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Of all figures in the plane with a given perimeter, which has the greatest area? The Greeks
knew the answer to this question, although they could not prove it. Part of the problem
was that the notion of perimeter and area are tricky notions, requiring analysis to deal with
properly. A rigorous proof had to wait until the 19th century. There are now many proofs
of the isoperimetric inequality. We will focus on the case where the boundary of the figure
is a piecewise C1 curve in order to sweep the analytic issues about area and perimeter under
the rug. Remember that being piecewise C1 means that the closed curve is continuously
differentiable except at a finite number of points.

Theorem 1 (Isoperimetric Inequality). Let γ be a closed curve in the plane that is piecewise
C1. Let A = A(Int(γ)) be the area enclosed by the curve and L = L(γ) the perimeter. We
have

4πA ≤ L2

with equality holding if and only if the curve is a circle.

Remark 2. The boundary curve need not be piecewise C1: with more analysis, less needs
to be assumed about γ. However, this is more than sufficient to encompass common figures
likes polygons and circles.

Here we will present two proofs of the isoperimetric inequality, one using the concept of
the action of a curve and one using Minkowski addition of sets.

1. Hurwitz’s Proof via Actions

Hurwitz’s proof uses calculus. For this to make sense, the curve must be piecewise C1 as
we will assume throughout. Several useful facts are:

• If γ(t) = (x(t), y(t)) is a curve from [a, b] → R2, its length can be calculated by the
formula

L(γ) =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

• If γ(t) is a curve from [0, π] → R2 with the polar coordinates of γ(t) given by r(t)
and θ(t), the length of the curve is

L(γ) =

∫ π

0

√(
dr

dt

)2

+ r2
(
dθ

dt

)2

dt.

This follows by making the change of variable x = r cos(θ) and y = r sin(θ) in the
first formula.
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• With the notation above, the area inside the curve is given by

A(Int(γ)) =
1

2

∫ π

0

r(t)2
dθ

dt
dt.

• The Cauchy-Schwarz inequality for integrals says that for square integrable functions
f and g from [0, π]→ R we have(∫ π

0

f(t)g(t)dt

)2

≤
∫ π

0

f(t)2dt

∫ π

0

g(t)2dt.

Equality is achieved if and only if g is a multiple of f .

These are fairly standard facts from calculus: you should be able to find all of them in a
good calculus book.

The concept of action appears in physics and allows a reformulation of classical mechanics
in terms of action and Lagrangians. For our purposes, all we need is the following definition
of the action of a curve, which should be thought of as a physical property of a particle
following that trajectory.

Definition 3. Let γ : [a, b] → R2 be a plane curve. The action of the path γ is defined to
be

(1) E(γ) :=
1

2

∫ b

a

(
dx

dt

)2

+

(
dy

dt

)2

dt =
1

2

∫ b

a

(
dr

dt

)2

+ r2
(
dθ

dt

)2

dt

Unlike the length of the curve, the action of the curve depends on the parametrization of
the curve. Therefore, we need to standardize how to parametrize curves.

Definition 4. The standard parametrization of a curve γ is the one for which the parameter’s
interval is [0, π].

Since the definitions of action and length are similar, it is no surprise that they are related.

Proposition 5. Let γ be a curve with standard parametrization. Then

L(γ)2 ≤ 2πE(γ)

with equality achieved if and only if the parameter is a multiple of arc length along γ.

Proof. By Cauchy-Schwarz,(∫ π

0

f(t)g(t)dt

)2

≤
∫ π

0

f(t)2dt

∫ π

0

g(t)2dt.

Taking f(t) = 1 and g(t) =

√(
dx

dt

)2

+

(
dy

dt

)2

gives the desired inequality. Equality is

achieved if g(t) is a constant, which says that the point (x(t), y(t)) moves along the curve
with constant speed. Thus the parameter is a multiple of arc length. �

The relevance to the isoperimetric inequality is that the action is also related to the area
the curve encloses.

Proposition 6. Let γ be a simple closed curve with standard parametrization. Then

2A(Int(γ)) ≤ E(γ)

with equality achieved if and only if γ is a circle.
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The proof uses the following analytic lemma:

Lemma 7 (Wirtinger Inequality). Let f : [0, π] → R be a piecewise C1 function with
f(0) = f(π) = 0. Then we have ∫ π

0

f ′(t)2dt ≥
∫ π

0

f(t)2dt.

