
THE CUSPS OF HILBERT MODULAR SURFACES AND CLASS NUMBERS

JEREMY BOOHER

Hilbert modular surfaces are a generalization of modular curves, and one of the more concrete
examples of Shimura varieties. They are formed by taking the product of two copies of the upper
half plane and quotienting by a Hilbert modular group arising from a real quadratic field. This
produces a complex surface which is neither smooth nor compact. Hirzebruch showed how to
resolve the quotient singularities in 1953. If one tries to compactify by adding in a point at each
cusp like one does for a modular curve, the resulting surface is singular. It was not until 1973
that Hirzebruch showed how to resolve the cusp singularities by compactifying in a better way
so that the resulting surface is smooth. This is similar to the Bailey-Borel compactification used
to construct general Shimura varieties, but is explicit. The construction of the singular surface is
discussed in Section 1, and Hirzebruch’s resolution of the singularities in Section 2. The key idea
is to add more than a single point at infinity. The resolution adds in a ring of projective lines, to
be described later, that capture the intuitive notion of ways to approach the cusp.

Once this is done, we are able to see many connections with number theory. Hirzebruch proved
many such results [6]: we will focus on one particular aspect of this phenomena in Section 3, the
relation between the signature defect and L-functions. This has amusing consequences in terms of
class numbers for imaginary quadratic fields. We first illustrate by example.

Example 1. The continued fraction expansion for
√

11,
√

19, and
√

23 are

√
11 = 3 +

1

3 +
1

6 + . . .

= [3, 3, 6],
√

19 = [3, 2, 1, 3, 1, 2, 8],
√

23 = [4, 1, 3, 1, 8]

The alternating sums of the numbers arising in the repeating parts of the continued fractions are

3− 6 = −3, 2− 1 + 3− 1 + 2− 8 = −3, 1− 3 + 1− 8 = −9.

The class numbers for the rings of integers of Q(
√
−11), Q(

√
−19), and Q(

√
−23) are

h(−11) = 1, h(−19) = 1, h(−23) = 3.

This is an example of the following, which is a shadow of Theorem 33 which relates the signature
defect of the cusp of a Hilbert modular surface to special values of L-functions.

Theorem 2. Let p > 3 be prime with p ≡ 3 mod 4. Suppose that the class number of the ring of
integers in Q(

√
p) is one. Write

√
p = [a0, a1, . . . , as] with s minimal. Then

h(−p) =
1

3

s∑
j=1

(−1)jaj .

Section 3 discusses the geometry of each cusp, and expresses the signature in terms of the
geometry of the compactification, as determined by continued fractions, and alternately in terms of
special values of L-functions. Section 4 gives a conceptual explanation for this connection in terms
of generalizations of the Atiyah-Singer Index Theorem and the spectrum of a certain differential
operator.

Two general references about Hilbert modular surfaces are [6] and [10]. There is also a Bourbaki
summary [5].
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1. Constructing Singular Hilbert Modular Surfaces

1.1. The Action of SL2(OK). Let K = Q(
√
D) be a real quadratic field, OK its ring of integers,

UK the units of OK , and H the upper half plane. Hilbert modular surfaces arise by taking a quotient
of H2 by an action of SL2(OK), adding the cusps and then carefully resolving the singularities. We
treat the first two in this section.

The real quadratic field K has two real embeddings σ1 and σ2. For α ∈ K, we will often
denote σi(α) by α(i). Recall that an element of K is called totally positive if it is positive under
both embeddings of K into R. Let GL+

2 (K) denote the subgroup of GL2(K) with totally positive
determinant. The two embeddings give a natural map

GL+
2 (K) ↪→ GL+

2 (R)×GL+
2 (R).

Each copy of GL+
2 (R) naturally acts on H via fractional linear transformations, so GL+

2 (K) naturally
acts on H2.

We will mostly be interested the action of the subgroup SL2(OK) and related groups.

Definition 3. Let b denote a fractional ideal in K. We define

SL2(OK ⊕ β) =

{(
a b
c d

)
∈ SL2(K) : a, d ∈ OK , b ∈ b−1, c ∈ b

}
.

We would like to take a quotient of H2 by SL2(OK) and make it into a nice compact complex
analytic surface. This is analogous to constructing the modular curve X0(1) complex analytically
by taking the quotient of the upper half plane by SL2(Z). As in that case, the obstacle is that the
quotient is missing points, such as the point “at infinity”. We fix this by adding them.

The group GL+
2 (K) also acts on P1(K), which embeds in P1(R) × P1(R) ⊂ P1(C) × P1(C) via

the two embeddings of K. The action is obviously transitive. However, if we restrict to the action
of SL2(OK), there are a finite number of orbits. These are the points we will add to SL2(OK)\H2,
and will be called the cusps for SL2(OK).

Proposition 4. The cusps for SL2(OK) are naturally in bijection with the ideal class group of OK .

Proof. Fractional ideals of K are always of the form (α, β). Multiplying by elements of K× produces
an ideal in the same ideal class. The fractional ideal (α′, β′) is the same ideal provided there exists
a γ ∈ SL2(OK) with (

α′

β′

)
= γ

(
α
β

)
.

Therefore the ideal class group is naturally in bijection with the orbits of SL2(OK) on P1(K). �

Remark 5. The point at infinity corresponds to the point [1, 0] ∈ P1(K), which corresponds to
the trivial ideal class.

