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1. Introduction

The circle method was first used by Hardy and Ramanujan [2] in 1918 to investigate the
asymptotic growth of the partition function, which counts the number of ways to write n
as a sum of positive integers. They exploited the fact that the generating function for the
partition function is almost the Dedekind eta function, which is related to integral weight
modular forms. The key step is using the transformation law for the eta function to rewrite
their integral over a circle into something more tractable. In 1938, Rademacher published
a strengthening of their method which allowed him to obtain a representation of p(n) as
a convergent series [4]. He also generalized it so it could deal with the coefficients of the
q−expansions of other modular forms like the j function [3]. In 1943, he discovered a different
contour of integration involving Ford circles that simplified the analysis of the partition
function [5] and has become the standard account presented in textbooks like Apostol [1].
This paper will show two examples of using variants of the circle method to produce series
representations for the partition function and for the coefficients c(n) of the j function. I
will first review background about the eta and j functions and then construct the required
contours of integration in terms of the Farey sequence and Ford circles. Then I will review
some analytic facts involving Bessel functions and Kloosterman sums. After that I will derive
the series representations for p(n) and c(n).

Throughout, a summation
′∑

h,k

will denote a sum over relatively prime h and k.

2. Preliminaries on the eta and j Functions

First we define the Dedekind eta function. Background can be found in Apostol [1].

Definition 1. The eta function is defined on the upper half plane H = {z ∈ C : Im(z) > 0}
to be

η(z) := eπiz/12

∞∏
n=1

(1− e2πizn).(2.1)

It satisfies a transformational law very similar to that of an integral weight modular form.

Theorem 2. For

(
a b
c d

)
∈ SL2(Z) with c > 0 and z ∈ H,

η

(
az + b

cz + d

)
= ε(a, b, c, d)(−i(cz + d))1/2η(z)(2.2)
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where ε(a, b, c, d) := eπi(
a+d
12c

+s(−d,c)) and s(h, k) is the Dedekind sum
k−1∑
r=1

r

k

(
hr

k
−
[
hr

k

]
− 1

2

)
.

The j function is defined in terms of Eisenstein series (again, see Apostol [1]).

Definition 3. The j function (also called the Klein j-invariant) can be defined in terms of
Eisenstein series Ek of weight k to be

j(z) = 123 E4(z)3

E3
4(z)− 27E2

6(z)
(2.3)

for z ∈ H.

Remark 4. This is normalized using the convention that the coefficient of q−1 in the
q−expansion will be 1. In Apostol’s book [1] and Rademacher’s paper [3] the 123 is omitted
from the definition of the j function but added in later formula.

It is a modular function for SL2(Z) in the sense that j(z) = j(−1
z

) and j(z) = j(z+1). This
follows from the fact that the Eisenstein series of weight k is a modular forms for SL2(Z).
Because E3

4(z)− 27E2
6(z) is a cusp form while E4 is not, j(z) has a simple pole at the cusp.

In particular, letting q = e2πiz, j(z) can be written as

(2.4) j(z) =
∞∑

n=−1

c(n)qn.

Remark 5. The denominator E3
4(z)−27E2

6(z) is the modular discriminant ∆(z), which can
also be expressed as (2π)12η(z)24. Combining this with the definition of the Eisenstein series
shows the coefficients c(n) are integers.

Rademacher represented the c(n) in terms of infinite series using a variant of the circle
method. This will be proven in Section 5.

Theorem 6. In the Fourier expansion for the modular function

j(z) = c(−1)q−1 + c(0) +
∞∑
n=1

c(n)qn

where q = e2πiz, the coefficient c(n) for n ≥ 1 is given by the convergent series

c(n) =
2π√
n

∞∑
k=1

Ak(n)

k
I1(

4π
√
n

k
)(2.5)

where I1 is a Bessel function that will appear in Definition 26. Ak(n) is the series

Ak(n) =
′∑

hmod k

e−
2πi
k

(nh+h′)

with h′ defined to be an integer for which hh′ = −1 mod k.

Remark 7. Although the convergent series does not apply for n = −1, 0, by manipulating
power series in the definition of the j function it follows that c(−1) = 1 and c(0) = 744.

One can represent the coefficients of η(z) in terms of a similar series. This will be proven
in Section 6.
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Theorem 8. Write the q−series for e2πiz/24

η(z)
with q = e2πiz as

q
1
24

η(z)
=
∞∑
n=1

p(n)qn.

Let Bk(n) :=
∑

′
0≤h<k e

πis(h,k)−2πinh/k. Then the coefficient p(n) is given by the convergent
series

p(n) =
1√
2π

∞∑
k=1

Bk(n)
√
k
d

dn

sinh
(
π
k

√
2
3
(n− 1

24
)
)

√
n− 1

24


Remark 9. The argument will actually give an error term for summing N terms of this
series. As soon as the error term is less than 1

2
, the knowledge that p(n) is an integer gives

a way to compute p(n). This is a significant improvement over trying to compute p(n) by
counting partitions. In fact, because the function p(n) satisfies various congruence identities,
it is usually possible to tolerate a much larger error and sum even fewer terms.

3. The Farey Sequence and Rademacher’s Path of Integration

The subdivision of the circle which Rademacher used in his early work can be expressed
in terms of the Farey sequence, a sequence of fractions arising in elementary number theory.
Later, Rademacher constructed his refined contour of integration in terms of Ford circles,
which are also defined in terms of the Farey sequence.

3.1. The Farey Sequence.

Definition 10. The Farey sequence of order n, denoted by Fn, is the increasing sequence of
reduced fractions in [0, 1] with denominator less than or equal to n.

Example 11. The Farey sequence of order 7 is

0,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
, 1

When passing from Fn to Fn+m, new terms are added to the Farey sequence. If a
b
< c

d
,

then their mediant is defined to be a+c
b+d

. Elementary algebra shows it lies between a
b

and c
d
.

