
THE MORDELL-WEIL THEOREM FOR ELLIPTIC CURVES

JEREMY BOOHER

The Mordell-Weil theorem is a fundamental result in the arithmetic of elliptic curves defined
over a number field K, describing the structure of their K-valued points. It is proven, for example,
in Chapter 8 of Silverman [2]. The proof given here uses the same approach, but aims to be more
approachable (the proof in Silverman is spread over 6 sections) and illustrate how in special cases
these techniques can be used to effectively calculate the Mordell-Weil group. This is inspired by
the presentation in the Cambridge Part III course on elliptic curves taught by Tim Dokchitser.

Theorem 1 (Mordell-Weil). Let E be an elliptic curve defined over a number field K. The group
E(K) is a finitely generated Abelian group.

We prove the theorem using four main ideas.

(1) Reducing the elliptic curve over good primes to show that the torsion of E(K) is finite.
(2) The weak Mordell-Weil theorem, which states that E(K)/mE(K) is finite.
(3) The theory of heights, which allows us to talk meaningfully about the size of the points on

the curve.
(4) A descent argument using representatives for E(K)/mE(K) and the theory of heights to

conclude that E(K) is finitely generated.

The first is simple, as we know that the torsion prime to p (for p a good prime) injects into the
finite group of points on the elliptic curve over the residue field Kp. The neatest proof of the weak
Mordell-Weil theorem uses group cohomology and will be proven first in Section 1. The theory of
heights requires some work to develop: the proofs are easiest to understand over Q, so we prove
them over Q and relegate general proofs to an appendix. After developing this theory, the descent
argument will be simple to carry out.

1. The Weak Mordell-Weil Theorem

In this section, we will use group cohomology to prove the weak Mordell-Weil theorem.

Theorem 2. Let E be an elliptic curve defined over a number field K, and m ≥ 2. Then
E(K)/mE(K) is finite.

The necessary group cohomology is developed from scratch in Section A for those unfamiliar
with it.

To prove this, we will first reduce to the case that the number field contains the m-torsion of the
elliptic curve. We then use group cohomology (for the absolute Galois group of K) and Kummer
theory to construct the Kummer map embedding E(K)/mE(K) into K×/(K×)m ×K×/(K×)m.
Finally, we map K into a p-adic field where we have a better understanding of mth powers in order
to show the image is finite.

Let E/K be an elliptic curve, GK the absolute Galois group of K, and m ≥ 2. Let L = K(E[m])
be the field obtained by adjoining the coordinates of the m torsion to K. Note that the mth roots
of unity µm lie in L as the Weil pairing must be invariant under GL. It suffices to prove the weak
Mordell-Weil theorem for E/L because of the following result.

Proposition 3. With the notation above, let E(L)/mE(L) be finite. Then E(K)/mE(K) is finite.
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Proof. Consider the short exact sequence

0→ E[m]→ E(L)→ mE(L)→ 0.

Viewing them as GL/K = Gal(L/K) modules, the long exact sequence in cohomology reads

0→ E(K)[m]→ E(K)→ mE(L) ∩ E(K)→ H1(GL/K , E[m])→ H1(GL/K , E(L)).

In particular, there is an injection

mE(L) ∩ E(K)/mE(K) ↪→ H1(GL/K , E[m]).

However, GL/K is finite and so is E[m], thus there are a finite number of crossed homomorphisms

in H1(GL/K , E[m]). Thus (mE(L) ∩ E(K))/mE(K) is finite. It is the kernel of the map

E(K)/mE(K)→ E(L)/mE(L).

By assumption E(L)/mE(L) is finite, so E(K)/mE(K) is as well. �

We may now assume that K contains the m torsion of E, in particular the mth roots of unity,
and look at a generalization of the above exact sequence to the algebraic closure of K. Start with

0→ E[m]→ E(K)
·m→ E(K)→ 0

and take GK cohomology. This gives

0→ E(K)[m]→ E(K)
·m→ E(K)→ H1(GK , E[m])→ H1(GK , E(K))

·m→ . . .

Extracting a short exact sequence in the middle, we get the Kummer sequence

(1) 0→ E(K)

mE(K)
→ H1(GK , E[m])→ H1(GK , E(K))[m]→ 0.

Little is known about H1(GK , E(K))[m], but little is required for the proof of the weak Mordell-
Weil theorem.

