PBW THEOREM

JEREMY BOOHER

1. Reminders

Definition 1. The universal enveloping algebra for a Lie group \mathfrak{g} is an algebra $U(\mathfrak{g})$ with map $\iota : \mathfrak{g} \to U(\mathfrak{g})$ such that for any map of Lie algebras $\phi : \mathfrak{g} \to A$ there is a unique map of algebras $\phi' : U(\mathfrak{g}) \to A$ with $\phi = \phi' \circ \iota$.

The representing object is the tensor algebra modulo the ideal generated by $x \otimes y - y \otimes x - [x, y]$ with the obvious map. We will prove

Theorem 2 (Poincaré-Birkhoff-Witt). For a Lie algebra \mathfrak{g} , $Sym(\mathfrak{g}) \simeq \operatorname{gr}(U(\mathfrak{g}))$.

Note that \mathfrak{g} need not be finite dimensional, and the characteristic of the base field may be nonzero.

2. PBW

Let $\{x_1, \ldots, x_n, \ldots\}$ be an ordered basis for \mathfrak{g} . Let y_i be the image of x_i in $U(\mathfrak{g})$ under the canonical map $\iota : \mathfrak{g} \to U(\mathfrak{g})$. For $I = (i_1, \ldots, i_n)$, let y_I denote $y_{i_1} \ldots y_{i_n} \in U(\mathfrak{g})$. Say $I \leq m$ if $i_j \leq m$ for all j. Call I increasing if $i_1 \leq i_2 \leq \ldots \leq y_n$.

Lemma 3. The set of all y_I with I increasing and $I \leq n$ generates $U_n(\mathfrak{g})$.

Proof. Let π be a permutaion of n elements. I claim that

 $\iota(g_1)\ldots\iota(g_n)-\iota(g_{\pi(1)})\ldots\iota(g_{\pi(n)})\in U_{n-1}(\mathfrak{g})$

which it suffices to check on transpositions flipping i and i + 1. Then

$$\iota(g_1)\ldots\iota(g_i)\iota(g_{i+1})\ldots\iota(g_n)-\iota(g_1)\ldots\iota(g_{i+1})\iota(g_i)\ldots\iota(g_n)=\iota(g_1)\ldots\iota([g_i,g_{i+1}])\ldots\iota(g_n)\in U_{n-1}$$

Now $U_n(\mathfrak{g})$ is generated by elements of the form $y_J = \iota(x_{j_1}) \ldots \iota(x_{j_n})$ where $J = (j_1, \ldots, j_n)$ is not necessarily increasing. Let π be the permutation with $\pi(j_1) \leq \pi(j_2) \ldots \leq \pi(j_n)$. Then

$$y_J = \iota(x_{j_1}) \dots \iota(x_{j_n}) = \iota(x_{\pi(j_1)}) \dots \iota(x_{\pi(j_n)}) + \iota(x_{\pi(j_n)}$$

where the first term is increasing and the second is in $U_{n-1}(\mathfrak{g})$. Then by induction y_J is expressable in terms of y_I with I increasing and $I \leq n$.

Now let P be the algebra of polynomials in variables $x_1 \ldots x_n \ldots$ To avoid confusion, I'll denote the variables as z_i instead to make clear which algebra the elements lie in. Filter P so P_n is the polynomials of degree at most n. Set $z_I = z_{i_1} \ldots z_{i_n}$ for $I = (i_1 \ldots i_n)$

Lemma 4. For all n, there exists a unique function $f_n : \mathfrak{g} \otimes P_n \to P$ such that

 $\begin{array}{l} (A_n) \ f_n(x_i \otimes z_I) = z_i z_I \ for \ i \leq I, \ z_I \in P_n. \\ (B_n) \ f_n(x_i \otimes z_I) = z_i z_I \ \text{mod} \ P_q \ for \ z_I \in P_q \ and \ q \leq n. \\ (C_n) \ f_n(x_i \otimes f_n(x_j \otimes z_J)) = f_n(x_j \otimes f_n(x_i \otimes z_J)) + f_n([x_i, x_j] \otimes z_J) \ for \ z_J \in P_{n-1} \\ Furthermore, \ the \ restriction \ of \ f_n \ to \ \mathfrak{g} \otimes P_{n-1} \ is \ f_{n-1}. \end{array}$

Date: May 8, 2009.

JEREMY BOOHER

Proof. First, note that condition C_n is actually well defined because $f_n(x_j \otimes z_j)$ is in P_n by condition B_n .