It will convenient to carry out the construction only for the cusp at infinity. Since every cusp
can be send there by an element of SL2(K), this is not a serious restriction.

Lemma 6. Let σ = [α, β] be a cusp and b = (α, β) be a representative for the corresponding ideal
class. Then there is a matrix Aσ ∈ SL2(K) that carries ∞ to σ and such that

A−1
σ SL2(OK)Aσ = SL2(OK ⊕ b2).

Proof. As bb−1 = OK , the element 1 is of the form αα∗+ββ∗ for α∗, β∗ ∈ b−1. Take Aσ =

(
α α∗

β β∗

)
and compute. �
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1.2. The Local Ring at Infinity. We now want to add the cusp at infinity to SL2(OK)\H2

and make this into a complex analytic space. To specify the complex structure and construct a
resolution of the cusp singularity we work locally, so we need only quotient a neighborhood of∞ by
this action. More formally, once one defines a SL2(OK) invariant notion of distance on H2, one can
break H2 up into the sets of points which are closest to each cusp. The isotropy group of the cusp
at infinity acts on the neighborhood of infinity, while elements outside of this subgroup permute the
cusps. Therefore to study the cusp singularity we can simply quotient H2 by the isotropy subgroup
of infinity: the details are spelled out in [10, Section 1.2, 1.3],

A direct calculation shows that the elements of SL2(OK ⊕ b2) that fix ∞ are those of the form(
ε µ
0 ε−1

)
for ε in the units UK of OK and for µ ∈ b−2. Since the action is unchanged by scaling,

it is convenient to represent the isotropy group as

{
(
ε2 µ
0 1

)
: ε ∈ UK , µ ∈ b−2}

This is an example of the following construction.

Definition 7. A complete module M in K is a finitely generated subgroup of K of full rank. Let
U+
M denote the group of totally positive elements ε ∈ K which satisfy εM = M . For a finite index

subgroup V ⊂ U+
M , define

G(M,V ) =

{(
ε µ
0 1

)
∈ GL+

2 (K) : ε ∈ V, µ ∈M
}
.

Note that fractional ideals are examples of complete modules, and the full rank condition is
equivalent to being a lattice in R2 under the real embeddings. Thus the isotropy group can be
expressed as G(b−2, U2

K).
We now work with a complete module M ⊂ K and finite index V ⊂ U+

M . Add a point, denoted

by ∞, to the topological space G(M,V )\H2 and denote the union by G(M,V )\H2.
To specify the topology it suffices to give a fundamental system of neighborhoods of ∞. Define

a neighborhood of infinity in H2 by

N∞(r) = {(z1, z2) ∈ H2 : Im(z1) Im(z2) > r}.
A direct calculation shows that G(M,V ) acts on this set. Declare that the sets (G(M,V )\N∞(r))∪
∞ give a fundamental system of neighborhoods of ∞. This defines the notion of continuity at
infinity, which in turn allows us to define regular functions.

Definition 8. The local ring at infinity, denoted O
G(M,V )\H2,∞, consists of continuous functions

on a neighborhood infinity such that there exists an r > 0 so the function is holomorphic when
viewed as a function on N∞(r).

The local ring at infinity has an explicit description in terms of Fourier series.

Lemma 9. The local ring at infinity is the ring of Fourier series

a0 +
∑
v∈M∨
v>>0

ave
2πi(tr(vz))

that converge on some N∞(r) and satisfy av = aεv for all ε ∈ V .

Proof. This is essentially the fact that the transformation z → z + µ for µ ∈ M is an example of
the action by G(M,V ), plus a little thought about convergence issues. [10, II.1.1] �

The space G(M,V )\H2 will turn out to be a normal complex surface. This is tricky to prove
directly: the proof Hirzebruch gives relies on a condition due to Cartan [6, p. 202-203]. It is also
possible to deduce this from the structure of the resolution of the singularities [10, II.3.3].
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Figure 1. The Structure of a Cusp
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Remark 10. There are special points in H2 where the stabilizer of SL2(OK) jumps in size which
also cause singularities. These elliptic fixed points produce singularities which are much easier to
resolve than the cusps: see [10, I.5, II.6]. The resolution is also due to Hirzebruch, but happened
years before he resolved the cusps. They too are connected to class numbers, as discovered by
Prestel. For example, in the case K = Q(

√
D) with D ≡ 1 mod 4, the number of elliptic points

with a certain type of local behavior is h(−4D) [10, I.5].

Remark 11. As the name suggests, Hilbert modular forms are connected to Hilbert modular sur-
faces. Analogously to the case of modular curves, Hilbert modular forms are related to differential
forms on the Hilbert modular surface. The only complications arise from being careful about the
behavior at the singularities [10, I.6, III.3]. This has applications to embedding the surfaces in
projective space.

2. Resolving the Cusps

As discussed in the previous section, we need only resolve the singularity at ∞ in G(M,V )\H2.
We will construct a complex manifold space Y (M,V ) with a holomorphic map π : Y (M,V ) →
G(M,V )\H2 with the following properties:

(1) The map π gives an isomorphism between Y (M,V )− π−1(∞) and G(M,V )\H2.
(2) The exceptional fiber π−1(∞) is a union of copies of P1

C, labeled S1, S2, . . . , Sr.
(3) The Si are arranged in a circular configuration as indicated in Figure 1. More precisely,

Si · Si+1 = 1 and Si · Sj = 0 for i 6= j ± 1 mod r.
(4) The self intersection numbers Si ·Si = −bi are related to the pair (M,V ) in a way that will

be made precise in section 2.3.

