
THE 2011 T-SHIRT: CUBIC RECIPROCITY

JEREMY BOOHER

Cubic reciprocity provides an answer to the question of which elements are cubes, just as qua-
dratic reciprocity regards the squares modulo p. However, the natural setting for cubic reciprocity

is not Z, but rather Z[ζ3] = Z[−1+
√
−3

2 ]. This ring is known as the Eisenstein integers. This summer,
you might have shown that this ring has unique prime factorization.

Let π be a prime in Z[ζ3] that does not divide 3. Consider Z[ζ3]π. The analogue of Euler’s

Theorem says that for any α relatively prime to π, αNπ−1 ≡ 1 mod π. Hence α(Nπ−1)/3 is a cube
root of unity modulo π. Since the cube roots of unity are distinct, factoring xNπ−1− 1 shows there
is a unique m = 0, 1, 2 such that α(Nπ−1)/3 ≡ ζm3 mod π.

Definition 1. Let ζm3 be the unique root of unity such that α(Nπ−1)/3 ≡ ζm3 mod π. Define the
cubic residue character to be (α

π

)
3

:= ζm3 .

If π|3, define
(
α
π

)
:= 0.

The cubic residue character shares many algebraic properties with the quadratic character. They
are established in the same way. For example, it is straightforward to verify that

(
α
π

)
3

depends
only on α mod π and that the character is multiplicative. (See Problem Set 19, Problem 8.)

An added complication caused by moving from Z to Z[ζ3] is the additional units. The notion of
a primary prime distinguishes between the various associates of π.

Definition 2. If π is a prime in Z[ζ3], then π is primary if π ≡ 2 mod 3.

Lemma 3. Let Nπ = p ≡ 1 mod 3. Then exactly one of the associates of π is primary. If π is
primary, so is π.

This will be proven in the next section. This provides enough notation to state the law.

Theorem 4 (Cubic Reciprocity). Let π1 and π2 be primary primes, Nπ1 6= Nπ2 6= 3. Then(
π1
π2

)
3

=

(
π2
π1

)
3

.

Remark 5. There are also supplemental laws for units and the prime dividing 3.

The proof of cubic reciprocity, first published by Eisenstein in 1844, uses Gauss and Jacobi
sums. These are examples of a general class of sums called character sums. We first will explain
the arithmetic of Z[ζ3], then introduce character sums before moving on to the proof of cubic
reciprocity.

1. Preliminaries about Z[ζ3]

We now prove Lemma 3, the result about primary primes.

Proof. Write π = a+ bζ3. The associates of π are π, ζ3π, ζ23π, −π, −ζ3π, and −ζ23π. In terms of a
and b, these are

a+ bζ3, −b+ (a− b)ζ3, (b− a)− aζ3, −a− bζ3, b+ (b− a)ζ3, (a− b) + aζ3
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Since p = a2 − ab + b2 ≡ 1 mod 3, one of a and b is not a multiple of 3. If a is a multiple of 3,
then either the third or sixth is primary depending on whether b ≡ 1 mod 3. If a is not a multiple
of 3, replacing π by −π we may assume a ≡ 2 mod 3. But a2 − ab + b2 ≡ 1 mod 3 implies that
b(b− 2) ≡ 0 mod 3. If 3|b, then π is primary. If b ≡ 2 mod 3, b+ (b− a)ζ3 is primary.

For uniqueness, assume a+bζ3 is primary. A direct inspection shows none of the other associates
satisfies the correct congruence conditions.

If π = a+ bζ3 is primary, π = a+ b(−1− ζ3) = a− b− bζ3 is obviously primary. �

Let π be a complex prime of norm p. This means that p ≡ 1 mod 3. The residue field Z[ζ3]π a
finite field with N(π) = p elements. But this is the same as Zp: simply map 1 ∈ Z[ζ3]π to 1 ∈ Zp
and send multiples of 1 to the same multiple of 1. The cubic residue character modulo p is thus
defined on Zp.

There is an interaction between the complex conjugation and the cubic residue character. In
particular (α

π

)
3

=

(
α2

π

)
3

and
(α
π

)
3

=

(
α

π

)
3

.

