism
between these two representable group functors. �

The Serre tensor construction is very well behaved. Most properties of A are inherited by M⊗RA,
and the proofs tend to be simple given either the construction as a kernel or realizing a projective
module as a direct summand of a free module. For example, if A is flat then M ⊗R A is flat
as well [1, 1.7.4]. Other important properties that are preserved include smoothness, properness,
and geometric connectedness of fibers. Furthermore, at least in the smooth case, the dimension of
M ⊗RA is the OL rank of M times the dimension of A, as can be seen through a computation with
tangent spaces.

An important observation we will need later is about base change.

Example 3. Let T be an S-scheme and X a T -scheme. Then

(M ⊗R A)T (X) = HomS(X,M ⊗R A) = M ⊗HomS(X,A) = M ⊗AT (X)

so (M ⊗R A)T = M ⊗R AT .

Remark 4. There are also variants of the Serre tensor construction that work for non-projective
modules when the base scheme S is a field [1, Proposition 1.7.4.3].

1.2. Application to CM Abelian Varieties. Let (A, ı) and (A′, ı′) be Abelian varieties defined
over the field K with complex multiplication by L. Assume that OL lies in the endomorphism ring
of A and A′, and that there exists a non-zero OL-linear map A′ → A. (Recall that in practice
we can reduce to the case that the complex multiplication is by the maximal order, and that in
characteristic 0 over an algebraically closed field the existence of the non-zero OL linear map is
equivalent to the CM types coinciding - see Proposition 1.5.4.1 of [1]). We are interested in looking
at M := Hom((A′, ı′), (A, ı)) and the evaluation map M ⊗OL A′ → A.

Proposition 5. With the notation above, M is an invertible OL-module, unchanged by extension
of the ground field K. If the characteristic of K is zero, the evaluation map M ⊗OL A′ → A is an
isomorphism.

Remark 6. If the characteristic of K is not zero, the evaluation map need not be an isomorphism.
An example is given in Example 1.7.4.1 of [1].

Proof. Consider MQ = Hom0((A′, ı′), (A, ı)). We claim it is a one dimensional L vector space. It
is non-zero by assumption. Denote the `-adic Tate vector space of A by V`(A). For a prime not
equal to the characterstic of K, we know that Q`⊗QMQ → HomL`(V`(A

′), V`(A)) is injective. (For
a proof, see Theorem 3 of section 19 of [3].) But HomL`(V`(A

′), V`(A)) is a free module of rank 1
over L`, which forces MQ to have dimension exactly one as an L vector space.

Now M is a finitely generated torsion free module. It therefore injects into MQ ' L, and hence
can be identified with a fractional ideal. Therefore M is invertible.

Now let Ks be the separable closure of K, and consider the map

M = Hom((A′, ı′), (A, ı))→ Hom((A′Ks , ı
′), (AKs , ı)).
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It is clearly injective. The image will have finite index: tensor with Q over Z, and note that
both are one dimensional L-vector spaces. Let n be the index. Let f : A′Ks → AKs be an L-linear
homomorphism. Because nf is defined over K, f is Gal(Ks/K) equivariant, so the index is one and
M is unchanged by extending to the separable closure. For a general field extension, use Chow’s
lemma, which says the group of homomorphisms is under field extension of a separably closed field.

Now assume that char(K) = 0. We may reduce to the case that K = C to show that M ⊗OL
A′ → A is an isomorphism. Using our understanding of CM over the complex numbers, write
A(C) = (R⊗QL)Φ/a and A′(C) = (R⊗QL)Φ/a

′ where Φ is the CM type and a and a′ are fractional
ideals of OL. Then OL-linear homomorphisms are just the endomorphisms of R ⊗Q L coming

from multiplication by c ∈ L with ca′ ⊂ a. Thus M = HomOL(a′, a) = aa′−1. Then the map

M ⊗OL A′ → A on C valued points sends c⊗ x ∈ aa′−1 ⊗ (R⊗Q L)Φ/a
′ → cx ∈ (R⊗Q L)Φ/a. This

is an isomorphism. To see this, recall that a map of complex tori is an isomorphism if it induces an
isomorphism on the homology lattice. But the induced map is M ⊗OL a′ → a given by evaluation,
which is clearly an isomorphism. �

The next proposition mimics another familiar property of tensor products.

Proposition 7. With the notation above, and M any invertible OL-module, the natural map M →
HomOL(A,M ⊗OL A) is an isomorphism.