Now as K contains E[m], GK acts trivially on it so H1(GK , E[m]) = Homcont(GK , E[m]).
Additionally, E[m] ' (Z/mZ) τ1 × (Z/mZ) τ2where τ1 and τ2 are a basis for the m-torsion. The
maps αi : E[m]→ µm defined by αi(τ) = em(t, τi) define an isomorphism E[m]→ µm × µm. Thus

E(K)

mE(K)
↪→ H1(GK , E[m]) ' H1(GK , µm)×H1(GK , µm).

Kummer’s theorem (which is where it is essential the crossed homomorphisms be continuous) says
that H1(GK , µm) ' K×/(K×)m. Thus it suffices to show that the image of

κK :
E(K)

mE(K)
↪→ K×/(K×)m ×K×/(K×)m

is finite. The map κK = (κ1, κ2) is known as the Kummer map.

Example 4. For computational purposes, we need to understand this map when doing a two descent.
The Weil pairing has an explicit description in this case, so the Kummer map takes on a simple
form. If the Weierstrauss form over K is y2 = (x−e1)(x−e2)(x−e3), then it turns out the Kummer
map sends P = (x, y) ∈ E(K)/2E(K) to (x− e1)× (x− e2) ∈ (K×/(K×)2)× (K×/(K×)2). Extra
care must be taken if P is one of the two-torsion points. If κi(P ) = x − ei for i = 1, 2, 3 and P is
not a two-torsion point, note that

∏
i κi(P ) is always a square. If P is a two-torsion point, x = ei

for some i and κi(P ) is undefined as 0 6∈ K×/(K×)2. Instead, define κi(P ) so that
∏
i κi(P ) is the

identity in K×/(K×)2.

Now let p be a prime of K not dividing m such that E has good reduction at p. Consider the
maximal unramified extension of Kp, denoted by Kur

p .

Lemma 5. With the notation above, E(Kur
p )/mE(Kur

p ) = 0.
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Proof. Look at the long exact sequence

0→ E1(Kur
p )→ E(Kur

p )→ Ẽns(k)→ 0

where k is the (algebraically closed) residue field of Kur
p . Mapping it to the same sequence via the

multiplication by m map and taking the kernel-cokernel exact sequence yields

E1(Kur
p )

mE1(Kur
p )
→

E(Kur
p )

mE(Kur
p )
→ Ẽns(k)

mẼns(k)
→ 0.

By the theory of formal groups, multiplication by m is an isomorphism on E1(Kur
p ) hence the left

term is 0. Since k is algebraically closed, Ẽns(k)

mẼns(k)
= 0 as well. The desired conclusion follows. �

Note the following diagram, coming from the inclusion of K into Kur
p , commutes:

E(K)/mE(K)
κK−−−−→ K×/(K×)m ×K×/(K×)my y

E(Kur
p )/mE(Kur

p )
κKur

p−−−−→ (Kur
p )×/(Kur

p
×)m × (Kur

p )×/(Kur
p
×)m

As the lower left group is trivial, the image of E(K)/mE(K) in the lower right is trivial. Therefore
the image of the Kummer map satisfies vp(κi(P )) ≡ 0 mod m. This holds for any prime p not
dividing m or the discriminant of E.

Define H := {α ∈ K×/(K×)m : vp(α) ≡ 0 mod m for p - ∆(E)m}. If we know H is finite, the
weak Mordell-Weil theorem will follow as E(K)/mE(K) injects into H.

Proposition 6. With the notation above, H is a finite group.

Proof. Let p1, . . . , pn be the primes of bad reduction and the primes dividingm. MapH → (Z/mZ)n

via the map α → {vpi(α) mod n}i. Let H0 be the kernel. We will show H0 is finite, which will
imply H is finite.

Now, if α is in the kernel then it is a perfect mth power. Factoring the ideal (α) in OK , we know
that it is of the form am for some ideal a. Define a map

H0 → Cl(OK) sending α→ a.

This is well defined as (K×)m is sent to a principal ideal. An big theorem in basic algebraic number
theory says that the class group is finite. Therefore it suffices to show the kernel of this map is
finite. α is mapped to a principal ideal if and only it is a unit times an mth power. The other
important theorem in algebraic number theory, Dirichlet’s unit theorem, says the group of units is
a finitely generated Abelian group, so O×K/(O

×
K)m is finite. �

This completes the proof of the weak Mordell-Weil theorem.

2. The Theory of Heights

The next ingredient is a way to meaningfully talk about the size of a point on an elliptic curve.
We first define the height of an algebraic number as a measure of the complexity of the number:
intuitively 2

3 is much simpler “arithmetically” than 200
301 , and we will see this reflected in the fact

that heights are log 3 and log 301 respectively. Then we extend this to define heights of points on
elliptic curves. 1.

