
INTERSECTION THEORY IN ALGEBRAIC GEOMETRY:
COUNTING LINES IN THREE DIMENSIONAL SPACE

JEREMY BOOHER

Intersection theory allows you to count. How many lines lie in two quadric hypersurfaces in
P4? How many lines lie in a plane and pass through a general point in P3? How many conics
in the plane are tangent to each of five general conics? The way to approach these problems
is to determine information about a larger variety (the class of lines lying in one quadric
hypersurface, the class of conics tangent to one conic in these cases) and then intersect these
varieties to get a finite collection of points.

The fundamental ingredient in intersection theory is the choice of an appropriate param-
eter space. For points, the projective space Pn is a good parameter space. For lines, the
parameter space is a Grassmanian. The calculations take place in the Chow ring, where the
multiplication operation corresponds to intersection of sub-varieties.

Unfortunately, all of this becomes quiet technical. To deal with much of this rigorously, one
needs to understand scheme theory, a very non-trivial area of algebraic geometry. Therefore,
most of the following will be wrong. But it’s not very wrong. It will illustrate the ideas
behind intersection theory, and show why it is a neat and powerful technique in reducing
hard problems in geometry to easier algebra.

1. Complex Projective Space

PODASIP: In a plane, any two distinct lines meet in a unique point.

It almost goes without saying that to count the number of points of intersection in a
general manner, we need to get a consistent answer. If two distinct lines meet in a unique
point, well and good. But if they sometimes do not meet at all (consider x = 0 and x = 1 in
R2) and sometime meet in one point, counting will be near impossible. Although one could
argue that parallel lines are a tiny minority of all lines and so we should ignore this answer,
this causes too many problems later. Our solution will be to add points “at infinity”.

But first, we have another problem. Some systems of equations have complex roots. For
example, if we try to find the intersection of the parabola y − x2 = 0 with the line y = −1,
there are no real points of intersection because the solutions to x2 = −1 are (x, y) = (±i,−1).
On the other hand, intersecting with the line y = 1 gives two solutions. To resolve this
issue, we use the complex numbers instead of the real numbers. In the complex numbers,
unless a line is tangent to this parabola there are two points of intersections which we can
determine algebraically. Algebraic geometry attempts to do hard geometry by doing algebra
with polynomials. Since every polynomial with complex coefficients has complex roots, by
choosing the complex numbers we get the algebra to work.

Remark 1. What happens if the line is tangent to the parabola? For example, try intersecting
y − x2 = 0 with y = 0. The only point of intersection is (0, 0). However, tangency happens
only for very special lines, and it is fine to ignore them. In fact, the convention that x2 = 0
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has a double root at x = 0 suggests we should count that point of intersection twice. This
is the tip of a theory that assigns multiplicities to points of intersection to make our counts
always correct, at the expense of vast complications. It is also possible to ignore these
exceptional cases by insisting on a technical condition called generic transversality, as hinted
at near the end of Section 3.

We now deal with adding points at infinity.

Definition 2. Define two nonzero points (x0, x1, x2, . . . , xn) and (y0, y1, y2, . . . , yn) in Cn+1

to be equivalent if there is a constant λ ∈ C× such that xi = λyi for 0 ≤ i ≤ n. Group the
nonzero points of Cn+1 together into classes of equivalent points. Denote the set of classes
by Pn. It is known as complex projective space.

Let [x0, x1, x2, . . . , xn] denote the equivalence class in Cn+1 of all points that are a non-zero
multiple of (x0, x1, x2, . . . , xn).

At first, this may seem a strange definition. However, consider the following set:

A := {[x0, x1, x2, x3] ∈ P3 : x3 6= 0}
Since the last coordinate is nonzero, [x0, x1, x2, x3] = [x0x

−1
3 , x1x

−1
3 , x2x

−3, 1]. Since every
class has a unique representative with the last coordinate 1, the set A is in bijection with
C3, where

[x0, x1, x2, 1]→ (x0, x1, x2) ∈ C3.

So we have a copy of three dimensional space inside P3, along with the other stuff

B := {[x0, x1, x2, 0]} ⊂ P3.

This other stuff is what we call the points at infinity.

Remark 3. You can work out that the points at infinity are a projective plane P2, which in
turn consists of a copy of C2 and a projective line, which in turn gives a copy of C2, a copy
of C1, and a point.