The resolution Y (M,V ) will be constructed by gluing together copies of C2 and then quotienting
out by M and subsequently by V . This construction is motivated by the theory of toric varieties:
the essential idea is that points on the axes in each of the C2 will correspond to different ways to
approach ∞ in G(M,V )\H2.1 Each choice of basis sees some of the possible ways to approach the
cusp, so using multiple copies of C2 to corresponding to different choices of basis and gluing will
produce a smooth compactification.

2.1. Quotienting by M . The complete module M ⊂ K acts on H2 via translation: a ∈M sends
(z1, z2) 7→ (z1 + a(1), z2 + a(2)). Given a basis α1, α2 for M , we can identify M\C2 with C× × C×.

1This is reminiscent of blowing up, the general method of resolving singularities.
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The identification is given by

ψα1,α2 : (z1, z2) ∈M\C2 7→ (u, v) ∈ C× × C×

where u and v are determined by the condition that for j = 1, 2

2πizj ≡ α(j)
1 log(u) + α

(j)
2 log(v) mod 2πiM

As α1 and α2 are a basis, the matrix

(
α

(1)
1 α

(1)
2

α
(2)
1 α

(2)
2

)
is invertible. Taking a logarithm in only defined

up to adding a multiple of 2πi, but 2πi(z1, z2) is only defined up to a multiple of 2πiM . Therefore
this gives a biholomorphic identification.

The idea behind this identification is to to move the cusp, which is off at infinity in the C2 picture,
into points in the complement of C× × C× inside C× C. The most obvious way for a sequence of
points in H2 to approach the cusp at infinity is for Im(z1) or Im(z2) to approach infinity, so the real

part of α
(j)
1 log(u) +α

(j)
2 log(v) approaches −∞. This forces |u| or |v| to go to 0, so the sequence is

approaching u = 0 or v = 0 in C× C.
The above identification depended on a choice of basis for M . What happens if it is changed?

It turn out one natural way to pick a new basis is to let β1 = α2 and β2 = bα2 − α1 where b is a
certain positive integer. Define a map ψβ1,β2 as above, with coordinates on the image (u′, v′), and

set φ(u, v) = (ubv, u−1). A direct calculation shows the following diagram commutes

(1)

C× × C×

M\C2

C× × C×

φ

ψα1,α2

ψβ1,β2

The map φ can be extended to a map from C××C to C×C× since b > 0, but cannot be extended
further. What happens to the lines u = 0 and v = 0 which were related to the cusp? The line
v = 0 is sent to u′ = 0, but the lines u = 0 and v′ = 0 are not identified. Changing basis has shown
a different aspect of the behavior at the cusp. The following construction will allow us to consider
many bases at the same time.

2.2. Construction. Let b1, b2, . . . be a sequence of integers such that bi ≥ 2 for all i. Let Ui be a
copy of C2 with coordinates ui and vi. Let U ′i and U ′′i be the subsets {ui 6= 0} and {vi 6= 0} of Ui.
For each k, glue U ′k to U ′′k+1 via the (holomorphic) map φk : U ′k → U ′′k+1 defined by

φk(uk, vk) =
(
ubkk vk, u

−1
k

)
.

An inverse map from U ′′k+1 → U ′k is given by sending (uk+1, vk+1) to (v−1
k+1, v

−bk
k+1uk+1).

Definition 12. The topological space X(b1, b2, . . .) is the space obtained by gluing the Ui to Ui+1

via the map φi for all i. It will be denoted X when the integers {bk} are clear from context.

Lemma 13. The topological space X is Hausdorff, and in fact a complex manifold.

Proof. The key is to directly check that the diagonal is closed [6, p. 204]. Second countability is
clear. The Ui give charts with the φi giving biholomorphic transition functions. �

Denote the curve vk = 0 in Uk by Sk. We will also use Sk to denote the corresponding curve in
X. It is also given by the condition uk+1 = 0 in Uk+1. The arrangement of these curves is crucial
to the resolution of the cusp singularities.
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Proposition 14. We have Sk · Sk+1 = 1, Sk · Sj = 0 if |k − j| > 1, and Sk · Sk = −bk.

Proof. The curve Sk intersects Uk, and Uk+1 but no other patches because the condition vk = 0
in Uk becomes the condition uk+1 = 0 in Uk+1, which is the complement of U ′k+1, while U ′k−1 is
identified with the complement of Sk in Uk. Therefore Sk · Sk+1 = 1 since in the patch Uk+1 the
intersection is simply the (transverse) intersection of uk+1 = 0 and vk+1 = 0. Likewise, it is clear
that Sk · Sj = 0 for |k − j| > 1 because the curves do not lie in the same patches.

Finally we turn to the self intersection number. The coordinate function uk+1 on Uk+1 extends
to a meromorphic function on X. Since Sk is the locus where uk+1 = 0, div(uk+1)|Uk+1

= Sk. On

Uk, the meromorphic function can be given by ubkk vk, which means

div(uk+1)|Uk = bkSk−1 + Sk.

