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Modern cryptography attempts to solve problems of security in an electronic age.
It solves important problems like how to communicate secretly, verify identities, and
setting up verifiable secret computations. After all, surely you’d like to be able to
purchase a copy of Hardy and Wright online at the end of PROMYS without hav-
ing your credit card number stolen. Cryptography provides mathematical solutions
drawing on number theory and abstract algebra.

1 Public Key Encryption

When buying Hardy and Wright, Alice needs a way to send information (the credit
card number) in such a way that only Bob, the intended recipient, can access it. The
simplest way to do so is to use public key cryptography, which eliminates the need
for secret, previously agreed-upon information.

Public key encryption refers to methods that use a publicly available key to encrypt
a message, while the user keeps a separate, private key secret that is required to
decrypt the message. The standard situation is that Alice, trying to send a message
to Bob, uses the public key to encrypt her message. Bob then uses the private key
to decrypt the message. Ideally, Eve, who eavesdrops on the encrypted message, gets
no useful information about the message. The most widely used and studied public
key system is RSA. Therefore, let’s study Rabin encryption, which like RSA makes
heavy use of modular arithmetic.

1.1 Rabin Encryption

To set up Rabin encryption, Bob picks two large prime numbers p and q, both of
which are congruent to 3 mod 4. He publishes n = pq, the public key. p and q are
the private decryption keys, so keep them secret.

For Alice to send a message M , it needs to be an integer satisfying 0 ≤ M < n.
(If the message is text, it can be converted into a number using ASCII and then split
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into digit blocks of the appropriate size.) Alice then calculates E(M) = M2 mod n,
and sends E(M) to Bob.

Bob can decrypt the ciphertext E(M) = C by finding the square roots of C.

Since C is a square, Bob knows from number theory that C
p−1
2 = 1 mod p. Write

p = 4k − 1. Then C2k−1 = 1 mod p, and (Ck)2 = C mod p. Therefore, Ck is a
square root of E(M) modulo p. −Ck is the other. Doing the same thing modulo q,
Bob uses the Chinese Remainder Theorem to find the four square roots of C modulo
n. One of these is the message which Alice sent him. However, this poses a problem:
how does Bob tell which square root is the correct one? Without help, he can’t. There
are various clever ways to solve the disambiguation problem. The simplest involves
padding the message with a prearranged sequence of bits. For example, Alice and
Bob agree that at the start of every message they’ll put the word PROMYS. (So
instead of saying “Hello Bob”, the message would be “PROMYSHello Bob”. When
Bob sees all four square roots, it’s unlikely that any of the 3 extraneous square roots
will start with PROMYS, so Bob can figure out which of the four choices is Alice’s
message. However, this complication means that RSA encryption is more often used
in practice, despite it requiring substantially more modular arithmetic than Rabin
encryption.

The other important question is whether Eve can read Alice’s message. In theory
she can: all she needs to do is factor n, find its two prime factors, and follow the
same procedure Bob did. However, if both p and q were chosen to have 800 digits
each, the fastest known methods of factoring n would require centuries. Researchers
have been searching for efficient factoring algorithms for centuries, and the fastest
still essentially use (clever) brute force. Therefore, cryptographers (and companies
and governments) agree that factoring n to decode the message is not practical and
not a threat.

Suppose Eve had a magic algorithm that decrypted messages encrypted using Al-
ice’s public key n. Using this, Eve can factor n. To do so, Eve picks a random integer
x from the range [0, n). Then she calculates x2 mod n, and uses the decryption al-
gorithm to find a square root of x2 mod n. Since x was chosen randomly, there is
a one-half chance that the decryption algorithm produces ±x mod n. In this case,
just try again. Otherwise, Eve has x and y with x2 = y2 mod n and x 6= ±y mod n.
Then (x − y)(x + y) = 0 mod n, but neither factor is 0. This means that x − y
or x + y is a multiple of p, while the other is a multiple of q. Using the Euclidean
algorithm (which is very efficient) produces the greatest common factor of x− y and
n, which is one of the prime factors. Therefore, Eve can factor n if she can break
Rabin encryption. Conditional on the widely believed fact that factoring is hard,
Rabin encryption is unbreakable. This is in contrast to the situation with RSA, for
which no one has published a way to break it but no one can prove how secure it is.
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1.2 Paillier Encryption

Rabin encryption is nice for many purposes. However, suppose Alice wanted to vote
electronically. If she simply encrypts her vote, Eve can just try encrypting a vote for
Hardy and a vote for Wright and check which of the two Alice voted for. Thus, even
though the message is encrypted, information leaks out because the range of possible
messages is so limited. One fix would be to append a random string (a nonce) to the
start of the message. A nicer one is to use Paillier encryption.