Now, what is a plane in P3? Well, on the copy of C3, I know what a plane is. For example,
it is x0 +x1 +x2−1 = 0. Can I extend this equation to P3? No, since if x0 +x1 +x2−1 = 0,
the point [2x0, 2x1, 2x2, 2x3] is a representative for the same class, and 2x0+2x1+2x2−1 = 1.

However, remember that on the copy of C3, I scaled so x3 = 1. If I replace the 1 by x3, I
get x0 +x1 +x2−x3 = 0. This equation is homogeneous (each term of the sum has the same
degree), so if I scale all my variables by λ I simply get λx0+λx1+λx2+λx3−λx3 = λ ·0 = 0.
This is independent of the choice of representative for a class in P3, so we are good. This is
an example of a process called homogenization.

Definition 4. Let {fi} be a collection of homogeneous polynomials of n+ 1 variables. The
set of points in Pn where all of the fi vanish is called a projective variety.

Example 5. A surface in P3 is the zero locus of a single homogeneous polynomial. The
simplest are the zero loci of degree 1 and degree 2 polynomials, which are called a plane and
a quadric surface respectively.

Example 6. A projective line is the zero locus of two degree one polynomials: it is the
intersection of two planes containing the line. It is the set of [x0, x1, x2, x3] such that

a0x0 + a1x1 + a2x2 + a3x3 = 0 and b0x0 + b1x1 + b2x2 + b3x3
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for some complex ai, bi that are independent.
Again, note that on the copy of C3 where every point has a representative with x3 = 1,

this definition is a0x0 + a1x1 + a2x2 + a3 = 0 and b0x0 + b1x1 + b2x2 + b3 = 0 , the normal
definition of a line in three dimensional space.

We can now look at the question of whether any two lines in a plane meet. In the plane
x0 = 0, consider the lines x1 = 0 and x1 = x3, which is an example of the situation which
motivated the introduction of projective space. (Remember x3 = 1 in the patch of P3

corresponding to finite points.) These lines are “parallel” in the plane, but they meet at
[0, 0, 1, 0], one of the points at infinity.

Example 7. Consider the map P1 → P3 defined by sending [s, t]→ [s3, s2t, st2, t3]. Its image
in P3 is called a twisted cubic curve. It is a projective variety. To see this, note that any
point in the image satisfies

x0x2 − x21 = 0 and x0x3 − x1x2 = 0 and x1x3 − x22 = 0

because

s3 · st2 − (s2t)2 = 0 and s3t3 − (s2t) · (st2) = 0 and s2t · t3 − (st2)2 = 0.

Therefore any point of the image lies on these three quadric surfaces. You can check that
any point on the intersection of all three surfaces lies in the image.

There are many other twisted cubic curves: simply move it around any automorphism of
three dimensional space, for example by reflecting, translating, or rotating it.1

We can now pose our two keynote questions. The term general means that the answer
should hold for “most” configurations in a way that will be defined later.

(1) Given four general lines in P3, how many lines meet all four?
(2) How many lines in P3 are secant to (intersect at least twice) two general twisted cubic

curves?

2. Grassmanians

To count lines, we need some way to describe the space of all lines in P3. The way to
do this is through Grassmanians, an example of a more general concept called parameter
spaces.

A line in P3 is uniquely determined by two points on it. Let x = [x0, x1, x2, x3] and
y = [y0, y1, y2, y3] be the coordinates of two points on the line. Map it to the point

[x0y1 − x1y0, x0y2 − x2y0, x0y3 − x3y0, x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2] ∈ P5.

Viewing this as a map ∧ : C4 × C4 → C6, it is simply a description in coordinates of the

wedge product V × V
∧→ Λ2(V ). Either directly or through the properties of the wedge

product, one can verify that this map is linear in both variables and that if x = y then the
image is 0. Therefore, if we pick different points on the line, which can be expressed as linear
combinations of x and y, then (ax+by)∧(cx+dy) = (ad−bc)x∧y which is a multiple of our
original result. Since the range is a projective space, these determine the same point in P5

and hence this map is well defined. Denoting the coordinates of P5 by zi,j (with the indices
corresponding to the wedge product map), algebra shows that z12z34 − z13z24 + z14z23 = 0
and that any point of P5 satisfying this relation is in the image. Therefore the image is a

1Formally, act on P3 by PGL4(C)
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projective variety. It is called the Grassmanian G(1, 3) of lines in P3. As an exercise, show
that the map is injective, so G(1, 3) is a parameter space for lines in P3.