Therefore div(uk+1) = bkSk−1 + Sk + . . . where the omitted terms do not intersect Uk. Therefore
the intersection product is

Sk · div(uk+1) = bkSk · Sk−1 + Sk · Sk = bk + Sk · Sk.
On the other hand as div(uk+1) is principal the intersection number is 0. Therefore Sk · Sk =
−bk. �

Remark 15. It is also possible to give explicit formulas for the transition function from the (uk, vk)
coordinates on Uk ∩ Uk+j to the (uk+j , vk+j) coordinates on Uk ∩ Uk+j . Induction shows that

uk+j = u
pj
k v

qk
k and vk+j = u

−pj−1

k v
−qj−1

k

where (
pj qj
−pj−1 −qj−1

)
=

(
bk+j−1 1
−1 0

)
·
(
bk+j−2 1
−1 0

)
· . . . ·

(
bk 1
−1 0

)
.

These transition functions make is clear that U ′1 ∩U ′′1 = {(u1, v1) : u1v1 6= 0} maps bijectively onto
U ′k ∩ U ′′k . Therefore X is the union of U ′1 ∩ U ′′1 with the curves S1, S2, . . .

2.3. Continued Fractions and Bases for M . The next step is to describe natural bases for M
using continued fractions. As is customary, a continued fraction is denoted by

[a0, a1, . . .] = a0 +
1

a1 + . . .
.

We will also be interested in an alternate form of continued fractions which use subtraction instead
of addition.

Definition 16. Given integers b1, b2, . . . ,, define

[[b1, b2, . . . , bj ]] = b1 −
1

b2 −
1

b3 . . .
1

bj

and [[b1, b2, . . .]] = b1 −
1

b2 −
1

b3 − . . .

Just as for ordinary continued fractions, every real number has a expansion of this form, and
only rational numbers admit finite ones.
M embeds in R2 via the two real embeddings of K as a lattice. Denote the set of totally positive

elements of M by M+. Consider the convex hull generated by M+ in R2
+: let . . . , A−1, A0, A1, A2, . . .

denote the points of M+ lying on the boundary as in Figure 2. Choose the ordering so A
(1)
k+1 < A

(1)
k .

Proposition 17. Two consecutive boundary points Ak and Ak+1 form a basis for M . There is an
integer bk+1 ≥ 2 so that Ak +Ak+2 = bk+1Ak+1.
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Figure 2. The Convex Hull M+

Proof. Ak and Ak+1 certainly form a Q-basis for M ⊗ Q. Then any m ∈ M+ is of the form
cAk + c′Ak+1 with c, c′ ∈ Q, and by negating m or adding an integral combination of Ak and Ak+1

we may assume 0 ≤ c, c′ < 1 and c + c′ ≤ 1. If (c, c′) 6= (0, 0), then m lies outside the convex hull
of M in R2

+, a contradiction.
Now Ak +Ak+2 is some point in the convex hull, and Ak+1 lies between them on the boundary.

Let bk+1 be the maximal integer for which Ak +Ak+2 − (bk+1 − 1)Ak+1 is totally positive. Then it
is a point in the convex hull as well. It must be Ak+1, or convexity is violated. �

Furthermore, note that multiplying by a totally positive unit in OK that preserves M will
preserves the convex hull, and simply scales the two coordinates. It sends boundary points to
boundary points, so there is an integer r such that εAk = Ak+r and hence bi = bi+r for all i.
Therefore the sequence of {bi} is periodic, so it is no loss to truncate and simply consider b1, b2, . . ..

The question of how to find the integers bi and hence the numbers Ai when M is a fractional
ideal has been studied classically.

Proposition 18. If M is generated by 1 and w0 ∈ K and w0 has continued fraction expansion
w0 = [[b1, b2, . . .]], the boundary points Ai are determined by the conditions that A1, A1 = w0, and

Ak+2 = bk+1Ak+1 −Ak.
Proof. This is proven in [10, Section 5]. �

This should not be a big surprise, as the description of the transition function in Remark 15 is
closely related to continued fractions: taking k = 1 for simplicity

pj
qj

= b1 −
1

b2 −
1

b3 . . .
1

bj

.

2.4. Finishing the Construction. Now that we have a good choice of bases for M , use the
integers bk to construct X(b1, . . . , bk, . . .). Recall it is the union of {(u1, v1) : u1, v1 6= 0} with the
curves S1, S2, . . .. Map M\C2 to {(u1, v1) : u1, v1 6= 0} using ψA1,A2 . Because of the commutative
diagram (1), this is compatible with mapping M\C2 to U ′k ∩ U ′′k using ψAk,Ak+1

. Thus there is a

biholomorphic map Φ from M\C2 to X(b1, . . . , bk)− ∪jSj .
Definition 19. Define X+ = X+(b1, b2, . . .) to be Φ(M\H2) ∪⋃j Sj .

The final step is to quotient X+ by V . As the group G(M,V ) sits in a split short exact sequence

1→M → G(M,V )→ V → 1

we expect this to be a good compactification of G(M,V )\H2.
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Recall that V was a finite index subgroup of U+
M , a free Abelian group of rank 1, so V is

generated by a totally positive unit ε with εM = M . By the previous observation that multiplying
by ε preserves the convex hull of M+, we conclude that the bi are periodic with period r. In what
follows, assume that at least one bj is 3, and that r ≥ 3. These additional assumptions are not
completely necessary, but avoid having to consider several exceptional cases which are discussed
in [6, 2.2-2.4].

Now V acts on M\H2 via the usual action, and ε ∈ V acts on X via sending (uk, vk) ∈ Uk
to (uk, vk) ∈ Uk+r. Because the bk are periodic with period r, this respects the gluing of the Uk.
Furthermore, a direct calculation shows that Φ is equivariant with respect to these actions, so in
particular V acts on X+ as well. Finally, εSj = Sj+r.