1finish summary
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2.1. Heights over Number Fields. Let K be a number field, and Σ denote the set of normalized
absolute values on K. Define

hK(α) :=
∑
v∈Σ

max(0, log(|α|v)).

Example 7. Let K = Q. Then let α = a
b for a and b relatively prime, and note Σ = {p :

p prime} ∪ {∞}. Suppose vp(a) ≥ 0. Then max(1, |α|p) = max(1, p−vp(a)) = 1. If vp(b) ≥ 0, then

max(1, |α|p) = max(1, pvp(b)) = pvp(b). Additionally, max(1, |α|∞) = |ab | if |ab | > 1, 1 otherwise.
Therefore ∏

v

max(1, |α|v) =
∏

p:vp(b)>0

pvp(b) ·max(1,
∣∣∣a
b

∣∣∣) = |b|max(1,
∣∣∣a
b

∣∣∣) = max(|a|, |b|).

Therefore we have that

hQ(
a

b
) = log max(|a|, |b|)

which certainly measures the size of a rational number.

Here are three essential properties of heights.

Proposition 8. Let K be a number field.

(1) For any constant C, the set {α | hK(α) < C} is finite.
(2) Given a map f : P1 → P1 defined over the field K of degree d, hK(f(α)) = deg(f)hK(α) +

O(1), where the constant depends on f but not α.
(3) We have hK(α) = 0 if and only if α = 0 or α is a root of unity in K.

The full proof of this proposition is somewhat technical and no more enlightening than the proof
over Q. It may be found in Section B. Instead, we will prove the special case when K = Q in which
case the height function hq(

a
b ) = max(|a|, |b|) is particularly nice to work with.

The first assertion, that there are finitely many rational numbers a
b with max(|a|, |b|) < C, is

obvious.
Now let f be a rational function (with coefficients in Q) of degree d, defining a degree map

P1 → P1. Write

f(T ) =
g(T )

h(T )
=
adT

d + ad−1T
d−1 + . . .+ a0

bdT d + bd−1T d−1 + . . .+ b0
.

Let α = p
q with p and q relatively prime. Then

f(α) =
G(p, q)

H(p, q)
=
adp

d + ad−1p
d−1q + . . .+ a0q

d

bdpd + bd−1pd−1q + . . .+ a0qd

Therefore both the numerator and denominator can be bounded by (d + 1)C max(|p|, |q|)d where
C is the maximum size of all of the coefficients. Therefore taking logarithms

hQ(f(α)) ≤ dhQ(α) + C ′.

For a lower bound, we need a lemma about homogeneous polynomials which is an application
of the Euclidean algorithm. We will assume that the polynomials have integer coefficients: the
generalization to other number fields is trivial.

Lemma 9. Suppose g(t) and h(t) ∈ Z[t] are relatively prime polynomials of degree at most d, and
G(x, y) and H(x, y) are the corresponding homogeneous degree d polynomials. Then there exist
integers d1, d2 and polynomials R,R′, S, S′ ∈ Z[x, y] such that

G(x, y)R(x, y) +H(x, y)S(x, y) = xdd1 and G(x, y)R′(x, y) +H(x, y)S′(x, y) = ydd2.
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Proof. In Q[t] use the Euclidean algorithm to write gr′ + hs′ = 1. Then homogenize r′ and s′

(letting t correspond to x) to get two variable polynomials R′ and S′ so that GR′ + HS′ = yd.
Finally multiply by an integer d2 to clear the denominators of the coefficients of R′ and S′. Doing
the same thing with the roles of x and y reversed gives R and S. �

Given these expressions, consider the fraction . Any integer that cancels in G(p,q)
H(p,q) divides both

G(p, q) and H(p, q), and hence divides d1p
d and d2q

d. As p and q are relatively prime, writing the
fraction in lowest terms will at worst divide max(|g(p, q)|, |h(p, q)|) by constant factor (depending
on f , but independent of p and q). But then

|d1p
d| = |G(p, q)R(p, q) +H(p, q)S(p, q)| ≤ 2 max(|G(p, q)|, |H(p, q)|) max(|R(p, q)|, |S(p, q)|).

Combining this with a similar expression for d2q
d, we see that

log(max(|G(p, q)|, |H(p, q)|)) ≥ d log max(|p|, |q|)− C

for some constant C. Therefore we conclude that hQ(f(α)) = dhQ(α) +O(1).
The third statement, that hQ(α) = 0 if and only if α is ±1 or zero, is obvious. �

2.2. Heights on Elliptic Curves. Let K be a number field, E be an elliptic curve in Weierstrauss
form defined over K, and P = (a, b) ∈ E(K). Define the (naive) height hE(P ) to be hK(a).2 This
height satisfies similar properties to the height of an algebraic number.