We now describe some special sub-varieties called Schubert cycles in the Grassmanian
G(1, 3). They depend on the choice of a flag in P3, which is the choice of a point p, a line
L containing the point, and a plane Λ containing the line. It is straightforward to show
these are projective varieties using more techniques from algebraic geometry like incidence
correspondences.

• Σ2,2 is all lines in the Grassmanian contained in L, so is just L. Note that Σ2,2 is a
point in G(1, 3) ⊂ P5. It is zero dimensional.
• Σ2,1 is all lines though a p lying in Λ. It is one dimensional.
• Σ1,1 is all lines lying in Λ. It is two dimensional.
• Σ2 is all lines passing through the point p. It is also two dimensional.
• Σ1 is all lines intersecting the line L. It is three dimensional.

Note that the sum of the subscripts is 4 minus the dimension of the Schubert cycle.
If it is necessary to indicate which flag these are based on, the relevant point, line, or plane

will be indicated in brackets: Σ1(L2) would be lines meeting the line L2.

3. Intersection Theory and the Chow Ring

To answer these questions about intersections, we follow the fundamental philosophy of
algebraic geometry and reduce the question to algebra. The first notion to consider is rational
equivalence. We will use this to define the Chow Ring and intersection products.

Definition 8. A cycle is a finite Z-linear combination of varieties. Two cycles a1V1 +a2V2 +
. . . + anVn and b1W1 + . . . + bnWn with ai > 0 and bi > 0 are rationally equivalent if there
exists a smooth variety

Z ⊂ P1 × Y

such that {(t, x) ∈ Z : t = [0, 1]} is the union of ai copies of Vi and {(t, x) ∈ Z : t = [1, 1]}
is the union of bi copies of Wi for all i.

Remark 9. How do you count how many copies of each variety should be included? It’s a
very difficult question. For example, consider the variety

{[s, t]× [x0, x1, x2] : x0x2 − x21 = 0 and tx0 + (s− t)x2} ⊂ P1 × P3.

When [s, t] = [0, 1], x0x2−x21 = 0 and x0−x2 = 0, which are the projective equations for the
parabola y = x2 and line y = 1. There are two points of intersection. When [s, t] = [1, 1],
x0x2 − x21 = 0 and x0 = 0, which are the projective equations for the parabola y = x2 and
line y = 0, there is a single point of intersection. One point should not be equivalent to two
points. The problem is that the parabola has a double root. Again, a theory of multiplicities
can solve this problem.

If our cycles have just one component (X0 and X1 respectively), what this means is that
Xs = {(t, x) ∈ Z : t = [s, 1]} ⊂ Pn interpolates smoothly between X0 and X1.

Example 10. Any two lines in P3 are rationally equivalent. To see this, let f1 and g1 be the
equations of two distinct planes containing the first line, and f2 and g2 be two distinct planes
containing the second line. The x ∈ P3 such that f1(x) = g1(x) = 0 is the first line, and
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the x ∈ P3 such that f2(x) = g2(x) = 0 are the second line. Consider the variety in P1 × P3

defined by

{([s, t], x) : sf1(x) + (t− s)f2(x) = 0 and sg1(x) + (t− s)g2(x) = 0} ⊂ P1 × P3.

Note this is homogeneous in both [s, t] and x. When [s, t] = [0, 1], the f1 and g1 terms
disappear, so the zero locus is just the zero locus of f2 and g2, the second line. When
[s, t] = [1, 1], the f2 and g2 terms disappear, so the zero locus is the first line. Thus the two
lines are rationally equivalent.

Now we can define the Chow ring.

Definition 11. Let X be a projective variety. The Chow Ring A∗(X) is defined to be the
set of all cycles modulo the equivalence relation of rational equivalence. Cycles of the form

a1[V1] + a2[V2] + . . .+ an[Vn]

where a1, a2, . . . , an ∈ Z are added by combining terms with the same [Vi] by adding the
integers. Multiplication is defined for single varieties by intersecting: [V ] · [W ] = [V ∩W ].
To form a ring, we extend this definition so that

(a1[V1] + a2[V2] + . . .+ an[Vn])(b1[V1] + b2[V2] + . . .+ bn[Vn]) =
∑
i,j

aibj[Vi] · [Vj]

If a variety V is made up of two components W and W ′, we further stipulate that [V ] =
[W ] + [W ′].

Remark 12. This definition is false for the very simple reason that if V1 ∼ V2 then V1 ∩W
need not be rationally equivalent to V2 ∩W . For example, two rationally equivalent lines
could be intersected with a parabola, but one could be a tangent line. One point is not
rationally equivalent to two points. Again, this could be salvaged by developing machinery
to detect multiplicities.