It is also easy to tell when certain fractions are consecutive.

Proposition 12. Suppose 0 ≤ a
b
< c

d
≤ 1 with bc− ad = 1. a

b
and c

d
are consecutive terms

in Fn when n satisfies

max(b, d) ≤ n ≤ b+ d− 1.

Proof. Since bc − ad = 1, the fractions are in lowest terms. If max(b, d) ≤ n, then a
c

and b
d

are both in Fn. We need to show they are consecutive if n ≤ b + d − 1. Suppose there is a
reduced fraction h

k
lying strictly between them. But then we have

(3.1) k = (bc− ad)k = b(ck − dh) + d(bh− ak)

and since a
c
< h

k
< c

d
implies that ck− dh ≥ 1 and bh− ak ≥ 1, we conclude k ≥ b+ d. Thus

a
c

and b
d

are consecutive. �
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Also observe that if bd− ad = 1 and h
k

is the mediant, it lies between them so bh− ak ≥ 1
and ck − dh ≥ 1. But using (3.1), k = b + d if and only if bh − ak = 1 and ck − dh = 1.
Following Apostol, say the fractions a

b
< h

k
satisfy the uni-modular relation if bh− ak = 1.

This gives enough information to mechanically construct Fn+1 from Fn.

Theorem 13. The sequence Fn+1 includes the sequence Fn. Each fraction which is not in
Fn is the mediant of consecutive terms of Fn. If a

b
and c

d
are consecutive in any Fn, they

satisfy the uni-modular relation.

Proof. The proof proceeds by induction on n. For n = 1, the Farey sequence is 0, 1 while
F2 is 0, 1

2
, 1. The statement is certainly satisfied. Now suppose that a

b
and c

d
satisfy the

uni-modular relation and are consecutive in Fn. They are consecutive whenever

max(b, d) ≤ m ≤ b+ d− 1

by applying Proposition 12. Consider their mediant h
k
. We know h

k
satisfies the uni-modular

relation with a
b

and with c
d
. This implies that h and k are relatively prime. Furthermore, a

b

and c
d

are not consecutive in Fk = Fb+d, but a
b

and h
k

are consecutive (and likewise h
k

and
c
d
) because max(b, k) = k. This shows that in passing from Fn to Fn+1 each new fraction

inserted is a mediant of a consecutive pair in Fn and each consecutive pair satisfies the
uni-modular relation. This completes the induction. �

This is enough theory to see how the Farey sequence of order N allows the subdivision of
the circle of radius e−2πN−2

as done in Rademacher’s original work [3] and [4]. Both 1
η(z)

and

j(z) tend to infinity as z approaches the cusps for SL2(Z). These correspond to q = eir for
r a rational number, points on the boundary of the unit circle. The cusps that turn out to
contribute the most to the behavior of these functions are those with small denominators,
which the Farey sequence represents.

Definition 14. In the Farey sequence of order N , let the fraction h
k

lie between a
b

and c
d
.

Let ξh,k be the image of (a+h
b+k

, c+h
d+k

) under the map θ → e−2πN−2+2πiθ. (Let ξ0,1 be the image

of (− 1
N+1

, 1
N+1

).) Define ϑ′h,k = 1
k(b+k)

and ϑ′′h,k = 1
k(d+k)

.

The arcs ξh,k are a division of the circle of radius e−2πN−2
which will let us focus attention

on the most important cusps. Note that h
k
− a+h

b+k
= h(b+k)−ak−hk

k(b+k)
= ϑ′h,k and ϑ′′h,k = c+h

d+k
− h

k
.

Thus ϑ′h,k reflects the size of the arc between the mediant of a
b

and h
k
.

3.2. Ford Circles. The Ford circles can be defined in terms of the Farey sequence, and will
lead to Rademacher’s improved contour of integration for the partition function.

Definition 15. Given a rational number h
k

with (h, k) = 1, the Ford circle C(h, k) is the

circle centered at h
k

+ i
2k2 with radius 1

2k2 .

Proposition 16. Two Ford circles C(a, b) and C(c, d) are either tangent or disjoint. They
are tangent if and only if bc− ad = ±1.

Corollary 17. Ford circles of consecutive Farey fractions are tangent.

Proof. By the Pythagorean theorem, the distance between the centers of the circles is(a
b
− c

d

)2

+

(
1

2b2
− 1

2d2

)2

.
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The square of the sum of the radii is

(
1

2b2
+

1

2d2

)2

. The difference between these two

quantities is(a
b
− c

d

)2

+

(
1

2b2
− 1

2d2

)2

−
(

1

2b2
+

1

2d2

)2

=

(
ad− bc
bd

)2

− 1

b2
1

d2

=
(ad− bc)2 − 1

b2d2
≥ 0.

Equality holds if and only if ad − bc = ±1, and equality corresponds to the circles being
tangent. �

Before proceeding, we need a lemma from plane geometry.

Lemma 18. A point C lies on the circle with diameter AB if and only if CD2 = AD ·DB,
where D is the intersection of AB with the perpendicular to AB through C.

Proof. Pick coordinates so the center of the circle is (0, 0) and A = (−r, 0) and B = (r, 0).
Then C = (x, y) lies on the circle if and only if x2 + y2 = r2. But D = (x, 0), so CD = y,
AD = (x+ r) and DB = (r − x), so CD2 = AD ·DB if and only if y2 = r2 − x2 �

Next we consider how the Ford circles corresponding to three consecutive Farey fractions
fit together.

Theorem 19. Let a
b
< h

k
< c

d
be three consecutive Farey fractions. The points of tangency

of C(h, k) with C(a, b) and C(c, d) are given the points

αh,k =
h

k
− b

k(k2 + b2)
+

i

k2 + b2

and

α′h,k =
h

k
+

d

k(k2 + d2)
+

i

k2 + d2
.