Equality is achieved if and only if f(t) is a multiple of sin(t).

Proof. Consider the function g(t) = f(t)
sin(t)

. It is differentiable at the endpoints by l’Hopital’s

rule and the fact that f(0) = f(π) = 0. Then

f ′(t) = g(t) cos(t) + g′(t) sin(t)

so ∫ π

0

f ′(t)2dt =

∫ π

0

(
g(t)2 cos(t)2 + 2g(t)g′(t) cos(t) sin(t) + g′(t)2 sin(t)2

)
Integrating the middle term by parts and using the boundary conditions gives

2

∫ π

0

g(t)g′(t) cos(t) sin(t) = −
∫ π

0

g(t)2
(
cos(t)2 − sin(t)2

)
dt.

Thus∫ π

0

f ′(t)2dt =

∫ π

0

(
g(t)2 + g′(t)2

)
sin(t)2dt =

∫ π

0

f(t)2dt+

∫ π

0

g′(t)2 sin(t)2dt ≥
∫ π

0

f(t)2dt.

Equality is achieved if and only if g′(t) = 0 on the interval, which implies g(t) is constant
and f(t) is a multiple of sin(t). �

We can now prove Proposition 6.

Proof. Remember that A(Int(γ)) = 1
2

∫ π
0
r(t)2 dθ

dt
dt. Then using (1) we have

E(γ)− 2A(Int(γ)) =
1

2

∫ π

0

((
dr

dt

)2

+ r2
(
dθ

dt

)2

− 2r2
dθ

dt

)
dt.

Completing the square turns the right side into

1

2

∫ π

0

r2
(
dθ

dt
− 1

)2

dt+
1

2

∫ π

0

((
dr

dt

)2

− r2
)
dt.

The first term is non-negative since it is a square, and the second is non-negative by
Wirtinger’s inequality (the curve is closed, so we may pick the origin of the polar coor-
dinate system to be at γ(0) = γ(π)). To have equality, dθ

dt
= 1 and r(t) is a multiple of sin(t).

Putting these together, r = a sin(θ + ϕ). This is the polar equation of a circle. �

The isoperimetric equality now follows easily.

Proof. Pick a standard parametrization for γ. By the two propositions, we know that

A(Int(γ)) ≤ 1

2
E(γ) =

1

4π
L(γ)2.

Equality is obtained if and only if the curve is a circle. �
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2. The Isoperimetric Inequality Through Minkowski Sums

The second proof uses the Minkowski sum of two sets. It avoids directly invoking calculus,
although it is hidden in the approximation of general regions by polygons.

Definition 8. Let A and B be subsets of R2. The Minkowski sum is defined to be

A�B = {x+ y : x ∈ A, y ∈ B}.(2)

This is easiest to deal with for rectangles. By an open rectangle, I mean the interior of a
rectangle in R2. All that we will deal with will have sides parallel to the coordinate axes, so
are of the form (a, b)× (c, d).

2.1. Steiner’s Inequality. Let Ω be a closed and bounded set with piecewise smooth C1

boundary. Let Br denote the circle of radius r centered at the origin. Define

Ωr = Ω�Br.(3)

By definition, it is the set of points at most distance r from a point of Ω.

Theorem 9 (Steiner). With the notation above, the following inequality holds:

A(Ωr) ≤ A(Ω) + Lr + πr2

Equality happens if and only if Ω is convex.

Remark 10. The same proof also shows that

L(∂Ωr) ≤ L(∂Ω) + 2πr.

Proof. To Steiner’s inequality, exhaust the inside of the Ω by polygons. If Ω is convex, these
polygons may be taken to be convex. The limit of the area of the polygons approach the
area of Ω.1 If the inequalities in Steiner’s theorem hold when extending these polygons by
r, then taking the limit as the polygons better approximate Ω gives the desired inequalities.