We will proceed by induction. The base case is when n = 0, in which case f_0 must map $x_i \otimes 1$ to z_i to satisfy A_0 . Then conditions B_0 and C_0 are vacuously satisfied.

Now suppose we have a unique f_{n-1} satisfying A_{n-1}, B_{n-1} and C_{n-1} . We need to define f_n on elements of the form $x_i \otimes z_J$ where J can be of length n. We may as well assume J is increasing since P is commutative. If $i \leq J$, then $f_n(x_i \otimes z_J) = z_i z_J$ in order to fulfil A_n . Now suppose J = (j, J') and i > j. Then

$$f_n(x_i \otimes z_j z_{J'}) = f_n(x_i \otimes f_n(x_j \otimes z_{J'}))$$

= $f_n(x_i \otimes f_{n-1}(x_j \otimes z_{J'}))$
= $f_n(x_j \otimes f_{n-1}(x_i \otimes z_{J'})) + f_{n-1}([x_i, x_j] \otimes z_{J'})$

using the fact that f_n and f_{n-1} agree where they are both defined and trying to satisfy condition C_p . But now j < i and $j \leq J'$ so by property B_{n-1}

$$f_n(x_j \otimes f_{n-1}(x_i \otimes z_{J'})) = f_n(x_j \otimes (z_i z_{J'} + w))$$

where $w \in P_{n-1}$. By property A_n , this equals $z_j z_i z_{J'} + f_{n-1}(x_j \otimes w)$. Thus we should define $f_n(x_i \otimes z_J) = z_i z_J$ when $i \leq J$, and otherwise

(1)
$$f_n(x_i \otimes z_j z_{J'}) = z_i z_J + f_{n-1}(x_j \otimes w) + f_{n-1}([x_i, x_j] \otimes z_{J'})$$

If this satisfies A_n , B_n , and C_n it will be the unique extension of f_{n-1} , for conditions A_n , B_n , and C_n when restricted to P_{n-1} are conditions A_{n-1} , B_{n-1} , and C_{n-1} which are satisfied by a unique f_{n-1} . Property A_n is obviously satisfied, and so is B_n , since the second and third terms are in P_{n-1} by B_{n-1} . It remains to verify C_n .

Now we need to check $f_n(x_i \otimes f_n(x_j \otimes z_J)) = f_n(x_j \otimes f_n(x_i \otimes z_J)) + f_n([x_i, x_j] \otimes z_J)$ for $z_J \in P_{n-1}$. By the way we constructed f_n , C_n is satisfied if j < i and $j \leq J$ since

$$f_n(x_i \otimes f_{n-1}(x_j \otimes z_J)) = f_n(x_i \otimes z_j z_J)$$

= $z_i z_j z_J + f_{n-1}(x_j \otimes w) + f_{n-1}([x_i, x_j] \otimes z_J)$
= $f_n(x_j \otimes f_{n-1}(x_i \otimes z_J)) + f_{n-1}([x_i, x_j] \otimes z_J)$

Furthermore, if we flip the role of i and j since $[x_i, x_j] = -[x_j, x_i]$ this holds as long as $i \leq J'$ and i < j. If i = j, there is nothing to prove. Thus the only remaining cases are when neither $i \leq J$ or $j \leq J$: J = (k, K) where k < i, j. Then by induction $(z_j \in P_{n-1})$

$$f_n(x_j \otimes z_J) = f_n(x_j \otimes f_n(x_k \otimes z_K))$$

= $f_n(x_k \otimes f_n(x_j \otimes z_K)) + f_n([x_j, x_k] \otimes z_K)$

Now $f_n(x_j \otimes z_K) = z_j z_K + w$ where $w \in P_{n-2}$ by B_{n-1} . Then

$$f_n(x_k \otimes f_n(x_j \otimes z_J)) = f_p(x_i \otimes f_n(x_k \otimes (z_j z_K + w))) + f_n(x_i \otimes f_n([x_j, x_k] \otimes z_K)))$$

Since i > k and $k \leq j, K$ and $w \in P_{n-2}, C_n$ holds for the first term. C_n holds for the second term by induction. Thus this expands as

$$f_n(x_i \otimes f_n(x_k \otimes f_n(x_j \otimes z_K))) + f_n(x_i \otimes f_n([x_j, x_k] \otimes z_K))) = f_n(x_k \otimes f_n(x_i \otimes f_n(x_j \otimes z_K))) + f_n([x_i, x_k] \otimes f_n(x_j \otimes z_K)) + f_n([x_j, x_k] \otimes f_n(x_i, z_K)) + f_n([x_i, [x_j, x_k]] \otimes z_K)$$