Furthermore, αh,k lies on the semicircle whose diameter is the interval [a
b
, h
k
] on the real line.

Proof. This is an exercise in plane geometry. αh,k divides the line segment L joining the
center z1 of C(a, b) with the center z2 of C(h, k) into segments of length 1

2b2
and 1

2k2 . Thus

αh,k =
1

2k2

1
2b2

+ 1
2k2

z1 +
1

2b2

1
2b2

+ 1
2k2

z2

By definition z1 = a
b

+ i 1
2b2

and z2 = h
k

+ i 1
2k2 . Thus

αh,k =
1

1
2b2

+ 1
2k2

(
a
b

+ i 1
2b2

2k2
+

h
k

+ i 1
2k2

2b2

)

=
1

1
2b2

+ 1
2k2

(
ab+ i

2
+ hk + i

2

2b2k2

)
=

1

b2 + k2
(ab+ hk + i)

=
h

k
− b

k(k2 + b2)
+

i

b2 + k2
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where the last step uses that bh − ak = 1. The formula for α′h,k is obtained in a similar
manner.

To check that αh,k is on the semicircle, we simply use the previous lemma. The length of
the perpendicular is the imaginary part of αh,k,

1
b2+k2 . It divides the segment from a

b
to h

k

into two segments of length b
k(k2+b2)

and h
k
− a

b
− b

k(k2+b2)
. Then we have

b

k(k2 + b2)

(
h

k
− a

b
− b

k(k2 + b2)

)
=

b

k(k2 + b2)

(
1

bk
− b

k(k2 + b2)

)
=

b

k2(k2 + b2)

(
(k2 + b2)− b2

b(k2 + b2)

)
=

(
1

b2 + k2

)2

as desired to show αh,k lies on the semicircle. �

3.3. Rademacher’s Contour of Integration. Given this description of the Ford circles,
we can construct a path of integration for every integer N . It will be a path connecting the
points i and i+ 1. 1

Definition 20. Consider the Ford cycles of the Farey sequence FN . If a
b
, h
k
, and c

d
are

consecutive the point of tangency between C(a, b) and C(h, k) and between C(h, k) and C(c, d)
divide C(h, k) into two arcs. P (N) is the union of the arc with larger imaginary parts. For
the circles C(0, 1) and C(1, 1) use only the part of the upper arc with real part between 0 and
1, and consider them as part of the same arc associated to the point 0

1
.

Remark 21. Like the Farey arcs on the circle of radius e−2πN−2
, this contour is skirting the

points h
k

in the Farey sequence of order N . They correspond to cusps on the boundary of the
unit circle under the map x = e2πiτ . While Rademacher’s contour is more complicated to
describe, it greatly simplifies the analysis for the partition function.

It is also useful to understand this path under the transformation z = −ik2(τ − h
k
).

Proposition 22. This sends the circle C(h, k) to a circle K of radius 1
2

around the point

z = 1
2
. The points of contact α(h, k) and α′(h, k) from Proposition 19 are send to

z1(h, k) :=
k2

k2 + b2
+ i

kb

k2 + b2

z2(h, k) :=
k2

k2 + d2
− i kd

k2 + d2
.

The upper arc joining α(h, k) and α′(h, k) corresponds to the arc not touching the imaginary
z−axis.

Proof. The translation τ− h
k

translates C(h, k) so its center is at i
2k2 . Multiplication by −ik2

expands the radius to 1
2

and rotates the z−plane 90 degrees clockwise. This results in a

circle of radius 1
2

centered at 1
2
. The formulas for the zi are just substitution. �

It will be easier to analyze integrals over the upper arcs in C(h, k) by converting them to
integrals over this circle. To this end, the following bounds will be useful.

1There is an illuminating picture of the contour in the Wikipedia article on the Hardy-Littlewood circle
method.
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Proposition 23. With the notation of the previous proposition,

|z1(h, k)| = k√
k2 + b2

and |z2(h, k)| = k√
k2 + d2

Moreover, all points z on the chord joining z1(h, k) and z2(h, k) satisfy

|z| <
√

2k

N

provided a
b
, h
k
, and c

d
are consecutive in FN . The length of the chord is at most 2

√
2 k
N

.

Proof. Given the formulas for z1(h, k) and z2(h, k) in Proposition 22, the first assertion is
clear. To prove the second, note that any point on the chord is z = sz1(h, k) + tz2(h, k)
for s and t non-negative real numbers with s + t = 1. Thus |z| ≤ max(|z1(h, k)|, |z2(h, k)|).
However, as

0 ≤ k2 + b2

2
−
(
k + b

2

)2

we know that

(k2 + b2)
1
2 ≥ k + b√

2
≥ N + 1√

2
>

N√
2

using Proposition 12. Combined with the formula for |z1(h, k)| and the same argument for

z2(h, k) this gives that |z| ≤
√

2k
N

as desired. The length of the chord is |z1(h, k)− z2(h, k)| ≤
|z1(h, k)|+ |z2(h, k)| ≤ 2

√
2k
N

. �

4. Bessel Functions and Kloosterman Sums

The first order of business is to state the relevant facts about Bessel functions.

Definition 24. The Bessel function of the first kind Ja is defined by the power series

Ja(z) :=
∞∑
m=0

(−1)m

m!Γ(m+ a+ 1)

(x
2

)2m+a

.

Remark 25. If a is a positive integer, Γ(m + a + 1) is just (m + a)!. This function arises
as a solution to the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − a2)y = 0.

The Bessel functions appearing later are the imaginary (or modified) Bessel functions of
the first kind.

Definition 26. The imaginary Bessel function of the first kind Ia is defined to be i−aJa(iz).

This has series expansion

(4.1) Ia(z) =
∞∑
m=0

1

m!Γ(m+ a+ 1)

(x
2

)2m+a

.