We will prove this only in characterstic 0, and make some remarks about the general proof at
the end. For now, we only need this result for number fields, but later it will be essential to apply
it over finite fields.

Proof. Assume that K is a field of characteristic 0. Note that M ⊗OL A is an Abelian variety with
CM structure coming from A. It is the same dimension as A because M is invertible. The natural
map in the statement is the one sending m to the map em : A→M ⊗L A which sends x→ m⊗ x.
Observe that em is not the zero map by looking at the associated map on Tate modules, which
is manifestly non-zero. Thus HomOL(A,M ⊗OL A) is non-zero, so Proposition 5 implies it is an
invertible OL module as well.

Now the natural map M → HomOL(A,M ⊗OL A) is certainly injective, so the image is of finite
index as the target is invertible. To show it is an isomorphism as claimed, we will show it is an
isomorphism after tensoring with Z`, which shows that ` cannot divide the index. We do this again
by embedding in the Tate modules, which is where we need ` to not equal the characteristic of K.
Consider the composition

M` → Z` ⊗Z HomOL(A,M ⊗OL A)→ HomOL,`(T`A,M` ⊗OL,` T`A).

The second map is known to be injective. In addition, the composition is obviously injective (it
sends m → [a → m ⊗ a]). Therefore the first map is automatically injective, and to show it
is surjective it suffices to show the composite map is surjective. Since M` is a free rank 1 OL,`
module, we can choose a basis and identify M`⊗OL,` T`A with T`A and check that the natural map

OL,` → EndOL,`(T`A)

is an isomorphism. Since T`A is free of rank 1 over OL,`, this is immediate. �

If ` = char(K), a more complicated argument is needed using Dieudonné modules and `-divisible
groups. Details are found in Example 1.7.4.1 and Proposition 1.2.5.1 of [1].

2. The Reflex Norm and Fractional Ideals

The goal of this section is to extend the reflex norm to the group of fractional ideals, and
find a way to compute with it. Inspiration is taken from Milne’s draft of a book on complex
multiplication [2].
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Let (Φ, L) be a CM type of an Abelian variety. Recall that the reflex field E was defined to be
the fixed field of the elements of Gal(Q/Q) stabilizing Φ. There is a L ⊗Q E module tΦ that is

a descent to E of the L ⊗Q Q-module VΦ =
∏
ϕ∈Φ Q, where c ∈ L acts on the ϕ factor through

multiplication by ϕ(c). It should be thought of as the tangent space to an Abelian variety defined
over E with CM type Φ, although such an Abelian variety in general does not exist.

The reflex norm is a map between the tori

NΦ : ResE/Q(Gm)→ ResL/Q(Gm).

On a Q-algebra R, with c ∈ E×R , the norm is the LR linear determinant of multiplication by c on

tΦ ⊗Q R, an element of L×R. Taking R = Q, this gives the important case NΦ : E× → L×.

We are interested in the reflex norm NΦ : A×E → A×L . This arises by taking R = AQ, since
AF = AQ ⊗Q F . We want to descend this to a map of fractional ideals, which requires us to
understand the behavior on ideles all of whose components are integral units. One approach
involves putting a Z[ 1

N ] module structure on tΦ via descent, which is also useful in an alternate
proof of Theorem 13 [1, A.2.6].

Instead, we will give a direct argument. Define

UF =
∏

v finite

O×Fv ,

and note that UF is a compact open subgroup of A×F,f that contains every compact subgroup.

Now general facts about adelic points of algebraic groups imply that the reflex norm induces a
continuous map A×E,f → A×L,f , so the image of UE is compact and hence contained in UF . So if we

let IF denote the group of fractional ideals of the field F , the reflex norm gives a map

A×E,f → A×L,f → IL

that factors through UE . Thus the reflex norm gives a well-defined homomorphism

NΦ : IE → IL.

We would also like a more concrete description of the reflex norm in special cases. Strangely,
this can be done by generalizing it.

Let K be a Galois extension of Q containing all of the embeddings of L into Q. We will extend
the reflex norm to K by mimicking the usual construction:

NK,Φ : ResK/Q(Gm)→ ResL/Q(Gm)

where for a Q-algebra R, the norm of c ∈ K×R is the determinant of the multiplication by c map

on (K ⊗E tΦ) ⊗Q R. Essentially, we don’t descend VΦ all the way from Q to E, instead stopping
at K ⊃ E. The advantage of this extension is that NK,Φ has a much more explicit description on
K×, while maintaining compatibility with NΦ. Both of the following Propositions come from the
discussion of the reflex norm in Milne’s notes [2].