Proposition 10. Let E be an elliptic curve defined over a number field K.

(1) For any C > 0, the set {Q ∈ E(K) : hE(Q) < C} is finite.
(2) For P ∈ E(K) and m ∈ Z, hE(mP ) = m2hE(P ) + O(1), where the constant depends only

on E and m.
(3) For P,Q ∈ E(K), the parallelogram law holds:

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1)

where the constant depends only on the curve E.

Proof. There are finitely many elements in K with height less than C, hence only finitely many
potential first coordinates for points in E(K) with hE(Q) < C. There are at most two second
coordinates for such a point, so the first statement is proven.

For the second, recall that the multiplication by m map induces a degree m map on the first
coordinates. Then Proposition 8.2 implies the result, as the degree of the multiplication by m map
is m2.

The last part is a consequence of the explicit formulas for the group law on an elliptic curve and
gets a bit messy. The details are Theorem VIII.6.2 in Silverman [2]. �

The next step is to introduce the canonical height of points on elliptic curves.

Proposition 11. There exists a unique function ĥE : E(K)→ R such that

• We have |ĥE(P )− hE(P )| < C for some constant C and all P ∈ E(K).

• For m ≥ 1 and P ∈ E(K), ĥE(mP ) = m2ĥE(P ).

The function ĥE is called the canonical height of E. It is close to the naive height function, but
some of the error terms vanish.

2For those who care, define the height of the point at infinity to be 0. Alternately, map E → P1 using the first
coordinate map and use a height on projective space.
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Proof. For uniqueness, suppose ĥE and ĥ′E are two functions satisfying these two properties. For

a point P , consider |ĥE(2nP ) − ĥ′E(2nP )|. By the first property, we know it is bounded by some

constant C. On the other hand, by the second property it equals 4n|ĥE(P )− ĥ′E(P )|. Letting n go

to infinity, we see that ĥE(P ) = ĥ′E(P ).
To show it exists, set

ĥE(P ) = lim
n→∞

1

4n
hE(2nP ).

This limit exists: if an = 4−nhE(2nP ), then

|an − am| =
∣∣∣∣ 1

4n
(4nhE(P ) +O(1))− 1

4m
(4mhE(P ) +O(1))

∣∣∣∣ ≤ 4−min(m,n)O(1)

and hence the an form a Cauchy sequence. Therefore ĥE(P ) is well-defined. This also shows that

|ĥE(P )− hE(P )| is bounded.

Now consider the function ĥ′E sending Q→ 1
m2 ĥE(mQ).

|ĥ′E(P )− ĥE(P )| = lim
n→∞

2−n
∣∣∣∣ 1

m2
hE(m2nP )− hE(2nP )

∣∣∣∣ = lim
n→∞

2−nO(1)

which goes to zero as n goes to infinity. Thus 1
m2 ĥE(mP ) = ĥE(P ). �

There is an analog of Proposition 10 for the canonical height.

Proposition 12. Let E be an elliptic curve defined over a number field K.

(1) For any C > 0, the set {Q ∈ E(K) : ĥE(Q) < C} is finite.

(2) For P ∈ E(K) and m ∈ Z, ĥE(mP ) = m2ĥE(P ).
(3) For P,Q ∈ E(K), the parallelogram law holds:

ĥE(P +Q) + ĥE(P −Q) = 2ĥE(P ) + 2ĥE(Q).

(4) ĥE(P ) ≥ 0 and is equal to 0 if and only if P is a torsion point.

Proof. The first follows immediately from the corresponding fact for hE . The second has already
been proven. The third follows from the parallelogram law for h:

|hE(2n(P +Q)) + hE((2n(P −Q)))− 2hE(2nP )− 2hE(2nQ)| ≤ C

for any n so multiplying by 2−n and taking the limit as n goes to infinity gives the result for
canonical heights.

It is clear that ĥE is non-negative. If ĥE(P ) = 0, then all multiples of P have height 0, so the set
of multiples must be finite by the first part. Conversely, if P is a torsion point then (1 +m)P = P

with m 6= 1 and hence (m2 + 1)ĥE(P ) = ĥE(P ) by the second part. �

This gives enough information about heights to carry out the proof of the Mordell-Weil theorem.