It can also be represented in various ways as integrals. The relevant one is that

(4.2) Iv(z) =
(1

2
v)v

2πi

∫ c+∞i

c−∞i
t−v−1et+z

2/4tdt
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for c > 0, Re(v) > 0.
Finally, there are sometimes elementary expressions for Bessel functions when a is a half

integer. The relevant fact is that

(4.3) I 3
2
(z) =

√
2z

π

d

dz

(
sinh z

z

)
.

All of these facts were culled from the literature on Bessel functions. Apostol used Watson’s
book on Bessel functions [6]. The only obscure fact is the integral formula, which Apostol
found on page 181 with a slightly different but equivalent path of integration.

The other necessary preliminary is nontrivial bounds on Kloosterman sums.

Definition 27. For integers a, b and m, define

Km(a, b) :=
∑

x∈(Z/mZ)×

e2πi(
ax+bx′
m

)

where x′ denotes a lift to Z of the inverse of x in (Z/mZ)×.

There are different ways to obtain estimates on Km(a, b). The following special case is
sufficient and was known before the Weil bound was proven. Rademacher attributes it to
Salié and Davenport. Define Ak(n) := Kk(−n, 1): then we have the bound

(4.4) |Ak(n)| ≤ Ck
2
3
+ε(k, n)

1
3 .

Rademacher also uses an extension of this to incomplete Kloosterman sums. The footnote
on page 507 [3] explains where to look to derive the same estimate over shorter intervals.

5. The Convergent Series for the j Function

The proof of Theorem 6 will need a number of lemmas. They will be proven after they
are used to deduce the main theorem. The starting point is to express the coefficients of the
j function in terms of integrals.

Lemma 28. Let f(e2πiτ ) = j(τ). For n > 0, we have

c(n) =
′∑

0≤h<k≤N

e−
2πinh
k

∫ ϑ′′h,k

−ϑ′h,k

f(e
2πih
k
−2π(N−2−iφ))e2πn(N−2−iφ)dφ(5.1)

where ϑ′h,k and ϑ′′h,k are the boundary points of the Farey arcs defined in Definition 14. Also,

recall that
∑′ denotes the sum over relatively prime h and k.

This can be split up into two pieces corresponding to the q−1 and
∑∞

n=0 c(n)qn parts of
the q-expansion of j(z).

Lemma 29. Let w denote N−2 − iφ, and define D(x) =
∞∑
m=0

c(m)xm := f(x) − x−1. We

have that c(n) = Q(n) +R(n) with

Q(n) :=
′∑

0≤h<k≤N

e−
2πi
k

(nh+h′)

∫ ϑ′′h,k

−ϑ′h,k

e
2π
k2w

+2πnwdφ(5.2)

R(n) :=
′∑

0≤h<k≤N

e−
2πinh
k

∫ ϑ′′h,k

−ϑ′h,k

D(e
2πih′
k
− 2π
k2w )e2πnwdφ(5.3)
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where h′ denotes an integer with hh′ = −1 mod k.

Now divide the contour of integration into three parts between the points

−ϑ′h,k = − 1

k(b+ k)
≤ − 1

k(N + k)
<

1

k(N + k)
≤ 1

k(d+ k)
= ϑ′′h,k

where the a
b

and c
d

are the adjacent fractions in the Farey sequence of order N . Define

Q0(n) :=
N∑
k=1

′∑
hmod k

e−
2πi
k

(nh+h′)

∫ 1
k(N+k)

− 1
k(N+k)

e
2π
k2w

+2πnwdφ

Q1(n) :=
N∑
k=1

′∑
hmod k

e−
2πi
k

(nh+h′)

∫ − 1
k(N+k)

− 1
k(b+k)

e
2π
k2w

+2πnwdφ(5.4)

Q2(n) :=
N∑
k=1

′∑
hmod k

e−
2πi
k

(nh+h′)

∫ 1
k(d+k)

1
k(N+k)

e
2π
k2w

+2πnwdφ

Then Q(n) = Q0(n) +Q1(n) +Q2(n). The first step is to estimate Q0(n).

Lemma 30. Letting Ak(n) =
′∑

hmod k

e−
2πi
k

(nh+h′) and I1 denote the Bessel function of the first

order with purely imaginary argument (equation 4.1). Then

Q0(n) =
2π√
n

N∑
k=1

Ak(n)

k
I1

(
4π
√
n

k

)
+O(e2πnN

−2

n
1
3N−

1
3
+ε).(5.5)

Next both Q1(n) and Q2(n) can be analyzed together.

Lemma 31. We have that Q1(n) and Q2(n) are O(e2πnN
−2

n
1
3N−

1
3
+ε).

The last step is to analyze R(n).

Lemma 32. We have that R(n) = O(e2πnN
−2

n
1
3N−

1
3
+ε).

These estimates give the proof of Theorem 6.

Proof. Using Lemmas 30, 31, and 32 in the equation

c(n) = Q(n) +R(n) = Q0(n) +Q1(n) +Q2(n) +R(n)

from Lemma 29 gives

c(n) =
2π√
n

N∑
k=1

Ak(n)

k
I1

(
4π
√
n

k

)
+O(e2πnN

−2

n
1
3N−

1
3
+ε).(5.6)

For a fixed n > 0, letting N go to infinity makes the error term goes to zero. This establishes
Theorem 6. �
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5.1. Proof of Lemma 28. Cauchy’s formula says that

c(n) =
1

2πi

∫
CN

f(x)

xn+1
dx

where CN is the circle of radius e−2πN−2
< 1 centered at the origin. The union of the disjoint

Farey arcs ξh,k for h
k

in the Farey sequence of order N is exactly this circle. Thus we have

c(n) =
′∑

0≤h<k≤N

1

2πi

∑
ξh,k

f(x)

xn+1
dx

In terms of the variable φ on ξh,k defined by x = e−2πN−2+ 2πih
k

+2πiφ (arc length centered at

e2πi
h
k ), the integral becomes

c(n) =
′∑

0≤h<k≤N

e−
2πinh
k

∫ ϑ′′h,k

−ϑ′h,k

f
(
e

2πih
k
−2π(N−2−iφ)

)
e2πn(N−2−iφ)dφ(5.7)

as dx = x · 2πi · dφ.