To prove the first, note that
(
α
π

)
3

is a cube root of unity, so conjugation is the same as taking the
multiplicative inverse which is the same as squaring. For the second, conjugating the expression

π|α(N(π)−1)/3 −
(α
π

)
3

gives π|α(N(π)−1)/3 −
(α
π

)
3
.

Since N(π) = N(π), this implies
(
α
π

)
3

=
(
α
π

)
3
.

In particular, if n ∈ Z and q is a rational prime that is prime in Z[ζ3],
(
n
q

)
3

=
(
n
q

)
3

= 1. The

primes in Z that remain prime in Z[ζ3] are those for which
(
−3
q

)
= −1, which is equivalent to q ≡ 2

mod 3. But in this case 3 6 |(q − 1), the order of (Z/qZ)×, so every element is a cube as the cubic
character indicates.

2. Characters, Gauss and Jacobi Sums

Definition 6. In this setting, a character is a map χ : Up → C× such that for a, b ∈ Up, χ(a)χ(b) =
χ(ab). Sometimes we extend this to a map χ : Z → C× by setting χ(n) = χ(n mod p) if n 6= 0
mod p, and χ(n) = 0 if p|n.

For example, the Legendre symbol a →
(
a
p

)
is a character for Up. A boring character is the

trivial character which sends all non-zero elements to 1. If p ≡ 1 mod 3, there is a cubic residue
character as well.

The fundamental result about characters we will need is called the orthogonality of characters.

Proposition 7. Let χ be a characters of Zp. Then∑
x∈Up

χ(x) = 0

unless χ is the trivial in character, in which case the sum is p− 1.

Proof. Multiplication by a ∈ Up is a permutation of Up, so∑
x∈Up

χ(x) =
∑
x∈Up

χ(ax) = χ(a)
∑
x∈Up

χ(x).

Since χ is non-trivial, there is an a with χ(a) 6= 1, which forces the sum to be 0. If χ is trivial, the
sum of p− 1 ones is p− 1. �
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Corollary 8. If χ and χ′ are characters and χ 6= χ′, then∑
x∈Up

χ(x)χ′(x) = 0

Proof. The function f(x) = χ(x)χ′(x) is a character. �

Along the same lines, we have a result about roots of unity.

Proposition 9. Let p be a prime and ζp a primitive pth root of unity (like e2πi/p). Then for a ∈ Z∑p−1
k=0 ζ

ak
p = 0 if a 6= 0 mod p, while if a ≡ 0 mod p the sum is p.

Proof. The pth roots of unity are solutions to xp − 1 = 0. The sum of the roots of this polynomial
is 0 as the coefficient of xp−1 is zero. Raising the pth roots of unity to the a power permutes them
unless a is a multiple of p, in which case they all map to 1. �

With these preliminaries about characters, we can now analyze Gauss and Jacobi sums.

Definition 10. Let p be a prime and χ a character Up → C×. Let ζp = e2πi/p. The Gauss sum
g(χ) is defined to be

g(χ) :=
∑
x∈Up

χ(x)ζxp .

What is a root of unity raised to an integer modulo p? If we pick two integers n,m that are
equivalent modulo p, we know ζnp = ζmp as ζpp = 1. Thus define ζxp = ζnp when n is any integer that
reduces to x ∈ Up. Note that we can equally well sum over x ∈ Zp, since we defined χ(x) = 0 if
p|x.

Definition 11. Let p be a prime and χ1 and χ2 characters Up → C×. The Jacobi sum J(χ1, χ2)
is defined to be

J(χ1, χ2) :=
∑
x∈Zp

χ1(x)χ2(1− x)

Proposition 12. Let χ and χ′ be non-trivial characters modulo p. Then |g(χ)|2 = p and if

χ 6= (χ′)−1 then J(χ, χ′) = g(χ)g(χ′)
g(χχ′) .

Proof. For the first assertion about the Gauss sum, we will use a “twisted” Gauss sum

ga(χ) =
∑
x∈Zp

χ(x)ζaxp .

Note that g0(χ) = 0 by the orthogonality relations. We will calculate

S =
∑
a∈Up

ga(χ)ga(χ) =
∑
a∈Zp

ga(χ)ga(χ)

in two different ways. On one hand, as multiplying by a 6= 0 is a permutation of Up so

ga(χ) = χ(a)−1
∑
x∈Zp

χ(a)χ(x)ζaxp = χ(a)−1g(χ).