Proposition 8. This extended reflex norm satisfies NK,Φ = NΦ ◦NK/E.

It should be noted that since NK/E is surjective on the level of algebraic groups, this determines
the reflex norm as a map of tori.

Let R be a Q-algebra, and ϕ ∈ Φ an embedding of L into K. Denote the map NK/ϕ(L) ⊗ 1 :
K ⊗Q R → ϕ(L) ⊗Q R by NK/ϕ(L),R. Now ϕ ⊗ 1 is an isomorphism L ⊗Q R ' ϕ(L) ⊗Q R. For

b ∈ ϕ(L)⊗Q R, denote the (unique) pre-image by ϕ−1(b).

Proposition 9. For any a ∈ (KR)×,

NK,Φ(R)(a) =
∏
ϕ∈Φ

ϕ−1(NK/ϕ(L),R(a)).
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We will prove the second and leave the first as an exercise.

Proof. NK,Φ(R)(a) is the determinant of multiplication by a map (as a LR-linear map) on the
K⊗QL module K⊗E tΦ⊗QR. But K⊗E tΦ is isomorphic to

∏
ϕ∈ΦKϕ, where L acts on Kϕ via ϕ

since extending scalars to Q gives VΦ. Note a acts on each of the factors Kϕ ⊗Q R independently.
As an L-module, Kϕ has a strange action, but Kϕ is a ϕ(L) module with the normal action on K
coming from the inclusion of fields. Since the norm from K to ϕ(L) is given by the determinant of
the multiplication map,

det(ma : Kϕ ⊗Q R→ Kϕ ⊗Q R) = ϕ−1NK/ϕ(L),R(a).

Multiplying over ϕ ∈ Φ proves the proposition. �

Let a be a fractional ideal of E, h the class number of OE , and n = [K : E]. Raising any ideal
to the h power makes it principal. So writing ah = (β) for β ∈ E, the functoriality of the reflex
norm shows NΦ(a)h = NΦ(β), where the left is the reflex norm on fractional ideals and the right
is on elements of E×. If we further raise to the nth power, βn is a norm from K to E, so the two
propositions give a more explicit formula:

NΦ(a)nh = NK,Φ(β) =
∏
ϕ∈Φ

ϕ−1(NK/ϕ(L)(β))

Since the number field norm can also be defined on ideals of K, and is compatible with the norm
of elements,

NΦ(a)nh =
∏
ϕ∈Φ

ϕ−1(NK/ϕ(L)(a
h))

Since there is unique prime factorization of fractional ideals, we can conclude:

Corollary 10. With the notation above,

NΦ(a)n =
∏
ϕ∈Φ

ϕ−1(NK/ϕ(L)(a))

and that for any place v of L

ordvNΦ(a) =
1

n

∑
ϕ∈Φ

ordv ϕ
−1(NK/ϕ(L)(a)).

Example 11. Note that this matches the cases of the reflex norm that Brandon gave in his talk.
For example, if L = Q(ζ7) and Φ = {ϕ1, ϕ2, ϕ3} with ϕi(ζ7) = ζi7, then we had that E = L. We
can take K = L, so ϕi are isomorphisms and

NΦ(a) = ϕ−1
1 (a)ϕ−1

2 (a)ϕ−1
3 (a).

3. Hom Modules and Fractional Ideals

Let (A, ı) be an Abelian variety defined over Q with complex multiplication such that ı−1(End(A)) =
OL and CM type Φ. Pick σ ∈ Gal(Q/E).

As discussed in Brian’s talks, descend A to an Abelian variety (A0, ı0) defined over a finite Galois
extension E ⊂ K ⊂ Q preserving the CM structure. Choose a large enough K so it contains all of
the Galois conjugates of L, is Galois over Q, and so Hom((A0, ı0), (Aσ0 , ı

σ
0 )) is non-zero (as the CM

types are the same, there is some homomorphism over Q). Now we know that

Hom((A0, ı0), (Aσ0 , ı
σ
0 )) = Hom((A, ı), (Aσ, ıσ))

and that this is an invertible OL module according to Proposition 5. Denote it as aσ: note this is
only an OL module, not yet a fractional ideal.
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Now let P be a prime of K over a rational prime p - N such that σ|K =
(
K/E
P

)
. Let p be a

prime of E below P. Note that P is unramified as p - N .