5.2. Proof of Lemma 29. Since j(
aτ + b

cτ + d
) = j(τ) for τ in the upper half plane and(

a b
c d

)
∈ SL2(Z), taking

τ =
iz

k
+
h

k
and

(
a b
c d

)
=

(
h′ −hh′+1

k
k −h

)
gives j(

iz

k
+
h

k
) = j(

i

kz
+
h′

k
) and hence

f
(
e−

2πz
k

+ 2πih
k

)
= f

(
e−

2π
kz

+ 2πih′
k

)
.

Now letting w = N−2 − iφ applying this to the representation (5.7) gives

c(n) =
′∑

0≤h<k≤N

e−
2πinh
k

∫ ϑ′′h,k

−ϑ′h,k

f
(
e

2πih′
k
− 2π
k2w

)
e2πnwdφ.

This has the advantage of moving the contour in relation to the cusps to facilitate the
analysis. Writing f(x) = x−1 + D(x) with D(x) =

∑∞
m=0 c(m)xm we can split the integral

into two integrals. They are precisely the R(n) and Q(n) listed in Lemma 29, with R(n)
arising from x−1 and Q(n) from D(x).

5.3. Proof of Lemma 30. Splitting up the integral Q(n) as in (5.4), we will first analyze
Q0(n). The integral is independent of h, so

Q0(n) =
N∑
k=1

Ak(n)

∫ 1
k(N+k)

− 1
k(N+k)

e
2π
k2w

+2πnwdφ

where we define

Ak(n) =
′∑

hmod k

e−
2πi
k

(nh+h′)
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Note that this is an example of a Kloosterman sum. The strategy to evaluate the integral
is to view it as one of the sides of a rectangle in the w plane with vertices ±N−2 ± i

k(N+k)
.

Since w = N−2 − iφ,

Q0(n) =
N∑
k=1

Ak(n)
1

i

∫ N−2+ i
k(N+k)

N−2− i
k(N+k)

e
2π
k2w

+2πnwdw.

Q0(n) is the integral over the right side of the rectangle. Let Lk(n) denote the integral over
the entire rectangle, J1 the integral from N−2+ i

k(N+k)
to −N−2+ i

k(N+k)
, J2 the integral from

−N−2 + i
k(N+k)

to −N−2− i
k(N+k)

, and J3 the integral from −N−2− i
k(N+k)

to N−2− i
k(N+k)

.

Then we have

Q0(n) =
N∑
k=1

Ak(n)
1

i
Lk(N)− 1

i

N∑
k=1

Ak(n) (J1 + J2 + J3) .(5.8)

It is easy to estimate J1 and J3. On the paths of integration w = u± i
k(N+k)

, −N−2 ≤ u ≤
N−2, and

Re(
1

w
) =

u

u2 + 1
k2(N+k)2

< N−2k2(N + k)2 ≤ 4k2.

Thus the integrand is less than e8π+2πnN−2
, so

|J1| and |J3| ≤ 2N−2e8π+2πnN−2

.(5.9)

For J2, the path of integration is w = −N−2 + iv with |v| ≤ 1
k(N+k)

. The real part of w is

always −N−2 < 0 while Re( 1
w

) = −N−2

N−4+v2
< 0. Thus the integrand is O(1) (note this doesn’t

work on the right side, which is good). The path has length 2
k(N+k)

, so

|J2| <
2

k(N + k)
< 2k−1N−1.(5.10)

Combining (5.9) with (5.10) and the bounds on the Kloosterman sum Ak(n) from (4.4) we
get

N∑
k=1

Ak(n) (J1 + J2 + J3) = O

(
e2πnN

−2
N∑
k=1

k
2
3
+ε(n, k)

1
3k−1N−1

)
.

As long as n ≥ 1 which we are assuming, (n, k) ≤ n. Furthermore,

N−1

N∑
k=1

k−
1
3
+ε = O(N−

1
3
+ε).

Thus we can estimate

N∑
k=1

Ak(n) (J1 + J2 + J3) = O(e2πnN
−2

n
1
3N−

1
3
+ε).(5.11)
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The last step is to deal with Lk(n). Now if R is the rectangle (it had a positive orientation)
then using the power series for ex we get

1

2π
Lk(n) =

1

2πi

∫
R

e
2π
k2w

+2πnwdw

=
1

2πi

∫
R

∞∑
µ=0

(
2π
k2w

)µ
µ!

∞∑
ν=0

(2πnw)ν

ν!
dw.

By the residue theorem, the integral

1

2πi

∫
R

(
2π
k2w

)µ
µ!

· (2πnw)ν

ν!

is zero unless there is a simple pole at 0, which requires ν − µ = −1. Thus we have

1

2π
Lk(n) =

1

k
√
n

∞∑
ν=0

(
2π
√
n

k

)2ν+1

ν!(ν + 1)!

=
1

k
√
n
I1(

4π
√
n

k
)

where I1(z) is the Bessel function defined in (4.1). Putting this together with (5.8) and
(5.11) we obtain the desired

Q0(n) =
2π√
n

N∑
k=1

Ak(n)

k
I1(

4π
√
n

k
) +O

(
e2πnN

−2

n
1
3N−

1
3
+ε
)

5.4. Proof of Lemma 31. The next step is to bound Q1(n) and Q2(n). I will do the case
of Q1(n): the argument for Q2(n) is nearly identical and is the one Rademacher chooses to
do. The definition of Q1(n) is

Q1(n) :=
N∑
k=1

′∑
hmod k

e−
2πi
k

(nh+h′)

∫ − 1
k(N+k)

− 1
k(b+k)

e
2π
k2w

+2πnwdφ.