Figure 1. Steiner’s Inequality

Let P be a polygon with vertices vi, and deconstruct Pr as shown in Figure 1. Let θi be
the angle (in radians) of the circular sector based at vi, and σi be +1 if the polygon is convex

1This is actually tricky. Look up Hausdorff Convergence in the appendix of “Inequalities that Imply the
Isoperimetric Inequality”.
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at vi, −1 if it is concave. Let L be the perimeter of P . The rectangles of height r added to
each side have total area Lr, but may contribute less to Pr if they overlap. Two rectangles
overlap if they are next to a common vertex vi where P is concave. In this case the overlap
is larger than the area of the circular wedge with angle θi, so the total contribution of the

rectangles is at most Lr −
∑

i:σ(i)=−1

1

2
r2θi.

Note that 2π =
∑
σivi. At any vertex where the polygon is convex, the area of the circular

wedge is 1
2
r2θi. Therefore the total area of the wedges is

1

2
r2
∑
i

θi = πr2 +
1

2
r2

∑
i:σ(i)=−1

θi.

The total area of Pr is at most A(P )+Lr+πr2. Note in the case that the polygon is convex
this is an equality. �

2.2. The Brunn-Minkowski Theorem. We now move on to the Brunn-Minkowski The-
orem, which gives a lower bound on the area of A � B in terms of the areas of A and
B.

Theorem 11 (Brunn-Minkowski). Let A and B be bounded sets with piecewise C1 boundary.
Then we have √

A(A�B) ≥
√
A(A) +

√
A(B).

Remark 12. Equality happens if A and B are homeolithic: A = rB � x, for some scaling
factor r and point x.

Similar to the proof of Steiner’s Inequality, we will prove the statement when A and B are
finite unions of open rectangles and then approximate general A and B by such rectangles.

Lemma 13. Let A be the union of n pairwise disjoint open rectangles, and B be the union
of m pairwise disjoint open rectangles. Then we have√

A(A�B) ≥
√
A(A) +

√
A(B).

Proof. The proof proceeds by induction on n+m. For the base case, suppose n+m = 2 so
that A = (a, b)× (c, d) and B = (e, f)× (g, h). Then

A(A�B) = A((a+ e, b+ f)× (c+ g, d+ h))

= (b+ f − a− e)(d+ h− c− g)

= (b− a)(d− c) + (f − e)(h− g) + (b− a)(h− g) + (f − e)(d− c)

≥ (b− a)(d− c) + (f − e)(h− g) + 2
√

(b− a)(h− g)(f − e)(d− c)

=
(√
A((a, b)× (c, d)) +

√
A((e, f)× (g, h))

)2
where the second to last step uses that x + y ≥ 2

√
xy, a form of the arithmetic-geometric

mean inequality.
Now suppose n + m = l > 2, and the assertion holds for all pairs of sets with n + m < l.

We may assume that n ≥ 2. Pick two rectangles R1 and R2 that are part of A. Because R1

and R2 are disjoint and open, there is a horizontal or vertical line that does not intersect
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them that passes between them (draw a picture). Without loss of generality, assume it is
the vertical line x = x1. It divides the rectangles composing A up into two sets

A′ = {(x, y) ∈ A : x < x1} and A′′ = {(x, y) ∈ A : x > x1}.

The line cuts some rectangles of A into two parts, but does not split R1 and R2 since they
are completely on one side of the line. Thus both A′ and A′′ are composed of less than n
rectangles. Let

θ =
A(A′)

A(A)
and Ψ =

A(A′)

A(A′′)

be the fraction of the area of A appearing in A′ and the ratio of the areas of A′ and A′′.
By moving a vertical line x = t through B, we see that because the area of B to the left

of the line is a continuous function of t there will be a vertical line x = x2 that cuts B into
two sets, the ratio of whose areas is Ψ. Let

B′ = {(x, y) ∈ B : x < x2} and B′′ = {(x, y) ∈ B : x > x2}.

Note that B′ and B′′ are each the union of at most m pairwise disjoint open rectangles, that

A(B) = A(B′) +A(B′′), and that θ =
A(B′)

A(B)
.

Now because A′ and A′′ are in A and B′ and B′′ are in B we know that

A′ �B′ ∪ A′′ �B′′ ⊂ A�B.