Lemma 20. The action of V on X+ is free and properly discontinuous.

Proof. The action on the complement of the Sj is certainly free and properly discontinuous. This
also holds for ∪jSj , which requires a bit of work with the construction [6, Lemma p. 209]. �

Because the action is free and properly discontinuous, we can now take the quotient.

Definition 21. Define Y (M,V ) to be the quotient of X+ by V .

Theorem 22. The space Y (M,V ) is a complex manifold with a map π : Y (M,V )→ G(M,V )\H2

with the following properties:

(1) The map π gives an isomorphism between Y (M,V )− π−1(∞) and G(M,V )\H2.
(2) The exceptional fiber π−1(∞) is a union of copies of P1

C, S1, S2, . . . , Sr.
(3) The Si satisfy Si · Si+1 = 1 and Si · Sj = 0 for i 6= j ± 1 mod r.
(4) The self intersection numbers Si ·Si are −bk where the bk were the integers used to construct

X+.

Proof. First, observe the statements about the intersection numbers are obvious because r ≥ 3 and
hence there is no identification of adjacent Si. (For completeness, Hirzebruch does deals with the
case r = 1, 2 [6, p. 211].)

The map π is the quotient map coming from the equivariant map Φ−1 extended to map the Sj
to ∞. It is clear that π gives an isomorphism away from ∞, and the exceptional fiber is the union
of the Sj . What is not clear is that π is a map of analytic spaces on the exceptional fiber. One

possibility is to check this by hand using the description of the local ring at ∞ for G(M,V )\H2.
However, as it was quite difficult to establish this was normal, Hirzebruch avoids this approach.
Instead, he invokes a general theorem of Grauert that says the Sj can be blown down to give an
isolated normal point in some complex space because of their intersection theory. Then general
theory implies that Y (M,V ) is a minimal resolution and that the blowdown is singular. The
blowdown is topologically isomorphic to G(M,V )\H2 because Y (M,V ) − ∪jSj is isomorphic to
it, so we use this identification to put a complex structure on overlineG(M,V )\H2 indirectly.
Hirzebruch checks the details [6, p. 213]. �

Remark 23. Hirzebruch’s argument also shows that Y (M,V ) is the minimal resolution.

3. Local Invariants of the Cusp and L-functions

The Hirzebruch signature theorem relates the signature of compact 4k-dimensional manifolds
(the signature of the intersection pairing on cohomology) to an expression involving Pontryagin
classes. This form of the theorem does not hold for manifolds with boundary, such as Y (M,V ).
Instead, we will define a signature defect associated to the cusp, which measures how the actual
signature deviates from the expected value. These invariants will be related to special values of
L-functions. Hirzebruch proved a special case of this connection by comparing an evaluation of
certain L-functions with calculations of the signature defect. This led to the investigation and
proof of a more general connection which will be discussed in Section 4.
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3.1. Signature Defects. Let (X, ∂X) be a four dimensional oriented (smooth) manifold with
boundary. The intersection pairing gives a symmetric bilinear form on H2(X, ∂X,R). After di-
agonalizing this (over R say), the signature is the number of positive diagonal entries minus the
number of negative entries. It will denoted by sign(X).

Theorem 24 (Hirzebruch Signature Theorem, special case). Let X be a compact four dimensional
smooth manifold without boundary. The signature of X is given by the formula

sign(X) =
1

3
p1(X) ∈ H4(X,Z) ' Z

where p1(X) is the Pontryagin class of tangent bundle of X, and the identification of H4(X,Z)
with Z is given by Poincaré duality via cupping with the fundamental class [X].

Remark 25. If X is a complex manifold of dimension two, so the tangent bundle is a complex
vector bundle, the Pontryagin class of the real tangent bundle can be expressed in terms of the
Chern classes of the complex tangent bundle. Because p1(X) = −c2((TX)C) and the complexified
tangent bundle splits as (TX)C = TX ⊕ TX , the properties of Chern classes show that

(2) sign(X) =
1

3
p1(X) =

1

3

(
c1(X)2 − 2c2(X)

)
.

We are interested in how this formula fails for the non-compact Y (M,V ) considered in the
previous section. It will be technically easier to work with a manifold with boundary, so we will
cut off the open set Y (M,V ) along Im(z1) Im(Z2) = r. Therefore we work with the quotient of

N∞(r) = {(z1, z2) ∈ H2 : Im(z1) Im(z2) ≥ r}
by G(M,V ). Note that the boundary N , the set of points with Im(z1) Im(z2) = r, is a principal
homogenous space for G(M,V ). Now form the quotient of N∞(r) by G(M,V ), adding in the
resolution of the cusp in Y (M,V ) we constructed in the previous section. We obtain a smooth

complex surface Ỹ (M,V ) with boundary N .

Lemma 26. The tangent bundle of Ỹ (M,V ) is a pull back of a complex vector bundle E on the

quotient Ỹ (M,V )/N .

Proof. See for example the proof of the theorem [6, p. 222] or the discussion [1, p. 137]. The idea

is to use the standard hyperbolic metric on H2 to trivialize the tangent bundle on Ỹ (M,V ) that
are invariant under G(M,V ) on the boundary. The same can be done for the normal bundle. �

The bundle E will allow us to talk about Chern classes despite the manifold having a boundary.