Lemma 12. For n ≥ 1, there is a unique L-linear K homomorphism of Abelian varieties ξσ,n,P :

A0 → Aσ
n

0 that reduces to the qn-power Frobenius morphism over k(P), where q = |k(p)|.

Proof. Brandon talked about how to do this for the q-power Frobenius map. To make this an
honest morphism, and not a map in the isogeny category, it was essential that OL ⊂ End(A0). The
same arguments works for powers of Frobenius. Details are found in the proof of Theorem A.2.3.5
of [1]. Note that this requires that p - N , so A0 has good reduction at P. �

Taking n = 1, the distinguished element endows L⊗OL aσ with a distinguished basis and hence
identifies it with a fractional ideal aσ,P of L.2 Note that this ideal will contain OL. We can
reinterpret this as an embedding

OL = Hom((A0, ı0), (A0, ı0))
ξσ,P◦
↪→ Hom((A0, ı0), (Aσ0 , ı

σ)) = aσ.

Theorem 13. With the previous notation, aσ,P = NΦ(p)−1 where p = P ∩ E.

Proof. First, Corollary 10 makes it transparent that the only prime appearing in NΦ(p) are those
lying above p. Likewise, as the isogeny ξσ,P has degree pr for some r, there is an isogeny ξ′ : A0 → Aσ0
so that ξσ,P ◦ ξ′ = [pr]. Thus the quotient aσ,P/OL is annihilated by pr, so aσ,P is a product of
primes above p. Therefore to prove the equality of fractional ideals, it suffices to show

ordv aσ,P = − ordvNΦ(p)

for any place v lying above p.

Instead of showing this directly, we show that a
f(P/p)
σ,P has a nice alternate description (where

f(P/p) is the residue degree), and relate that to −f(P/p) ordvNΦ(p). This will use the Shimura-
Taniyama formula. Finally we will use Corollary 10 to relate the reflex norm to the result of the
formula.

We start by considering aσn . By Lemma 12, there is a unique element ξσ,n,P that descends to
the qn-power Frobenius over k(P). This identifies aσn with a fractional L-ideal aσ,n,P. Since the
qn-power Frobenius is the n-fold composition of the q-power Frobenius, it should be no surprise
that aσ,n,P is a power of aσ,P.

Lemma 14. For all n ≥ 1, aσ,n,P = anσ,P.

Proof. This is an equality between fractional ideals, not simply an isomorphism of invertible OL
modules. To show this, we want to show that aσ,n+1,P = aσ,Paσ,n,P, which requires us to construct
the following commutative diagram:

aσ,n ⊗ aσ,1
∼ // aσ,n+1

Hom((A0, ı0), (A0, ı0)) = OL
ξσ,n◦⊗ξσ,1◦

jjTTTTTTTTTTTTTTTT ξσ,n+1◦

55kkkkkkkkkkkkkkkk

First, remember that
aσ ⊗OL A0 → Aσ0

is an isomorphism by Proposition 5. Therefore as any τ ∈ Gal(Q/E) gives an automorphism of K
as K/E is Galois, by the base change compatibility of the Serre tensor construction

aσ ⊗OL A
τ
0 ' (aσ ⊗OL A0)τ ' Aτσ0 .

2Throughout this proof, one must be careful about the distinction between abstract invertible OL-modules and
fractional ideals. There is a choice involved in embedding in L, hence the extra subscript.
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Note that 1⊗ ıτ0 is identified with ıτσ0 .
Now taking τ = σn, we see that

aτσ = Hom((A0, ı0), (Aτσ0 , ıτσ)) ' Hom((A0, ı0), (aσ ⊗OL A
τ
0 , 1⊗ ıτ0))

using this identification. Using it again on τ , we see that

aτσ ' Hom((A0, ı0), (aσ ⊗OL aτ ⊗OL A0, 1⊗ 1⊗ ı0)).

But by Proposition 7 this is isomorphic to aσ ⊗OL aτ , so

aτσ ' aσ ⊗OL aτ .

Tracing through the isomorphisms, ξσ,n+1,P is identified with ξσ,P ⊗ ξσ,n,P because ξσ,P ◦ ξσ,n,P
reduces to the qn+1-power Frobenius, and ξσ,n+1,P is the unique lift. In terms of fractional ideals,
this implies

aσ,n+1,P = aσ,Paσ,n,P.