Thus we can evaluate S as

S =
∑
a∈Up

ga(χ)ga(χ) =
∑
a∈Up

χ(a)−1g(χ)χ−1(a)g(χ) = |g(χ)|2
∑
a∈Up

χ(a)−1χ−1(a) = (p− 1)|g(χ)|2.
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On the other hand,

S =
∑
a∈Zp

∑
x,y∈Zp

χ(x)χ(y)ζa(x−y)p

=
∑

x,y∈Zp

χ(x)χ(y)
∑
a∈Zp

ζa(x−y)p .

When x− y 6= 0, the inner sum is a sum over all pth roots of unity, so equals 0. Otherwise it is the
sum of p ones. Thus as χ(x)χ(x) = 1 if x 6= 0 mod p, we have

S =
∑
x∈Zp

χ(x)χ(x)(p− 1) = p(p− 1).

Equating the two expressions for S gives |g(χ)|2 = p.
For the second, note that

g(χ)g(χ′) =

(∑
x

χ(x)ζxp

)(∑
y

χ′(y)ζyp

)
=
∑
x,y

χ(x)χ′(y)ζx+yp

=
∑
t

∑
x+y=t

χ(x)χ′(y)ζtp.

Evaluating the sum over x+ y = t first, if t = 0 orthogonality of characters implies∑
x∈Zp

χ(x)χ′(−x) = χ′(−1)
∑
x∈Zp

χ(x)χ′(x) = 0

since the product character χχ′ is non-trivial. If t 6= 0, then tx+ ty = t, so∑
x+y=t

χ(x)χ′(y) =
∑
x+y=1

χ(tx)χ(ty) = χ(t)χ′(t)J(χ, χ′).

Substituting, we see that

g(χ)g(χ′) =
∑
t6=0

χ(t)χ′(t)J(χ, χ′)ζtp = J(χ, χ′)g(χχ′). �

3. The Proof of Cubic Reciprocity

We now specialize to the case we care about, that of the cubic residue character. Denote it by
χπ :=

( ·
π

)
3
. The key fact about the Gauss and Jacobi sums is the following.

Theorem 13. Let χπ be the cubic residue character. Then |g(χπ)|2 = p. Additionally, g(χπ)3 =
pJ(χπ, χπ) and J(χπ, χπ) is a primary prime in Z[ζ3].

Proof. The first is just Proposition 12. For the second, note that χ2
π is not the trivial character, so

by the same Proposition we also know that

g(χπ)3 = g(χπ)g(χ2
π)J(χπ, χπ) = g(χπ)g(χπ)J(χπ, χπ) = pJ(χπ, χπ).

Finally, to show that J(χπ, χπ) is primary, recall that p ≡ 1 mod 3. Then we know

g(χπ)3 =

∑
x∈Zp

χπ(x)ζxp

3

≡
∑
x∈Zp

χπ(x)3ζ3xp mod 3.
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However, as χπ is a cubic character, χπ(x)3 = 1 unless π|x. Therefore the sum simplifies and we
conclude

pJ(χπ, χπ) = g(χ)3 ≡
∑
x 6=0

ζ3xp ≡ −1 mod 3.

Since p ≡ 1 mod 3, we conclude J(χ, χ) ≡ −1 + 0 · ζ3 mod 3. This is exactly what is means to be
primary. �

The first step in the proof is to find the factorization of g(χπ)3.

Proposition 14. If π is primary, J(χπ, χπ) = π and consequently g(χπ)3 = π2π.

Proof. Let J(χπ, χπ) = π′. π′ must be a primary prime dividing p, so it is either π or π as both
are primary but none of the associates are primary. We need to rule out the later.

Directly from the definition and Euler’s criterion

J(χπ, χπ) =
∑
x

χπ(x)χπ(1− x) ≡
∑
x

x(p−1)/3(1− x)(p−1)/3 mod π.

However, we know that ∑
x∈Zp

xj ≡ 0 mod p

if 0 < j < p−1 (see problem 30 on problem set 13, question 1). Summing each of the coefficients of

the polynomial x(p−1)/3(1−x)(p−1)/3 separately, the sum over Zp is 0. Since π divides p, J(χπ, χπ) ≡
0 mod π. Thus π′|π, so π = π′. The assertion about g(χπ)3 then follows from Proposition 13. �

Since g(χπ2) is a cube root of pπ, g(χπ2)Nπ1−1 is χπ1(pπ) modulo π1. Raising things to the Nπ1
power is very easy to do in characteristic Nπ1, so an alternate expression can be obtained: cubic
reciprocity falls out. This will be done in three cases.