To set up Paillier encryption, Bob picks two large primes p and q such that
(pq, φ(pq)) = 1. The public key is n = pq. Note that φ(n) = (p − 1)(q − 1) and
φ(n2) = pq(p−1)(q−1) = nφ(n). In particular, for a ∈ Un2 , an(p−1)(q−1) = 1 mod n2

by Euler’s theorem.
Alice encrypts a message M (an integer between 0 and n) by first randomly

selecting r from Un2 . The encryption is E(M, r) = (1 + Mn)rn mod n2. Note that
because of the random unit, it is no longer possible to decrypt messages when the
space of possible messages is constrained.

Bob decrypts C = E(M, r) by first raising C to the φ(n) = (p − 1)(q − 1)
power. Since ((1 + Mn)rn)φ(n) = (1 + Mn)φ(n)rnφ(n) = (1 + Mn)φ(n) mod n2, the
random r goes away. Using the binomial theorem, (1 + Mn)φ(n) = 1 + Mnφ(n) +

(Mn)2 φ(n)φ(n−1)
2

+ . . . = 1 + Mnφ(n) mod n2, where all the remaining terms disap-
pear modulo n2. Therefore, given C, Bob can calculate 1 + Mnφ(n) = y mod n2.
But subtracting one and multiplying by φ(n)−1 (which exists since φ(n) and n are
relatively prime), Bob knows Mn = (y − 1)φ(n)−1 mod n2. Therefore, he knows M
modulo n, which suffices to uniquely recover the message.

Can Eve decrypt the message without the knowledge of the factorization of n?
She can’t easily calculate φ(n) without knowing the prime factorization, since if she
directly counts the number of integers less than n and relatively prime to n, the first
one that fails will give a factor of n. A more careful analysis shows that breaking
Paillier encryption would allow taking roots modulo n, which is believed to be as hard
as factoring.

Paillier encryption is called homomorphic because E(M1, r1)·E(M2, r2) = E(M1+
M2, r1r2) mod n2. Unwrapping the definitions,

E(M1, r1)E(M2, r2) = (1 +M1n)rn1 (1 +M2n)rn2
= (1 +M1n+M2n+M1M2n

2)(r1r2)
n

= E(M1 +M2, r1 · r2) mod n2

In other words, it is possible to produce an encryption of M1+M2 knowing encryptions
for M1 and M2 but not the actual messages. This could be useful in electronic
voting. A voting machine would encrypt a vote, where it could be sent to a central
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collecting point and added to the running total without determining the actual vote
and violating the voter’s privacy. Only after the election would the private keys be
released and the totals decoded. In an election, this malleability is useful, although
in general it can be worrying. An adversary could produce an encryption of M1 +M2

with no knowledge of M1 or M2 just by multiplying the encryptions, which in a few
situations is dangerous. For sending text, this doesn’t matter, since if M1 is a number
representing a string of text, it’s unlikely M1+M2 will be a meaningful sentence unless
M2 was chosen with knowledge of M1.

2 Secret Sharing

Another use of cryptography involves sharing a secret among multiple parties. Sup-
pose Dan wants to place a bid in a secret auction on a copy of Hardy and Wright,
but he doesn’t trust the auctioneer. Dan thinks the auctioneer will give his bid to
Eve, so that she can overbid him by one cent. Dan does trust that no more than 5
of the 11 people involved in the auction will talk to Eve, though. Is there a way to
distribute his bid so that 6 of the people can reconstruct it but no 5 of them have
any information about it?

More generally, (n, k) secret sharing is the problem of distributing a secret number
s among n people so that no k−1 of them have any information about s but k of them
can determine s. Shamir’s secret sharing does this by giving the nth party f(n), where
f is an appropriately chosen polynomial. The dealer Dan picks random field elements
a1, . . . ak−1, and uses the polynomial f(t) = s+ a1t+ a2t

2 + . . .+ ak−1t
k−1. He gives

the nth person f(n). For k people to recover the secret, they just pool their shares
and use Lagrange interpolation to find the unique degree k − 1 polynomial passing
through the k points. (Lagrange interpolation works over any field. In practice, a
large finite field would probably be used.) The secret is just the constant term.