Splitting the interval [− 1
k(b+k)

,− 1
k(N+k)

] up into the intervals [− 1
kl
,− 1

k(l+1)
] for l from b + k

to N + k − 1, it follows that

Q1(n) =
N∑
k=1

N+k−1∑
l=N+1

∫ − 1
k(l+1)

− 1
kl

e
2π
k2w

+2πnwdφ
′∑

hmod k
N<b+k≤l

e−
2πi
k

(nh+h′)(5.12)

where the extra condition on the last sum allows the extension of the second sum from N+1
to N + k− 1. Because b ≡ −h′ mod k (which follows from the uni-modular relation on the
Farey sequence), the restriction N < b + k ≤ l does in fact constrain the choice of h. This
makes the last sum an incomplete Kloosterman sum, which using (4.4) tells me that

′∑
h mod k

N−k<b≤l−k

e−
2πi
k

(nh+h′) = O(k
2
3 (n, k)

1
3 ) = O(k

2
3n

1
3 )
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But now in the integral of (5.12), on the intervals the real part of 2π
k2w

+ 2πnw is

Re(
2π

k2w
+ 2πnw) = Re

(
2π

k2(N−2 − iφ)
+ 2πn(N−2 − iφ)

)
= 2π

(
N−2

k2(N−4 + φ2)
+ nN−2

)
≤ 2π

(
N−2

k2N−4 + 1
(k+N)2

)
+ nN−2

≤ 2π

(
(
k +N

N
)2 + nN−2

)
≤ 8π + 2πnN−2.

Combining this with the rest of the integral gives

Q1(n) = O

(
e2πnN

−2

n
1
3

N∑
k=1

N+k−1∑
l=N+1

(
1

kl
− 1

k(l + 1)

)
k

2
3
+ε

)

= O

(
e2πnN

−2

n
1
3

N∑
k=1

1

k
1
3
−εN

)
= O

(
e2πnN

−2

n
1
3N−

1
3
+ε
)
.

This and the analogous result for Q2(n) establish Lemma 31.

5.5. Proof of Lemma 32. By the definition of R(n) and D in Lemma 29,

R(n) =
N∑
k=1

′∑
hmod k

e−
2πinh
k

∫ ϑ′′h,k

−ϑ′h,k

∞∑
m=0

c(m)e
2πih′m

k
− 2πm
k2w e2πnwdφ

Note that for any m, on the interval
[
− 1
k(N+k)

, 1
k(N+k)

]
Re

(
2πm

k2w

)
=

2πmN−2

k2(N−4 + φ2)
≥ 2πm

k2N−2 +N2k2φ2
≥ 2πm

2
= πm.

I decompose the interval
[
−ϑ′h,k, ϑ′′h,k

]
into

[
− 1
k(k+b)

,− 1
k(N+k)

]
,
[
− 1
k(N+k)

, 1
k(N+k)

]
, and[

1
k(N+k)

, 1
k(b+k)

]
, and then further decompose the first and last intervals. The first decomposes

into
[
− 1
kl
,− 1

k(l+1)

]
for l from b + k to N + k − 1, the last into

[
1

k(l+1)
, 1
kl

]
. Let S1 be the

integral from the middle part:

S1 :=
N∑
k=1

∞∑
m=0

c(m)

∫ 1
k(N+k)

− 1
k(N+k)

e−
2πm
k2w

+2πnwdφ
′∑

hmod k

e−
2πi
k

(nh−mh′).
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The last sum is a Kloosterman sum, so it is O(k
2
3
+εn

1
3 ) uniformly in m. Thus

S1 = O

(
∞∑
k=1

∞∑
m=0

|c(m)| 2

k(N + k)
e−πm+2πnN−2

k
2
3
+εn

1
3

)

= O

(
e2πnN

−2

n
1
3N−1

∞∑
m=0

|c(m)|e−πm
N∑
k=1

k−
1
3
+ε

)
= O

(
e2πnN

−2

n
1
3N−

1
3
+ε
)

where the last step uses that
∑∞

m=0 |c(m)|e−πm is a finite constant because j(z) is absolutely
convergent at i

2
.

The other two integrals are similar, so I will only deal with the one over
[
− 1
k(k+b)

,− 1
k(N+k)

]
.

Write

S2 =
N∑
k=1

∞∑
m=0

c(m)
N+k−1∑
l=N+1

∫ − 1
k(l+1)

− 1
kl

e−
2πm
k2w

+2πnwdφ
′∑

hmod k
N<k+b≤l

e−
2πi
k

(nh−mh′).

Again, the last sum is a Kloosterman sum, which we can bound by O(k
2
3
+εn

1
3 ). Using the

estimate on the real part,

S2 = O

(
N∑
k=1

∞∑
m=0

|c(m)| 1

kN
e−πm+2πnN−2

k
2
3
+εn

1
3

)
= O

(
e2πnN

−2

n
1
3N−

1
3
+ε
)
.

Combining this with a similar statement for S3 and the bound for S1, we get the statement
of Lemma 32. This completes the proof of Theorem 6.

6. The Convergent Series for the Partition Function

6.1. Outline of the Proof. The same sort of argument works to prove the series repre-
sentation for p(n) in Theorem 8. The generating function for the partition function can be
expressed as

F (q) =
∞∑
n=1

p(n)qn =
1∏∞

n=1(1− qn)

by expanding 1
1−qn as a geometric series. This differs from 1

η(z)
by a factor of q

1
24 . The first

order of business is to convert the transformation law for the eta function into one for the
function F .