Definition 27. Define ci(Ỹ (M,V )) to be ci(E) ∈ H2i(Ỹ (M,V )/N,Z) = H2i(Ỹ (M,V ), N,Z).

Note that despite being defined in terms of E, we can do many calculations involving these
classes using the tangent bundle of Ỹ (M,V ). For example, to compute the Euler characteristic
we can look at the index of a vector field which points in the outward normal direction along the
boundary: this computes the Euler characteristic but also descends to a section of E and computes
a Chern class. However, if we try to use these classes to compute the signature of the intersection
pairing on middle cohomology, the Hirzebruch signature theorem does not hold in general.

Definition 28. The signature defect δ(M,V ) is defined to be

δ(M,V ) =
1

3

(
c1(Ỹ (M,V ))2 − 2c2(Ỹ (M,V ))

)
− sign(Ỹ (M,V ), N).

Again we identity H4(Ỹ (M,V ), N,Z) with Z using Poincaré duality.
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Remark 29. This is a special instance of a more general phenomena. Given a global statement for
closed manifolds like the Hirzebruch signature theorem, one can define a defect for nice boundary
manifolds N as follows. Pick a manifold X with boundary N , and compute the discrepancy in the
global statement for the manifold X. This tends to be independent of the choice of X, since any
two choices can be glued together along N after reversing the orientation on one to obtain a closed
manifold with defect 0. We have simply picked a particular X.

The amazing fact is that the signature defect depends on the geometry of the cusp at infinity.

Theorem 30. With the integers b1, . . . , br defines as before for the pair (M,V ),

δ(M,V ) = −1

3
(b1 + b2 + . . .+ br) + r.

We first compute the signature of Ỹ (M,V ), then the Chern classes.

Lemma 31. The signature of (Ỹ (M,V ), N) is −r.

Proof. Looking at the construction of Ỹ (M,V ), we see that S1 ∪ S2 ∪ . . . ∪ Sr is a deformation

retract of Ỹ (M,V ). We wish to compute the signature using Poincaré duality to convert the
relative cohomology to homology. This is a union of r copies of P1

C arranged cyclically which has
second Betti number r. We will show that S1, . . . , Sr, viewed as homology classes, are generators.
Theorem 22 implies the intersection matrix for S1, . . . , Sr by is

−b1 1 0 . . . 0 1
1 −b2 1 0 . . . 0
0 1 −b3 1 . . . . . .
. . . . . . . . . . . . . . . . . .
1 0 . . . 0 1 −br


This is easily checked to be negative definite, so the classes Si generate the cohomology group and
hence the signature of the intersection pairing is −r. �

Lemma 32. The Chern classes are c1(Ỹ (M,V )) = S1 + S2 + . . . + Sr ∈ H2(Ỹ (M,V ), N,Z) and

c2(Ỹ (M,V )) = r.

Proof. The second Chern class is the top one, so it corresponds to the Euler class of the bundle
E. But we know is the same as the Euler characteristic of the tangent bundle of Ỹ (M,V ), and

likewise is the Euler characteristic of Ỹ (M,V ). As this retracts onto S1∪S2∪ . . .∪Sr, we just need
to compute this one. Using that compactly supported Euler characteristic is additive over disjoint
unions, it follows that the Euler characteristic is 2r − r = r.

Now the first Chern class corresponds to an element z ∈ H2(Ỹ (M,V ),Z). We will denote the

classes in H2(Ỹ (M,V ),Z) generated by the curves Sj by the same symbol. Now (one version of)
the adjunction formula2 states that for any smooth compact curve C on a complex surface X,

χ(C) = c1(X) · C − C · C
Applying this to the curve Sj , we see that

z · Sj − Sj · Sj = 2

since the Euler characteristic of Sj ' P1
C is 2. Since the intersection pairing is given by an invertible

matrix, these r conditions uniquely determine z. But they are satisfied by taking z = S1 + S2 +
. . .+ Sr using the information in Theorem 22. �

2A discussion of this version is in [6, 0.6].
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Finally using the lemmas and Theorem 22, we calculate

δ(M,V ) =
1

3

(
(S1 + S2 + . . .+ Sr)

2 − 2r
)
− (−r) =

1

3
(b1 + b2 + . . .+ br + 2r − 2r) + r

= −1

3
(b1 + b2 + . . .+ br) + r

This completes the proof of the theorem. �

3.2. Shimizu L-functions. Let M be a complete module in K, and V a finite index subgroup of
U+
M , the group of totally positive units which satisfy εM = M . Shimizu defined and studied the

L-functions

L(M,V, s) =
∑

µ∈(M−{0})/V

signN(µ)

|N(µ)|s .

Information can be found in [8], but all we will need is presented and mostly proven in [10, III.2].
This L-function can be expressed as a contour integral of the derivative of a non-holomorphic
Eisenstein series E(z, s) multiplied by some Γ-factors, which gives it a meromorphic continuation
to C. The functional equation for E(z, s) gives a functional equation for L(M,V, S), related to the
L-function for the dual module M∨. The values of these L-functions at s = 1 had been studied
before Hirzebruch. Meyer had calculated them using the Kronecker limit formula, and expressed the
answer in terms of the transformation law for the Dedekind η function. Siegel gives an exposition of
this result in English [9, Equation 120-122]. This L-value is connected to the numbers bi associated
to the pair (M,V ) in the previous section. This reformulation is spelled out by Zagier [11]: the
final evaluation is that

(3) L(M,V, 1) =
π2

3
√

∆M

r∑
i=1

(bi − 3)

where ∆M is the volume of the lattice obtained by embedding M in R2. In light of Theorem 30,
we conclude

Theorem 33. With the notation as above, L(M,V, 1) = − π2
√

∆M
δ(M,V ).