Despite these problems, there is no difficulty in calculating with the Chow ring. When
intersecting [V1] and [V2], some choices of representatives may give the wrong answer. There
is a technical condition called generic transversality that guarantees that intersecting the
varieties will give the correct answer, and a lemma called the moving lemma that says it
always possible to pick representatives for the equivalence classes so that the intersection
is generically transverse. Essentially, all one does is slightly move both of the varieties,
which causes the exceptional intersection to go away. In our example, slightly disturbing
the parabola will cause the line to no longer be tangent and have the correct number of
intersection points.

4. The Chow Ring of G(1, 3)

In order to answer the keynote questions, we need to understand the Chow ring of G(1, 3).
The hardest part is finding a complete set of representatives for rational equivalence classes
of sub-varieties. Because of the decomposition into Schubert cycles, a general theorem about
affine stratifications implies that the Chow ring is of the form

Z[[G(1, 3)], [Σ1], [Σ2], [Σ1,1], [Σ2,1], [Σ2,2]]

We will use lower case σ to denote the classes: σ2 = [Σ2] for example.
What remains to do is to determine the intersection product. In order to avoid problems

with “bad” intersections, we will use different flags: as long as the flags are general, and
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assumed to have no unexpected intersections (like the two lines intersecting, which does not
happen for most pairs of lines in P3) we will be fine.2 Denote the flags by p1 ⊂ L1 ⊂ Λ1 and
p2 ⊂ L2 ⊂ Λ2. An additional fact simplifies the calculations: we know that when intersecting
k and l dimensional spaces in the 4 dimensional Grassmanian, the expected dimension of the
intersection is l+k−4. The following is a partial list of the intersection products, illustrating
all the relevant techniques.

• First, note that [G(1, 3)] is the multiplicative identity, because intersecting with the
entire space doesn’t change anything.
• To calculate σ2σ2,1 and many other products, simply note that the expected dimension

of their intersection is less than 0, so the intersection is empty for general flags.
• To calculate σ1σ1,1, pick two flags. Σ1 is the lines intersecting a given line L1, and

Σ1,1 is the lines lying in a plane Λ2. L1 and Λ2 intersect in a point p, so lines in
Σ1(L1) ∩ Σ1,1(Λ2) must pass through p and be contained in Λ2. Thus σ1σ1,1 = σ2,1.
• Likewise, σ2σ1 = σ2,1 because the set of lines passing through a point p1 and in-

tersecting a line L2 are all the lines lying in the plane that L2 and p1 determine.
(Remember that this is a projective plane, so there are no parallel lines.)
• σ2

1,1 = σ2,2 because there is a unique plane lying in planes Λ1 and Λ2: the line Λ1∩Λ2.

• σ2
2 = σ2,2 as well, because there is a unique line passing through the points p1 and p2.

• σ1,1σ2 is the class of the set of lines that lie in a plane Λ1 and pass through a point
p2. For a general choice of Λ1, it will not contain p2, so the intersection is empty.
Therefore σ1,1σ2 = 0.
• σ2

1 is the set of lines intersecting two lines L1 and L2. This is not a Schubert cycle.
In general, the lines L1 and L2 will not intersect. If they meet at p, then the set of
lines intersecting both L1 and L2 would be the all lines that either lie in the plane L1

and L2 determine or that pass through the point p. Since we need the intersection
to be general in order to avoid problems, this isn’t good enough to calculate the
intersection product. However, a general configuration is rationally equivalent to
this special configuration where we can calculate the intersection. To see this, let L′2
be a line meeting L1. By an earlier example, we know there is a rational equivalence
between L2 and L′2. Denote the intermediate line at time t by L2(t). Then L2(0) = L2

and L2(1) = L′2. Then

{(t,Σ1(L1) ∩ Σ1(L2(t)))} ⊂ P1 ×G(1, 3)

gives a rational equivalence between Σ1(L1)∩Σ1(L2) and Σ1(L1)∩Σ1(L
′
2). We know

the second intersection is the union of two components, Σ1,1(L1, L′2) and Σ2(L1∩L′2).
Thus σ2

1 = σ1,1 + σ2.