Any k − 1 people have no knowledge about s. They have k − 1 points on the
polynomial, but there is a degree k − 1 polynomial going through their k − 1 points
and (0, t) for any integer t, so their combined knowledge reveals nothing about s.

3 Zero Knowledge Proofs

Finally, Peggy would like to prove her identity to Victor. After doing so, Eve should
not be able to use the information in Peggy and Victor’s conversation to impersonate
Peggy, and Victor needs to be almost certain of Peggy’s identity (in any conversa-
tion, there is a non-zero chance that the impostor could randomly choose the correct
responses to the verifier’s queries, so we only require that the probability of error be
arbitrarily small.)
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Peggy and Victor can accomplish this through a zero knowledge proof: Peggy
proves that she knows a secret associated to her without giving Victor (or Eve) any
information beyond the fact that she knows it. This protocol allows Peggy to identify
herself securely, and it can also be modified into a static cryptosystem to allow Peggy
to sign messages.

Peggy picks a large value of n for which it is hard to compute square roots (for
example, a product of two large primes as in the Rabin cryptosystem). She chooses
a secret sa in Un. She publishes s2

a mod n along with the modulus n, which serve as
her identity.

Peggy can prove her identity to Victor through a series of repeated conversations.
In each round, Peggy begins by picking a random z1 from Un, and sending Victor z2

1

mod n. Victor chooses to ask for z1 or z1sa mod n at random. Peggy then sends
Victor the quantity he requested. He checks that the square of Peggy’s reply matches
s2
az

2
1 mod n or z2

1 mod n, both of which he can calculate from the public information
s2
a and z2

1 . Peggy passes the round if this matches. They then repeat this until Victor
is satisfied with Peggy’s identity.

There are three properties to check: that this is complete, sound, and zero-
knowledge. To be complete means that Peggy can always pass this test. Being sound
means that if Eve passes the protocol with no prior knowledge gained by eavesdrop-
ping, Eve can find a square root of s2

a modulo n, which was assumed to be hard.
Finally, to be zero knowledge means nothing can be learned by eavesdropping. In
other words, the proof doesn’t give anything away.

This is complete since Peggy can easily meet either of Victor’s requests as she
knows both sa and z1. It is also sound. In order to always pass the protocol, the
prover needs to be able to produce a square root for both z2

1 and s2
az

2
1 modulo n when

challenged at random by Victor. But if the prover knows both of these, then he can
calculate ±sa mod n through simple modular arithmetic. Therefore, an impostor
has at most a 1

2
chance of passing one round of the conversation. If Victor wants the

probability that an impostor passes the test is less than ε, he simply requires that
Peggy participate in n rounds, where 2−n < ε.

Finally, is this zero-knowledge? To be zero knowledge means that Peggy doesn’t
give any information away by participating in the protocol. To show it is, it suffices
to show that Eve can simulate conversations with the same probability distribution
as valid conversations between Peggy and Victor. If she can do this, then she gains
no information if Peggy and Victor actually use the protocol, since she can produce
sample conversations on her own instead of bothering to listen. Eve can simulate a
round easily: she first decides whether Victor will ask for z1sa or z1 at random. In
the first case, she decides the first message will be x2(sa)

−2 mod n, where she picks
x at random. Then the third step of the protocol has the prover give the verifier a
square root for x2(sa)

−2s2
a, which because of her choice of message is just x, which
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Eve knows. If she decided on the second option (that the verifier demands z1) she
just selects x at random, lets the first message be x2 mod n, and lets the provers
reply be x. In either case this is a valid round. Since she randomly selects Victor’s
response, this aspect has the same probability distribution as a real conversation. She
also randomly selects x from Un, so both x and xsa are random variables from Un. In
a real conversation both Peggy and Victor are choosing things at random as well, so
Eve’s simulation has an identical probability distribution to real conversations. Since
she can simulate rounds alone, the protocol is zero knowledge.

4 Further Cryptography

There are many more interesting topics in cryptography, including verifiable secret
sharing, key exchange, oblivious transfer, and digital signatures. In addition, these
can be combined into complicated systems to run secure actions, conduct electronic
voting, or create anonymous digital cash. Two nice sources, available freely online,
are “A Taste of Elliptic Curve Cryptography”[2] and the “Handbook of Applied
Cryptography”[1].
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