Therefore induction implies aσ,n,P = anσ,P. �

In particular, taking n = f(P|p), we see that anσ,P is the invertible OL module EndK(A0, ı0) since
that power of Frobenius is the identity. The distinguished element identifying it as a fractional ideal
is π0 = ξσ,f(P|p),P, a lift of the |k(P)|-power Frobenius. Therefore anσ,P = π−1

0 OL.

Recall that the Shimura-Taniyama formula (2.1.5.1 of [1]) says that

ordv(π0)

ordv qP
=

|Φv|
[Lv : Qp]

.

This was proven in Dan’s talk: recall that Φv ⊂ Φ ⊂ HomQ(L,K) consists of the embeddings of L
into K that occur in the CM type and such that the P-adic place induces v via the embedding.

Proposition 15. Suppose that f(v|p) ordv(NΦ(p)) = f(p|p)|Φv|. Then ordv(aσ,P) = ordv(NΦ(p)−1).
In particular, Theorem 13 holds.

Proof. By assumption f(v|p) ordv(NΦ(p)) = f(p|p)|Φv|. Multiplying by −f(P|p)
f(v|p) , we obtain

ordv(NΦ(p)−f(P|p)) = |Φv|
−f(P|p)

f(v|p)
.

But basic algebraic number theory says f(P|p)
f(v|p) = f(P|p) ordv(p)

[Lv :Qp] =
ordv(qP)
[Lv :Qp] . Therefore

ordv(NΦ(p)−f(P|p)) = −|Φv|
ordv(qP)

[Lv : Qp]
= − ordv(π0)

The last step uses the Shimura-Taniyama formula. Because a
f(P|p)
σ,P = π−1

0 OL, this completes the
proof. �

It remains to establish f(p|p)
f(v|p) |Φv| = ordv(NΦ(p)). Let n = [K : E], and P = P1, . . . ,Ps denote

the primes of OK above p ⊂ OE . They are unramified as p - N . Note that sf(P|p) = n. By
Corollary 10 it suffices to check that

n
f(p|p)
f(v|p)

|Φv| = ordv(NΦ(p)) =
∑
i,ϕ∈Φ

ϕ−1NK/ϕ(L)(Pi).

But since the norm of the ideal Pi from K to ϕ(L) equals (Pi ∩ ϕ(OL))f(Pi|Pi∩ϕ(OL)), and we am
only interested in the place v of L, we only need to consider primes Pi and embeddings ϕ so that
ϕ−1(Pi ∩ϕ(OL)) is the prime corresponding to v. In other words, we only need to consider primes
Pi and ϕ that pull it back to v. For P1 = P, these are the primes of Φv by definition. Since K/L
is Galois, the number is the same for the other primes (s of them total). Finally, note that when
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ϕ(v) lies between p and Pi, we have f(Pi|p)f(p|p) = f(Pi|ϕ(v))f(ϕ(v)|p), and these quantities are
independent of ϕ and Pi as K/L and K/E are Galois. Thus we have

sf(Pi|ϕ(v)) =
n

f(Pi|p)
f(Pi|ϕ(v)) = n

f(p|p)
f(v|p)

.

Therefore ∑
i,ϕ∈Φ

ordv ϕ
−1NK/ϕ(L)(Pi) = |Φv|n

f(p|p)
f(v|p)

This completes the proof. �

By applying the Serre tensor construction to the inclusion OL ↪→ NΦ(p)−1 and identifying
OL ⊗OL A0 with A0, we get a map j : A0 → NΦ(p)−1 ⊗OL A0.

Corollary 16. There is a unique OL-linear isomorphism

θσ,P : NΦ(p)−1 ⊗OL A0 ' Aσ0
of Abelian varieties over K making the following diagram commute

A0

ξσ,P
//

j &&NNNNNNNNNNNN Aσ0

NΦ(p)−1 ⊗OL A0

θσ,P

OO

Proof. Proposition 5 implies that the evaluation map Hom((A0, ı0), (Aσ0 , ı
σ
0 )) ⊗OL A0 → Aσ0 is an

isomorphism. The theorem shows that the fractional ideal aσ,P associated to Hom((A0, ı0), (Aσ0 , ı
σ
0 ))

equals the fractional ideal NΦ(p)−1. This gives the isomorphism θσ,P. The diagram commutes
because aσ is made into a fractional ideal via the map

OL = Hom((A0, ı0), (A0, ı0))→ Hom((A0, ı0), (Aσ0 , ı
σ
0 )) = aσ

given by composition with ξσ,P. �

Next time Iurie will begin proving the main theorem. One step is to use θσ,P, which depends on

the descent to K and the choice of P, to construct a canonical version over Q.
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