First, if both π1 and π2 are primary rational primes, then
(
π1
π2

)
3

=
(
π2
π1

)
3

= 1 because the primes

are invariant under conjugation (recall Section 1).
Secondly, consider the case when π1 = q is a primary rational prime and π2 has norm p. From

Proposition 13, raising g(χπ2)3 to the (q2 − 1)/3 power and using Euler’s criteria we obtain

g(χπ2)q
2−1 ≡ χq(pπ2) mod q.

But since p and q are rational, χq(p) = 1. Multiplying by g(χπ2) gives

(1) g(χπ2)q
2 ≡ χq(π2)g(χπ2) mod q.

On the other hand,

g(χπ2)q
2 ≡

∑
t∈Zp

χπ2(t)q
2
ζq

2t
p mod q.

But χπ2 is a cubic character and q is a prime, so q2 ≡ 1 mod 3 and hence

(2) g(χπ2)q
2 ≡ χπ2(q−2)

∑
t

χπ2(tq2)ζtq
2

p = χπ2(q)g(χπ2) mod q.

Combining our two expressions for g(χπ2)q
2

we obtain that

χπ2(q)g(χπ2) ≡ χq(π2)g(χπ2) mod q

and after canceling g(χπ) that χq(π2) = χπ2(q) as desired.
The third case is when both π1 and π2 are complex primes with norms p1 and p2, primes congruent

to 1 modulo 3. The same argument as above works, except we can no longer eliminate the analogue
of the χq(p) term. Starting with g(χπ1)3 = pπ1 and raising to the (p2− 1)/3 power, we obtain that

χπ1(p22) = χπ2(p1π1).
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Starting from g(χπ2)3 = p2π2, we obtain

χπ2(p21) = χπ1(p2π2).

Now note that χπ1(p22) = χπ1(p2) upon conjugating. But then combining these we have

χπ1(π2)χπ2(p1π1) = χπ1(π2)χπ1(p22)

= χπ1(π2)χπ1(p2)

= χπ2(p21)

= χπ2(π1)χπ2(p1π1).

Canceling the χπ2(p1π1) finishes the proof. �
The two key ingredients in this proof, are the factorization g(χπ)3 = π2π and the double calcu-

lation of g(χπ2)Nπ1−1 as a value of the cubic character and by directly expanding the Gauss sum
modulo p. These can also be used to give an alternate proof of quadratic reciprocity.

Finally, there is the stronger question of when an integer is a cube of an integer modulo p. This
is significantly more complicated, and leads to the study of rational reciprocity laws.

A good reference for this in subject matter is Ireland and Rosen’s book. [1]

4. Exercises

(1) Prove that Z[ζ3]π has N(π) elements, and that for any α, αN(π) ≡ α mod π.

(2) Show that if p is a rational prime and
(
−3
p

)
= −1, then p is prime in Z[ζ3].

(3) Prove that Z[ζ3] has unique prime factorization.
(4) Let p ≡ 1 mod 4. Let g be a generator for Up. It has order a multiple of 4, so we can let

χ4(g
k) = ik. Use the fact that |Jχ4, χ4)|2 = p for this character to show that p is a sum of

two squares. Note that this provides an explicit method of finding them.
(5) Formulate and proof supplemental laws for the prime 1− ζ3 and the units of Z[ζ3]. These

are analogous to the special rules for the Legendre symbol of −1 and 2.
(6) Show that ∑

x∈Z[ζ3]π

xj ≡ 0 mod p

if 0 < j < N(π). Can you do this without first proving the existence of a generator?
(7) Generalize the proof of cubic reciprocity to give a proof of quadratic reciprocity. You should

work over Z, and look at the Gauss sum involving the quadratic residue character. How
about fourth powers in Z[i]?

(8) Find and prove a law for rational cubic reciprocity. You might try writing primes of the
form 3n+ 1 as 1

4

(
L2 + 27M2

)
.
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