3. The Descent Argument

We will now prove the Mordell-Weil theorem using the weak Mordell-Weil theorem and the
theory of heights.

Proof. Given an elliptic curve E defined over a number field K, the weak Mordell-Weil theorem
(Theorem 2) says that E(K)/mE(K) is finite for any integer m ≥ 2. Pick coset representatives

P1, . . . , Pn, and let C = maxi ĥE(Pi). Let S be the set {Q ∈ E(K) : ĥE(Q) ≤ C}. By Proposi-
tion 12, this is finite. We claim that S generates E(K).
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Assume this is not the case, and let Q be an element of E(K) not generated by S of smallest
canonical height. Now Q = mR+ Pi for some Pi, so by Proposition 12

m2ĥE(R) = ĥE(mR) = ĥE(Q− Pi) ≤ ĥE(Q− Pi) + ĥE(Q+ Pi) = 2ĥE(Q) + 2ĥE(Pi) < 4ĥ(Q)

where the last step uses that ĥ(Q) > C ≥ ĥE(Pi). This shows that ĥE(R) < ĥE(Q), so by
hypothesis R lies in the subgroup of E(K) generated by S. As Q = mR + Pi, Q must as well, a
contradiction. �

4. Calculating the Rational Points on An Elliptic Curve

In general, it is difficult to calculate the rational points on an elliptic curve. We will illustrate a
procedure, based on the proof of the weak Mordell-Weil theorem, that often works.

Let E be the elliptic curve defined over Q by the Weierstrauss equation y2 = x(x − 6)(x + 6).
This is in fact a global minimal model for E, as can be verified by calculating the discriminant
(21236) and checking the prime 2 directly. We will show that E(Q) ' Z/2Z× Z/2Z× Z.

There are four obvious torsion points: the point at infinity, (0, 0), (6, 0), and (−6, 0). The last
three are obviously of order two. A short search reveals that (−3, 9) is a point that is not obviously
a torsion point. We will show it has infinite order, and that it generates E(Q) along with the
torsion points.

To find the torsion part of E(Q), we will use the fact that the torsion prime to p injects into
E(Fp) provided p is a prime of good reduction. Taking p = 5, a direct search shows that E(F5)
consists of 8 points. Taking p = 11, a direct search shows that E(F11) has 12 points. Thus the 4
torsion points found are all the rational torsion points.

This shows that P = (−3, 9) is a point of infinite order, so the rank of E(Q) is at least one. We
will use the Kummer map to show the rank is exactly one and (−3, 9) is a generator. Since there
are four two-torsion points, we know that E(K)/2E(K) ' (Z/2Z)r+2, where r ≥ 1 is the rank of
E. Now consider the diagram we obtain by looking at Q2 valued points:

E(Q)/2E(Q)
κQ−−−−→ Q×/(Q×)2 ×Q×/(Q×)2y y

E(Q2)/2E(Q2)
κQ2−−−−→ Q×2 /(Q2

×)2 ×Q×2 /(Q2
×)2

In fact, we know more about the image of E(Q)/2E(Q) under κQ. If p is a prime of good reduction,
then the proof of Lemma 5 shows both coordinates of the Kummer map have even p-adic valuation.
As a rational number is a square if and only if it is positive and every prime divides it an even
number of times, this shows the image is contained in

{±1,±2,±3,±6} × {±1,±2,±3,±6} ⊂ Q×/(Q×)2 ×Q×/(Q×)2.

It is a coincidence that in this case, it injects into Q×2 /(Q2
×)2×Q×2 /(Q2

×)2: in general there will be
a (simple to understand) kernel. So to understand the image of κQ, we can attempt to understand
the image of κQ2 . We will soon see that this image is abstractly isomorphic to (Z/2Z)3. This shows
the rank of E is exactly one. To show that (−3, 9) is a generator, one simply does a search for
points on the elliptic curve with smaller height. This is slightly complicated by the fact one uses
canonical height instead of the naive height, but is a standard calculation that can be done for
example by SAGE.