Lemma 33. Let F (t) =
1∏∞

n=1(1− tm)
, and let

x = e
2πih
k
− 2πz
k2 and x′ = e

2πiH
k
− 2π

z

where Re(z) > 0, h and k are relatively prime, and hH ≡ −1 mod k. Then the transfor-
mation law becomes

F (x) = eπis(h,k)
(z
k

)1/2

e
π

12z
− πz

12k2F (x′).
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Proof. For

(
a b
c d

)
∈ SL2(Z) with c > 0, the functional equation in Theorem 2 implies

1

η(τ)
=

1

η(τ ′)
(−i(cτ + d))

1
2 eπi(

a+d
12c

+s(−d,c))

where τ ′ = aτ+b
cτ+d

. Rewriting this in terms of F (e2πiτ ) = eπiτ/12

η(τ)
gives

F (e2πiτ ) = F (e2πiτ
′
)e

πi(τ−τ ′)
12 (−i(cτ + d))

1
2 eπi(

a+d
12c

+s(−d,c)).

Take a = H, c = k, d = −h, b = −hH+1
k

, and τ = iz+h
k

. Then τ ′ =
iz−1 +H

k
and the

equation becomes

F (e
2πih
k
− 2πz

k ) = F (e
2πiH
k
− 2π
kz )z

1
2 e

π
12kz
− πz

12k
+πis(h,k).

Replacing z by z/k gives the desired formula. �

Now fix n, and allow N to vary. As with the case of the j−function, we will extract
coefficients using a Cauchy’s theorem. This in turn can be written in terms of an integral
along Rademacher’s contour followed by another change of variables onto the circle K of
radius 1

2
centered at z = 1

2
.

Lemma 34. With the points z1(h, k) and z2(h, k) as in Section 3.3,

p(n) =
′∑

0≤h<k≤N

∫ z2(h,k)

z1(h,k)

F
(
e

2πih
k
− 2πz
k2

) i

k2
e−2πinh/ke2nπz/k

2

dz.

The next step is to use the transformation law for the eta function and split the integral
up to deal with the elementary factor

Ψk(z) := z
1
2 e

π
12z
− πz

12k2(6.1)

separately. To do so, define

I1(h, k) :=

∫ z2(h,k)

z1(h,k)

Ψk(z)e2πnz/k
2

dz(6.2)

I2(h, k) :=

∫ z2(h,k)

zh,k

Ψk(z)
(
F (e

2πiH
k
− 2π

z )− 1
)
e2πnz/k

2

dz

where H is defined as in Lemma 33. Denote eπis(h,k) by ω(h, k).

Lemma 35. With the notation above,

p(n) =
′∑

0≤h<k≤N

ik−5/2ω(h, k)e−2πinh/k(I1(h, k) + I2(h, k))

The next step is of course to analyze the two integrals. I1 will contribute the main term.

Lemma 36. We have that

I1(h, k) =

∫
K−

Ψk(z)e2πnz/k
2

dz +O(k
3
2N−

3
2 )

where K− is the circle with radius 1
2

centered at z = 1
2

with negative orientation.

I2 becomes an error term.
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Lemma 37. We have that
I2(h, k) = O(k

3
2N−

3
2 ).

Next, we put these together. Note that |ω(h, k)| = 1 as s(h, k) is a real number. Thus we
can conclude that∣∣∣∣∣ ′∑

0≤h<k≤N

ik−
5
2ω(h, k)e−2πinh/kCk

3
2N−

3
2

∣∣∣∣∣ ≤
N∑
n=1

∑
0≤h<k

(h,k)=1

Ck−1N−3/2

≤ CN−
3
2

N∑
k=1

1 = O(N−
1
2 ).(6.3)

Combining this with Lemmas 36 and 37 gives

p(n) =
′∑

0≤h<k≤N

ik−5/2ω(h, k)e−2πinh/k

∫
K−

Ψk(z)e2πnz/k
2

dz +O(N−
1
2 ).

Letting N tend to infinity gives us that

p(n) = i
∞∑
k=1

Bk(n)k−
5
2

∫
K−

z
1
2 e

π
12z

+ 2πz
k2

(n− 1
24

)dz(6.4)

where Bk(n) is the exponential sum Bk(n) :=
′∑

0≤h<k

eπis(h,k)−2πinh/k.

The final step is to evaluate the integral in terms of Bessel functions and the hyperbolic
sine function. Make the change of variable w = 1

z
, dz = −1

w2 dw. This sends the circle K− to
the the line with real part 1. Then (6.4) becomes

p(n) =
1

i

∞∑
k=1

Bk(n)k−5/2

∫ 1+∞i

1−∞i
w−5/2e

πw
12

+ 2π
k2

(n− 1
24

) 1
w dw

Now substitute t = π
12
w. This gives

p(n) = 2π
( π

12

) 3
2

∞∑
k=1

Bk(n)k−
5
2

1

2πi

∫ π
12

+∞i

π
12
−∞i

t−
5
2 et+

π2

6k2
(n− 1

24
) 1
t dt

which looks like (4.2) with v = 3
2

and

z

2
=

(
π2

6k2
(n− 1

24
)

) 1
2

.

Rewriting in terms of I 3
2
(π
k

√
2
3
(n− 1

24
)) gives

p(n) =
2π

(n− 1
24

)
3
4 (24)

3
4

∞∑
k=1

Bk(n)k−1I3/2

(
π

k

√
2

3
(n− 1

24
)

)
.

Using the special value of Bessel functions of half odd-order from (4.3) gives

p(n) =
1√
2π

∞∑
k=1

k
1
2Bk(n)

d

dn

sinh
(
π
k

√
2
3
(n− 1

24
)
)

√
n− 1

24


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This finishes the proof of Theorem 8. �

6.2. Proof of Lemma 34. The starting point is Cauchy’s integral formula, which combines
with the Power series for F (x) to imply

p(n) =
1

2πi

∫
C

F (x)

xn+1
dx

where C is any positively oriented closed contour surrounding 0 lying inside the unit circle
where F is holomorphic. Making the change of variable x = e2πiτ , a circle of radius e−2π

centered at 0 in the x-plane is sent to the line joining i and 1 + i in the τ -plane. Thus

p(n) =

∫ i+1

i

F
(
e2πiτ

)
e−2πinτdτ

as dx = e2πiτdτ . Replace this line with the Rademacher contour P (N) from Section 3.3, and
let γ(h, k) denote the arc on the circle C(h, k) connecting α(h, k) and α′(h, k). Then

p(n) =
′∑

0≤h<k≤N

∫
γh,k

F (e2πiτ )e−2πinτdτ.