5. Four Lines in P3

With all of this machinery set up, the geometric problem of determining how many lines
in P3 intersect each of four general lines L1, L2, L3, L4 is almost trivial. The set of lines
intersecting Li is Σ1(Li). Since the lines are general, the intersection of the Σ1(Li) will give
the correct answer. But in the Chow ring the class of the set of lines intersecting Li is σ1.

2Formally, PGL4(C) acts on P3 and is transitive on flags. Kleinman’s transversality theorem then says
that a Schubert cycle for the general flag is generically transverse to a Schubert cycle arising from a fixed
flag, and hence that the intersection product can be calculated by intersecting the varieties.
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To intersect all 4, I just need to calculate σ4
1. Using the previously calculated relations from

the last section, we get

σ4
1 = (σ2

1)2 = (σ2 + σ1,1)
2

= σ2
2 + 2σ2σ1,1 + σ2

1,1

= σ2,2 + 0 + σ2,2 = 2σ2,2

Now σ2,2 is a point in the Grassmanian, which corresponds to one line. Therefore there are
2 lines intersecting four general lines in P3.

6. Secant lines to Two Twisted Cubic Curves

Finding out how many lines are secant to two twisted cubic curves is also fairly easy with
our algebraic machinery. The first step is to find the class in the Chow ring of the set of
lines secant to one twisted cubic. Picking a point on the cubic, there is a one dimensional
family of secant lines passing through it, corresponding to picking a second point on the one
dimensional curve. Therefore there is a two dimensional family of secant lines. Thus the
class of secant lines is some linear combination of σ2 and σ1,1 since these are the only classes
of the correct dimension.

Suppose the class of the secant lines is aσ2 + bσ1,1. If we intersect with Σ1,1, I get

σ1,1(aσ2 + bσ1,1) = bσ2,2.

On the other hand, the secant lines to a twisted cubic that also are in Σ1,1 (lie in a plane)
are the lines joining two of the points where the twisted cubic intersects the plane. If the
plane has equation a0x0 + a1x1 + a2x2 + a3x3 = 0, then intersecting with the twisted cubic
gives

a0s
3 + a1s

2t+ a2st
2 + a3t

3 = 0

I may either take t = 1, which gives a cubic equation in s which (for a general plane) has
three solutions, or t = 0 and s = 1, which has no solutions for a general plane. Thus there
are three points of intersection. The secant lines that arise are those joining two of these
three points. There are

(
3
2

)
= 3 such lines. Thus b = 3.

If I intersect with σ2, I get

σ2(aσ2 + 3σ1,1) = aσ2,2.

How many secant lines pass through a point p? Consider projecting from the point p to a
plane: the twisted cubic is mapped to a curve in the plane. If there is a secant line passing
through p, two points on the twisted cubic are projected to the same point in the plane,
causing the plane curve to intersect itself.

I can calculate this directly. Take p = [1, 1, 1, 0] and project to the plane where x2 = 0.
The point on the line spanned by [1, 1, 1, 0] and [s3, s2t, st2, t3] which lies on the plane is
[s3 − st2, s2t − st2, 0, t3]. Therefore the image of the twisted cubic in the plane is the curve
[s, t] → [s3 − st2, s2t − st2, 0, t3]. The only time the last coordinate is 0 is when t = 0, so
there is no self intersection when t = 0. For other values of [s, t], since t is nonzero I may
scale it so t = 1. Then I am looking for two different values of s for which [s3− s, s2− s, 0, 1]
are equal. Suppose s31− s1 = s32− s2 and s21− s1 = s22− s2. Multiplying the second by s1 + 1,
I get

s32 − s2 = s31 − s1 = (s1 + 1)(s22 − s2)
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Either s22 − s2 = 0 or s2 + 1 = s1 + 1. The second case has s2 = s1 so is not a point of
intersection. The first case forces s2 = 0, 1 and s1 = 0, 1. Thus the images of [0, 1] and [1, 1]
agree, and there is a unique point of self-intersection. Thus there is a unique secant line to
the curve passing through the point p. This implies there is one line in the secant variety
intersected with Σ2, and hence a = 1.

We finally know that the class of the secant variety to a twisted cubic is σ2 + 3σ1,1. For
two general cubics, the secant varieties will intersect transversely so that the number of lines
in their intersection is the number predicted by calculating (σ2 + 3σ1,1)

2: this is

(σ2 + 3σ1,1)
2 = σ2

2 + 6σ2σ1,1 + 9σ2
1,1

= σ2,2 + 0 + 9σ2,2

= 10σ2,2

Thus there are 10 lines in P3 secant to two general twisted cubic curves.
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