This is a surprising connection between L-functions and the geometry of the cusp, but this proof
is unsatisfying because the two quantities are not directly related. Inspired by this fact, it was
generalized and proven in a more conceptual way by Atiyah, Donnelly and Singer using a method
based on the Atiyah-Singer index theorem. We outline the connection in Section 4.

Remark 34. These sorts of formulas also led Zagier and Shintani to develop methods of computing
the values of L-functions for totally real fields in terms of a generalization of the convex hull of
M+. For an example and references, see [10, III.2.3].

3.3. An Application to Class Numbers. Let p ≡ 3 mod 4 be a prime, not equal to 3, and
suppose the class number of Q(

√
p) is 1. Then the Hilbert modular surface has only one cusp, with

isotropy group G(OK , U+
K) where OK = Z[

√
p] is the ring of integers and U+

K are the totally positive
units which preserve OK . We will now derive Theorem 2 about the class number of Q(

√−p) using
Theorem 33. We rephrase the expression on the right using the theory of continued fractions, and
evaluate the L function on the left using the analytic class number formula.

We wish to rewrite the expression −1
3(b1 +b2 +b3 + . . .+br)+r appearing in Theorem 30. Recall

that
√
p = b0 −

1

b1 −
1

b2 − . . .

.
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Lemma 35. Let
√
p = a0 +

1

a1 +
1

a2 + . . .

= [a0, a1, a2, . . . , as]. Then

(b1 + b2 + b3 + . . .+ br)− 3r =
s∑
j=1

(−1)jaj .

Proof. This is elementary: a direct calculation shows that

[a0, a1, z] = [[a0 + 1, 2, 2, . . . , 2︸ ︷︷ ︸
a1−1

, z + 1]]

Therefore the alternate continued fraction expansion for
√
p looks like

[[a0 + 1, 2, 2, . . . , 2︸ ︷︷ ︸
a1−1

, a2 + 2, 2, 2, . . . , 2︸ ︷︷ ︸
a3−1

, . . . , as + 2]].

(It is a general fact that the continued fraction for
√
p always has even period.) Therefore

r∑
i=1

(bi − 3) =

s∑
j=1

(−1)j(aj − 1) =

s∑
j=1

(−1)jaj

again using s is even. �

Lemma 36. If h(−p) denotes the class number of Q(
√−p),

L(OK , U+
K , 1) =

π2

2
√
p
h(−p).

Proof. First, recall that since p ≡ 3 mod 4 the norm of the fundamental unit of OK is 1. Therefore
if α and α′ generate the same ideal in OK N(α) and N(α′) have the same sign. Define a character χ
on ideals ofOK by setting χ((α)) = sign(N(α)). Since the class number is one, all ideal are principal,
so this suffices. The ideals of OK are parametrized by elements of OK up to multiplication by units.
Since the totally positive units are of index 2, we have

L(OK , U+
K , s) = 2

∑
a⊂OK

χ(a)

|N(a)|s .

The character χ is an example of a genus character (a character of the narrow class group). It
corresponds to the decomposition 4p = (−4)(−p) of the discriminant of OK . This means there is
a factorization of L-functions [9, Theorem 4]

L(OK , U+
K , s) = 2L(χ−4, s)L(χ−p, s)

where χD is the Dirichlet character naturally associated to the quadratic field Q(
√
D). The analytic

class number formula, for imaginary quadratic fields, states that

L(χ−D, 1) =
2π

w−D
√
D
h(−D)

where wD is the number of units in OQ(
√
−D). In particular, as Z[i] has class number one

L(χ−4, 1) =
π

4
and L(χ−p, 1) =

π√
p
h(−p).

Combining these, we see that

L(OK , U+
K , 1) =

π2

2
√
p
h(−p).

�
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Combining the two lemmas with Theorem 33 gives Theorem 2:

(4) h(−p) =
1

3

s∑
j=1

(−1)jaj .

Example 37. Let p = 163. Then Q(
√

163) has class number one, and
√

163 = [12, 1, 3, 3, 2, 1, 1, 7, 1, 11, 1, 7, 1, 1, 2, 3, 3, 1, 24].

Furthermore,

1

3
(1− 3 + 3− 2 + 1− 1 + 7− 1 + 11− 1 + 7− 1 + 1− 2 + 3− 3 + 1− 24) = 3.

Therefore we verify the famous fact that Q(
√
−163) has class number one.

Remark 38. A more general version of Lemma 36 can be proven using the same technique if there
are multiple cusps. Take the sum of the signature defects for all of the cusps: a little more care
shows that after converting into a sum of Shimizu L-functions using Theorem 33, these L-functions
piece together to the L-function for the genus character. The proof continues as before.

4. Shimizu L-functions and the Atiyah-Patodi-Singer Index Theorem

This section will give a high level overview of the connection between special values of the Shimizu
L-function and the signature defect of the cusp by relating them to a “spectral” invariant η arising
in a version of the Atiyah-Singer Index Theorem for manifolds with boundary. The full details
are found in [1], which relies heavily on the Atiyah-Patodi-Singer Index Theorem for manifolds
with boundary ( [2] [3] [4]). Before we discuss this, let us first sketch how the Atiyah-Singer Index
Theorem for manifolds without boundary specializes to the Hirzebruch signature theorem.