A similar statement holds if interchange the role of i and j. Then

 $\begin{aligned} &f_n(x_i \otimes f_n(x_j \otimes z_J)) - f_n(x_j \otimes f_n(x_i \otimes z_J)) \\ &= f_n(x_k \otimes [f_n(x_i \otimes f_n(x_j \otimes z_K)) - f_n(x_j \otimes f_n(x_i \otimes z_K))]) + f_n([x_i, [x_j, x_k]] \otimes z_K) - f_n([x_j, [x_i, x_k]] \otimes z_K) \\ &= f_n(x_k \otimes f_n([x_i, x_j] \otimes z_K)) + f_n([x_i, [x_j, x_k]] \otimes z_K) - f_n([x_j, [x_i, x_k]] \otimes z_K) \\ &= f_n([x_i, x_j] \otimes f_n(x_k \otimes z_K)) + f_n([x_k, [x_i, x_j]] \otimes z_K) f_n([x_i, [x_j, x_k]] \otimes z_K) - f_n([x_j, [x_i, x_k]] \otimes z_K) \\ &= f_n([x_i, x_j] \otimes z_J) + f_n(([x_k, [x_i, x_j]] + [x_i, [x_j, x_k]] - [x_j, [x_i, x_k]]) \otimes z_K) \\ &= f_n([x_i, x_j] \otimes z_J) \end{aligned}$

by the Jacobi identity. Thus C_p holds in general, completing the proof.

Theorem 5. The y_I for I increasing form a basis for $U(\mathfrak{g})$ as a vector space.

Proof. Combining the maps for all n, we see there is a bilinear mapping $f : \mathfrak{g} \times P \to P$ such that $f(x_i, z_I) = z_i z_I$ for $i \leq I$ and

$$f(x_i, f(x_j, z_J)) = f(x_j, f(x_i, z_J)) + f([x_i, x_j], z_J)$$

This is a representation ρ of \mathfrak{g} on P with the property that $\rho(x_i)z_I = z_iz_I$. By the universal property of $U(\mathfrak{g})$, there is a map $\psi: U(\mathfrak{g}) \to \operatorname{End}(P)$ with $\psi(y_i)z_I = z_iz_I$ for $i \leq I$. Then by induction if $I = (i_1, \ldots, i_n)$ is increasing we see

$$\psi(y_{i_1}\dots y_{i_n})\cdot 1=z_{i_1}\dots z_{i_n}$$

But the polynomials on the right hand side are linearly independent, so the y_I with I increasing are linearly independent as well. We already showed they generate $U(\mathfrak{g})$.

This then implies all the forms of the PBW theorem.

Corollary 6. The canonical mapping of \mathfrak{g} to $U(\mathfrak{g})$ is injective.

Using the construction of the universal enveloping algebra as a quotient of the tensor algebra, there is a natural filtration on $U(\mathfrak{g})$ where $U_n(\mathfrak{g})$ is generated by products of the form $x_1 \otimes \ldots \otimes x_p$ where $x_i \in \mathfrak{g}$ and $p \leq n$. Remember that $\operatorname{gr}(U(\mathfrak{g})) = \bigoplus_{n=0}^{\infty} G^n$ where $G^n = U_n(\mathfrak{g})/U_{n-1}(\mathfrak{g})$ and $G^0 = k$. Note that $G^1 \simeq \mathfrak{g}$. Multiplication in $U(\mathfrak{g})$ makes this into a commutative ring by the first lemma.

Corollary 7. $Sym(\mathfrak{g}) \simeq gr(U(\mathfrak{g}))$

Proof. Since $\operatorname{gr}(U(\mathfrak{g}))$ is commutative, by the universal property of the symmetric algebra the map $\mathfrak{g} \to \operatorname{gr}(U(\mathfrak{g}))$ extends to a map $\operatorname{Sym}(\mathfrak{g}) \to \operatorname{gr}(U(\mathfrak{g}))$. We know that expressions of the form $x_1^{v_1} \ldots x_n^{v_n} \ldots$ with $\sum v_i \leq n$ form a basis for $U_n(\mathfrak{g})$. The ones with sum exactly n form a basis for G^n . Thus elements of this form give a basis for $\operatorname{gr}(U(\mathfrak{g}))$, and the map $\operatorname{Sym}(\mathfrak{g}) \to \operatorname{gr}(U(\mathfrak{g}))$ sends the standard basis for $\operatorname{Sym}(\mathfrak{g})$ to this. Thus the map is an isomorphism. \Box