We now analyze the image of κQ by repeatedly using the kernel cokernel exact sequence and
the standard short exact sequences for an elliptic curve over a local field. First, we know that
E(Q2)/E0(Q2) has order at most 4 since the curve has additive reduction at p = 2. Furthermore,
(0, 0) is a singular point on E over F2, and all three of the non-trivial two torsion points reduce to
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it. Therefore E(Q2)/E0(Q2) ' (Z/2Z)2, with generators (0, 0) and (6, 0). Now consider the exact
sequences

0 −−−−→ E0(Q2) −−−−→ E(Q2) −−−−→ (Z/2Z)2 −−−−→ 0y ·2
y ·2

y ·2
y y

0 −−−−→ E0(Q2) −−−−→ E(Q2) −−−−→ (Z/2Z)2 −−−−→ 0

Taking the kernel-cokernel exact sequence, we see that

0→ E0(Q2)[2]→ E(Q2)[2]→ (Z/2Z)2 δ→ E0(Q2)/2E0(Q2)→ E(Q2)/2E(Q2)→ (Z/2Z)2 → 0.

The two-torsion reduces to singular points, so E0(Q2)[2] = 0. As E(Q2)[2] ' (Z/2Z)2, the map δ
is the zero map. Thus we have a short exact sequence

(2) 0→ E0(Q2)/2E0(Q2)→ E(Q2)/2E(Q2)→ (Z/2Z)2 → 0.

So to understand E(Q2)/2E(Q2), we must understand E0(Q2)/2E0(Q2).
To do this, look at exact sequences

0 −−−−→ E1(Q2) −−−−→ E0(Q2) −−−−→ Ẽns(F2) −−−−→ 0y ·2
y ·2

y ·2
y y

0 −−−−→ E1(Q2) −−−−→ E0(Q2) −−−−→ Ẽns(F2) −−−−→ 0

We can directly see that Ẽns(F2) = {O, (1, 1)} ' Z/2Z. Then taking the kernel-cokernel exact
sequence, we see

0→ E1(Q2)[2]→ E0(Q2)[2]→ Z/2Z→ E1(Q2)/2E1(Q2)→ E0(Q2)/2E0(Q2)→ Z/2Z→ 0.

Since the two torsion of E reduces to singular points, the first two groups are trivial. Thus we
obtain the exact sequence

(3) 0→ Z/2Z→ E1(Q2)/2E1(Q2)→ E0(Q2)/2E0(Q2)→ Z/2Z→ 0.

We can understand E1(Q2)/2E1(Q2) using the theory of formal groups. In particular, we know

that E1(Q2) ' Ê(2Z2) and Ê(4Z2) ' (Z2,+) have no two torsion. As Ê(2Z2)/Ê(4Z2) ' Z/2Z, we
have a short exact sequence

0→ Ê(4Z2)→ Ê(2Z2)→ Z/2Z→ 0.

Using the multiplication by two map and taking the kernel-cokernel exact sequence as before, we
get an exact sequence

0→ 0→ 0→ Z/2Z δ′→ Ê(4Z2)/2Ê(4Z2)→ Ê(2Z2)/2Ê(2Z2)→ Z/2Z→ 0.

As we know that Ê(4Z2)/2Ê(4Z2) ' Z2/2Z2 ' Z/2Z, δ′ is an isomorphism so

E1(Q2)/2E1(Q2) ' Ê(2Z2)/2Ê(2Z2) ' Z/2Z.

Using this in (3), we see that E0(Q2)/2E0(Q2) must be isomorphic to Z/2Z. Using this in (2), this
shows that E(Q2)/2E(Q2) has order 8. Since we know it is two-torsion, we have established that

E(Q2)/2E(Q2) ' (Z/2Z)3.
In conclusion, we have shown that E(Q2)/2E(Q2), and hence its image under the Kummer map,

is isomorphic to (Z/2Z)3.

Remark 13. This procedure does not always work. It is possible that the image of the 2−adic
Kummer map will be larger than the image of the rational Kummer map, in which case it is
impossible to get a tight bound on the rank. In addition this requires that the two-torsion be
rational, although this can be overcome. The case when the two-torsion is rational is known as
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complete two-descent. It is also possible to change from m = 2 to m = 3, or use the real numbers
or a different p-adic field to obtain additional information.

Appendix A. Group Cohomology

Let G be a profinite group and A,B, and C be continuous G-modules.3 Given enough algebraic
machinery, group cohomology is easy to construct. Look at the functor HomG-mod(ZG,−) from the
category of continuous G-modules to the category of groups. It is left exact, so if

(4) 0→ A→ B → C → 0

then we know that
0→ Hom(Z, A)→ Hom(Z, B)→ Hom(Z, C).

It is not right exact. However, as it can be viewed as the category of modules over ZG there are
enough injectives so there are right derived functors that extend the sequence.4 Note that as Z has
the trivial G action Hom(Z,M) = MG, the elements of M fixed by G. We write the long exact
sequence of derived functors as

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ . . .

However, as we need a specific interpretation of H1(G,−), it is simplest just to explicitly define
them directly and ignore the general theory.

Definition 14. For a continuous G-module M , a crossed homomorphism is a continuous map
ψ : G → M such that ψ(gh) = ψ(g) + ψ(h)g. A principal crossed homomorphism is a map of the
form g → mg −m for some m ∈M .

We define H0(G,M) = MG and H1(G,M) to be continuous crossed homomorphisms from G to
M module the principal crossed homomorphisms.

Given a map ϕ : A → B, there are obvious maps H0(G,A) → H0(G,B) and H1(G,A) →
H1(G,B) given by composing with ϕ. Additionally, given a short exact sequence (4), we can also
define a map δ : CG → H1(G,A) as follows: let c ∈ CG. Pick a b ∈ B that maps to c by exactness.
Note that bg − b maps to 0 ∈ C, so bg − b ∈ A. Now define δ(c) to be the crossed morphism ψ
where ψ(g) = bg − b ∈ A.

Lemma 15. With the notation above δ : CG → H1(G,A) is a well defined map.

Proof. Note that ψ is a continuous map as the action of G on B is continuous. It is a crossed
homomorphism as ψ(gh) = bgh − b = bgh − bg + bg − b = ψ(g) + ψ(h)g.

Suppose we pick b′ ∈ B which also maps to c ∈ CG. Then b− b′ maps to 0 in C, so there is an
a ∈ A such that a = b− b′. Thus the maps ψ and ψ′ satisfy

ψ(g)− ψ′(g) = bg − b− (b′)g + b′ = ag − a.
This is a principal crossed homomorphism. �

Proposition 16. With the notation above we have a long exact sequence

0→ AG → BG → CG
δ→ H1(G,A)→ H1(G,B)→ H1(G,C).

Proof. To show it is exact, simply unwind the definitions. For example, suppose c ∈ CG maps to a
principal crossed homomorphism. This means there exist a and b such that bg − b = ag − a. But
then (b− a)g − (b− a) = 0 for all g, so (b− a) ∈ BG. Buts its image is c, so the sequence is exact
at CG. The others are equally simple. �

3If G is a finite group, it is a profinite group when given the discrete topology, and every G-module is continuous
automatically. The case when G is the Galois group of an infinite extension is relevant for us later.

4For more details, especially about profinite groups as opposed to the more basic finite group case, see [1].
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In the context we need, G will be a (possibly infinite) Galois group of L over K with the usual
profinite topology. The G-modules will be discrete. This means that a G module is continuous if
for all m ∈M and g ∈ StabG(m), there is a finite extension K1 of K such that g ∈ Gal(L/K1) and
the group stabilizes m. Continuity for a crossed homomorphism means that for every element g of
the kernel, there is a finite extension K1 so that Gal(L/K1) contains g and lies in the kernel.

Appendix B. General Proof of Proposition 8

We begin by proving the first assertion, that {α|hK(α) < C} is finite. Assume K is Galois by
passing to the normal closure and renormalizing, and consider the action of Gal(Q/Q) on K. Now

hk(α
σ) =

∑
v∈Σ

max(0, log(|ασ|v))

=
∑
v∈Σ

max(0, log(|α|v))

as the absolute values are permuted by σ.
Let f(T ) = T d + cd−1T

d−1 + . . . + c0 = (T − α1)(T − α2) . . . (T − αd) be a polynomial with
coefficients in K. We will prove by induction on d that

(5) max
0≤i≤d

{|ci|v} ≤ Cd
d∏
i=0

max{|αi|v, 1}.

For d = 1, it is clear. Assuming the result for d− 1, pick k with 0 ≤ k ≤ d and |αk|v maximal and
define

g(T ) = (T − α1) . . . ̂(T − αk) . . . (T − αd) = T d−1 + bd−2T
d−2 + . . .+ b0

by omitting the (T − αk) term. Comparing coefficients shows ci = bi − αkbi−1. For notational
convenience, set b−1 = bd = 0 so there are no problems with the leading and constant terms. But
then

max
0≤i≤d

{|ci|v} = max
0≤i≤d

|bi − αkbi−1|v

≤ 2 max
0≤i≤d

|bi|v max{|αk|v, 1}

≤ Cd
d∏
j=1

max{|αi|v, 1}

using the inductive hypothesis. This completes the proof of (5). If we multiply this over all absolute
values v ∈ Σ and taking logarithms, we get that

(6)
∑
v∈Σ

max
0≤i≤d

log |ci|v ≤ Cd +

d∑
j=1

hK(αj).