4.1. An Application of the Atiyah-Singer Index Theorem. Information about the Atiyah-
Singer Index Theorem and its applications to appears in many sources: a random one which fully
explains the connection with the Hirzebruch signature theorem is [7] . Let X be a compact n-
manifold (without boundary), and let E and F be smooth vector bundles on X. Let D : E → F
be an elliptic differential operator. The analytic index of D is the index as a Fredholm operators:

ia(D) = dim kerD − dim kerD∗.

The topological index of D is

it(D) = (−1)nϕ−1 ch(σ(D)) td(T ∗(X)C) · [X]

where ϕ is the Thom isomorphism, ch is the Chern character, σ(D) is a bundle on TX defined
using the symbol of D, and td denotes the Todd class.

Theorem 39 (Atiyah-Singer). The topological index of D equals the analytic index of D.

By picking appropriate vector bundles and operator D, we can recover the Hirzebruch signature
theorem. We will simply do this for a complex surface, but the same argument works for the Hilbert
signature theorem for 4k-manifolds [7, Theorem V.3.4].

Let X be a complex surface viewed as a four dimensional real manifold. Let E• = Ω•X ⊗ C
and A• = C∞(X,E•). Denote the exterior derivative and Hodge star by d : Ek → Ek+1 and
∗ : Ek → E4−k. Define the codifferential δ = ∗d∗ : Ek+1 → Ek. Hodge theory says that

H∗(X,C) = ker(dδ + δd) = ker(δ + d)

Furthermore, remember that the inner product for α, β ∈ A2 by definition is given by

(α, β) =

∫
α ∧ ∗β.
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Consider the operator D = δ+d and the involution τ : Ek → E4−k with τ(α) = (−1)
k(k−1)

2
+1∗ α.

Let E•+ and E•− be the +1 and −1 eigenspaces for τ . A direct calculation shows τ anti-commutes
with D, so D preserves the eigenspaces and so D decomposes

D = D+ +D− where D+ : E•+ → E•−, D
− : E•− → E•+.

The two operators are adjoint. Now Hodge theory tells us that

kerD =
[
H0(X,C)⊕H4(X,C)

]
⊕
[
H1(X,C)⊕H3(X,C)

]
⊕H2(X,C)

The involution τ respects this decomposition. For dimension reasons, the first two terms split into
equal dimension eigenspaces, so the analytic index dim kerD+ − dim kerD− can be computed just
on H2(X,C). But if α 6= 0 is in the +1 eigenspace for kerD+ ∩H2(X,C),∫

X
α ∧ α =

∫
X
α ∧ (∗α) = (α, α) > 0.

Likewise the inner product is negative definite on kerD− ∩H2(X,C). Therefore the analytic index
of D+ equals the signature of the manifold.

On the other hand, the topological index for D+ is easy to describe. It is a polynomial in the
Pontryagin (equivalently, Chern) classes of X. Unwinding the definition, one sees that it(D

+) =
1
3p1(X) = 1

3

(
c1(X)2 − 2c2(X)

)
. (For a generalization, see [7, Proposition III.6.2].)

The Hirzebruch signature theorem is therefore just a special instance of the Atiyah-Singer Index
Theorem.

4.2. A Signature Theorem for Manifolds with Boundary. If (X, ∂X) is a manifold with
boundary, the Atiyah-Singer index theorem no longer holds. An error term ηA(0) comes from the
differential operator on the boundary. The connection with number theory arises from the fact that
η is a holomorphic function defined as a Dirichlet-like series in terms of the spectrum of the operator
A on the boundary. Atiyah, Donnelly, and Singer analyze the particular case when X = Ỹ (M,V )
and A = ∗d − d∗ on even forms. This is the operator yielding the Hirzebruch signature theorem,
up to dualizing via the Hodge star. They show that

sign(X) =
1

3
p1(X)− ηA(0)

where ηA is the Dirichlet-like series defined by

ηA(s) =
∑
λ

sign(λ)|λ|−s

where sum runs over the non-zero spectrum of A acting on the boundary manifold. There are
considerable details involved with framing the boundary, establishing a functional equation and
analytic continuation for ηA(s), and making sure to use the correct variant of Pontryagin (Chern)
classes that will be meaningful on a manifold with boundary. The main input to the statement
is the techniques used by Atiyah, Patodi, and Singer to prove their general signature theorem
(although they require some mild modifications in this particular setting compared to [4]).

The goal is to understand the relationship of η with the quantities considered by Hirzebruch.
We use M ′ to denote the dual fractional ideal with respect to the trace.

Theorem 40. With the notation above, ηA(0) = L(M ′, V, s).

Most of the effort in [1] goes into proving this statement. The first step is to realize the boundary
as a torus bundle over S1, and work separately on each fiber using Fourier series. This allows one
to decomposes

ηA(s) = η0(s) +
∑

µ∈(M ′−0)/V

ηµ(s)
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which begins to look like a Shimizu L-function. The bulk of the work goes into understanding the
behavior of ηµ(s) as s→ 0 and obtaining the terms of the Shimizu L-function.

The signature defect Hirzebruch considered is ηA(0), which is related to L(M ′, V, 0) by the
generalized signature theorem plus this analysis. Finally, that value is related to L(M,V, 1) using
the functional equation.
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