Make the change of variable z = −ik2(τ − h
k
) which sends C(h, k) onto a circle of radius 1

2

with z = 1
2

as its center. The arc γ(h, k) maps onto an arc joining the points z1(h, k) and

z2(h, k). Furthermore, we have dz = −ik2(dτ) and τ = iz
k2 + h

k
. Thus the integral becomes

the desired

p(n) =
′∑

h,k

∫ z2(h,k)

z1(h,k)

F
(
e

2πih
k
− 2πz
k2

) i

k2
e−2πinh/ke2nπz/k

2

dz.

6.3. Proof of Lemma 35. Lemma 33 tells me that

F (e
2πih
k
− 2πz
k2 ) = ω(h, k)

(z
k

) 1
2
e

π
12z
− πz

12k2F (e
2πiH
k
− 2π

z )

where H is chosen so hH = −1 mod k and ω(h, k) was defined to be eπis(h,k). Substituting
this into Lemma 34 which gives a formula for p(n) in terms of a contour integral gives

p(n) =
′∑

0≤h<k≤N

ik−2e−2πinh/kω(h, k)

∫ z2(h,k)

z1(h,k)

(z
k

) 1
2
e

π
12z
− πz

12k2
+2πnz/k2

F (e
2πiH
k
− 2π

z )dz

Rearranging terms to match the definitions in (6.1) and (6.2) gives

p(n) =
′∑

0≤h<k≤N

ik−5/2ω(h, k)e−2πinh/k(I1(h, k) + I2(h, k)).

6.4. Proof of Lemma 36. Instead of integrating around the circle from z1(h, k) to z2(h, k),
we will integrate around the entire circle and analyze the error. Note that the circle has a
a negative orientation. Let K− denote the negatively oriented circle, J1 the arc from 0 to
z1(h, k) and J2 the arc from z2(h, k) to 0. Then I1(h, k) can be written as the integral over
K− minus the integrals over J1 and J2.
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To estimate J1, note that the length of the arc joining the point 0 and z1(h, k) is less than
π|z1(h, k)| <

√
2π k

N
. On the circle Re(1/z) = 1 while 0 ≤ Re(z) ≤ 1. Thus

|Ψk(z)e2πnz/k
2| = e2πnRe(z)/k2|z|

1
2 e

π
12

Re( 1
z
)− π

12k2
Re(z)

≤ e2πn2
1
4k

1
2 eπ/12

N
1
2

since |z| is maximized at z1(h, k). Thus the integral over J1 is O(k
3
2N−

3
2 ). The same

argument works for J2. This shows that

I1(h, k) =

∫
K−

Ψk(z)e2πnz/k
2

dz +O(k
3
2N−

3
2 ).

6.5. Proof of Lemma 37. Instead of integrating around the circle from z1(h, k) to z2(h, k),
we will integrate along the chord joining them. Note that 0 < Re(z) ≤ 1 and Re(1

z
) ≥ 1

anywhere in the circle.
Then we can estimate the integrand as follows:∣∣∣Ψk(z)

(
F (e

2πiH
k
− 2π

z )− 1
)
e2πnz/k

2
∣∣∣

= |z|
1
2 e

π
12

Re( 1
z
)− π

12k2
Re(z)e2πnRe(z)/k2

∣∣∣∣∣
∞∑
m=1

p(m)e2πiHm/ke−2πm/z

∣∣∣∣∣
≤ |z|

1
2 e

π
12

Re( 1
z
)e2πn/k

2
∞∑
m=1

p(m)e−2πmRe( 1
z
)

< |z|
1
2 e2πn

∞∑
m=1

p(m)e−2π(m− 1
24

)Re( 1
z
)

≤ |z|
1
2 e2πn

∞∑
m=1

p(m)e−2π(m− 1
24

)

≤ |z|
1
2 e2πn

∞∑
m=1

p(24m− 1)e−2π(24m−1)/24

= |z|
1
2 e2πn

∞∑
m=1

p(24m− 1)y24m−1

= c|z|
1
2

where the second to last step uses p(m) < p(24m − 1) for m ≥ 1 and y := e−2π/24. The
constant c equals

e2πn
∞∑
m=1

p(24m− 1)y24m−1

which bounded because it is a sub-sequence of the q−series for F evaluated at y which is
inside the unit circle. Note it is independent of z or N (it depends on n, but n is fixed).
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Now the length of the chord is less than 2
√

2k
N

by Proposition 23. Furthermore, |z| ≤
√

2 k
N

on the chord. This implies that the integral is

I2(h, k) = O(k
3
2N−

3
2 ).(6.5)

Remark 38. One of the reasons Rademacher’s improved contour of integration does not
immediately apply to the j function is that, in contrast to Lemma 33, there is no extra
factors in the transformation law in the j function because it is “better” behaved that the eta
function. In particular, the

√
z is necessary for this lemma to work. Attempting to directly

copy this argument naively tells me that f(q) = j(e2πiz) is bounded on the chord and gives
me a bound of O(kN−1) for the integral. After summing over (h, k) with 0 ≤ h < k ≤ N and
(h, k) = 1 as in (6.3), this is not obviously bounded by anything better than O(1). A possible
salvage would be to divide the segment up into smaller pieces and bound each separately. This
looks like the situation in Lemma 32, where the integral is divided up carefully into pieces
to get a good enough bound: it is not clear whether using Rademacher’s contour instead of
Farey arcs would make this division any easier.
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