We now show that {α : hK(α) < C} is finite. For any such α, consider the monic minimal
polynomial of α over Q, whose coefficients are rational numbers. All of the roots have the same
height as α, so (6) shows that ∑

v∈Σ

max
0≤i≤d

log |ci|v = O(Cd)

But as ci ∈ Q,
∑

v∈Σ log |ci|v = 0, so there are only a finite number of ci with log |ci|v < O(Cd) for
all v. Therefore there only finitely many choices for the minimal polynomial of α. Therefore there
are a finite number of α with bounded height.



THE MORDELL-WEIL THEOREM FOR ELLIPTIC CURVES 11

Suppose that α = p
q ∈ K

×. Note that max(|α|v, 1) = max( |p|v|q|v , 1) = max(|pv|, |q|v)|q|−1
v . Then∏

v∈Σ

max(|α|v, 1) =
∏
v∈Σ

max(|pv|, |qv|)|q|−1
v .

However, we know that
∏
v∈Σ |x|v = 1 since the absolute values are normalized to make this true.

Thus taking logarithms

hK(α) =
∑
v∈Σ

log(max(|pv|, |qv|)).

We now establish the second statement for a function of degree n

f(T ) =
anT

n + an−1T
n−1 + . . .+ a0

bnTn + bn−1Tn−1 + . . .+ b0
.

Write α = p
q with p, q ∈ OK , so

f(α) =
anp

n + an−1p
n−1q + . . .+ a0q

n

bnpn + bn−1pn−1q + . . .+ a0qn
=
A(p, q)

B(p, q)
.

Then we know

hK(f(α)) =
∑
v∈Σ

log(max(|A(p, q)|v, |B(p, q))|v).

By the ultrametric inequality, |A(p, q)|v ≤ C max(|p|v, |q|v)n, where the constant C depends on the
valuation of the coefficients of the polynomial A. For the finite number of infinite places, use the
triangle inequality instead, which requires the constant C to increase based on the degree n but
doesn’t change the conclusion. The same bound holds for B(p, q). Thus

hK(f(α)) ≤
∑
v∈Σ

logCv max(|p|v, |q|v)n

Note that
∏
v∈ΣCv is finite as for all but a finite set of places the absolute value of all of the

coefficients is 1, which implies CV = 1. Thus

hK(f(α)) ≤ nhK(α) + Cf

where n is the degree of f .
To prove the lower bound, note that we may take A and B to be co-prime as polynomials. They

are homogeneous, so viewing them as being relatively prime polynomials in K[X] we can write
Ar +Bs = pm and Ar′ +Bs′ = qm for r, s, r′, s′ ∈ K[p, q]. (The number m is the maximum of the
degree of Ar+Bs viewed as a polynomial in q with the degree of Ar′+Bs′ viewed as a polynomial
in p.)

Write |R|v for the maximum of |c|v over c a coefficient of r, r′, s, and s. Note |R|v is independent
of α. Now evaluating the identities of polynomials on (p, q) gives that

|p|mv = |A(p, q)r(p, q) +B(p, q)s(p, q)| ≤ Cv max{A(p, q)r(p, q), B(p, q)s(p, q)}
≤ Cv max{r(p, q), s(p, q)}max{A(p, q), B(p, q)}

where Cv = 1 if the ultrametric inequality holds and Cv = 2 for the finite number of exceptions.
There is a similar expression for q. Thus

max{|p|v, |q|v}m ≤ Cv max{A(p, q), B(p, q)}
(
max{r(p, q), s(p, q)}+ max{r′(p, q), s′(p, q)}

)
However, as the polynomials r, r′, s, and s′ are homogeneous of degree m− n,

|r(p, q)|v ≤ D|R|v max(|p|v, |q|v)m−n.
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where D depends only on whether v is archimedean and the degree. It is 1 unless v is an infinite
place. A similar statement holds for r′, s, and s′. Substituting and multiplying by max(|p|v, |q|v)n−m
gives that

max{|p|v, |q|v}n ≤ CvD|R|v max{A(p, q), B(p, q)}.
Taking logarithms and summing over Σ, noting that CvD is almost always 1, we obtain

hK(f(α)) ≥ nhK(α) + C ′.

Thus hK(f(α)) = nhK(α) +O(1), which is the second part of the proposition.
For the final part of the proposition about heights, it is clear that zero and roots of unity have

height zero. Otherwise, if the height of α is 0, consider the powers of α, all of which have height 0.
By the first part, this must be a finite set, so α is a root of unity (or zero). �
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