Since A′ � B′ is to the left of the line x = x1 + x2 and A′′ � B′′ is the right of the line
x = x1 + x2, the two sets are disjoint. Since A′ and A′′ are composed of fewer than n
rectangles and B′ and B′′ are composed of at most m rectangles, the inductive hypothesis
applies to show that

A(A�B) ≥ A(A′ �B′) +A(A′′ �B′′)

≥
(√
A(A′) +

√
A(B′)

)2
+
(√
A(A′′) +

√
A(B′′)

)2
= θ

(√
A(A) +

√
A(B)

)2
+ (1− θ)

(√
A(A) +

√
A(B)

)2
=
(√
A(A) +

√
A(B)

)2
. �

We can now prove the general version of the Brunn-Minkowski theorem.

Proof. The idea is to construct a sequence of sets An and Bn that contain A and B,
limn→∞A(An) = A(A) and limn→∞A(Bn) = B, and with An and Bn a finite union of
open rectangles. Tessellate the plane with squares of side length 1

n
, and let An be the union

of (the interiors) of all squares that intersect A. Since A is bounded, An is a finite union
of open rectangles. Do the same to construct Bn. As A = ∩An and B = ∩Bn, the areas
of An and Bn approach the areas of A and B as n goes to infinity.2 Using this and the

2Again, this is actually tricky. Look at properties of the Lebesgue measure and how it interacts with
limits and intersections.
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Brunn-Minkowski theorem for finite unions of rectangles,√
A(A�B) = lim

n→∞

√
A(An �Bn)

≥ lim
n→∞

√
A(An) +

√
A(Bn)

=
√
A(A) +

√
A(B)

which establishes the Brunn-Minkowski inequality. �

2.3. The Isoperimetric Inequality. The Brunn-Minkowski inequality along with Steiner’s
inequality immediately imply the isoperimetric inequality.

Proof. Let A be the area of a set Ω with piecewise C1 boundary of length L. Let Br be the
disc of radius r. Then for any r ≥ 0 using Steiner’s inequality and the Brunn-Minkowski
inequality

A+ Lr + πr2 ≥ A(Ω� rB) ≥
(√

A+
√
πr2
)2

= A+ πr2 + 2
√
Aπr

Combining these and simplifying gives

L2 ≥ 4πA. �

3. An Application of the Isoperimetric Inequality to Quadrilaterals

The isoperimetric inequality is quite useful. One easy application is to the problem of
finding quadrilateral has the maximum area when the four sides are specified.

Given the four side lengths a, b, c, and d, a quadrilateral exists with these side lengths (in
order) provided the obvious inequalities a+ b+ c > d, b+ c+ d > a, etc. are satisfied.

Corollary 14. Given a, b, c, and d as above, the quadrilateral with these side lengths and
maximum area is cyclic (all four vertices lie on a circle).

Proof. It is a lesser-known geometric fact that there exists a cyclic quadrilateral with sides
of length a, b, c, and d. If a = c then a trapezoid works. Otherwise, suppose that such a
quadrilateral existed. Extend the sides of length b and d to meet in a point E as shown in
Figure 2. Let x and y be the lengths of the extensions. Because ∠BCD and ∠BAD are

Figure 2. Construction of Cyclic Quadrilateral
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supplementary (they subtend opposite arcs), triangles 4EAB and 4ECD are similar. This
gives algebraic formula for x and y in terms of a, b, c, and d.

To construct the cyclic quadrilateral, construct the triangle with side lengths a, x, and y,
and then extend EA and EB to get the points C and D. Triangles 4EAB and 4ECD
are then similar, which implies ∠BCD and ∠BAD are supplementary so the quadrilateral
is cyclic.

The vertices of this cyclic quadrilateral divide the circle into four arcs. For any other
quadrilateral Q with side lengths a, b, c, and d place these arcs on the sides of Q. This
results in a piecewise C1 curve γ with the same perimeter as the circle. The area of the
cyclic quadrilateral is the area of the circle minus the area of the four circular sectors, while
the area of Q is the area enclosed by γ minus the area of the same four circular sectors.
The area enclosed by the curve is maximized when the curve is a circle, so the area of the
quadrilateral is maximized when it is cyclic. �
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