
PBW THEOREM

JEREMY BOOHER

1. Reminders

Definition 1. The universal enveloping algebra for a Lie group g is an algebra U(g) with map
ι : g → U(g) such that for any map of Lie algebras φ : g → A there is a unique map of algebras
φ′ : U(g)→ A with φ = φ′ ◦ ι.

The representing object is the tensor algebra modulo the ideal generated by x⊗ y− y⊗x− [x, y]
with the obvious map. We will prove

Theorem 2 (Poincaré-Birkhoff-Witt). For a Lie algebra g, Sym(g) ' gr(U(g)).

Note that g need not be finite dimensional, and the characteristic of the base field may be
nonzero.

2. PBW

Let {x1, . . . , xn, . . .} be an ordered basis for g. Let yi be the image of xi in U(g) under the
canonical map ι : g → U(g). For I = (i1, . . . , in), let yI denote yi1 . . . yin ∈ U(g). Say I ≤ m if
ij ≤ m for all j. Call I increasing if i1 ≤ i2 ≤ . . . ≤ yn.

Lemma 3. The set of all yI with I increasing and I ≤ n generates Un(g).

Proof. Let π be a permuation of n elements. I claim that

ι(g1) . . . ι(gn)− ι(gπ(1)) . . . ι(gπ(n)) ∈ Un−1(g)

which it suffices to check on transpositions flipping i and i+ 1. Then

ι(g1) . . . ι(gi)ι(gi+1) . . . ι(gn)− ι(g1) . . . ι(gi+1)ι(gi) . . . ι(gn) = ι(g1) . . . ι([gi, gi+1]) . . . ι(gn) ∈ Un−1
Now Un(g) is generated by elements of the form yJ = ι(xj1) . . . ι(xjn) where J = (j1, . . . , jn) is not
necessarily increasing. Let π be the permutation with π(j1) ≤ π(j2) . . . ≤ π(jn). Then

yJ = ι(xj1) . . . ι(xjn) = ι(xπ(j1)) . . . ι(xπ(jn)) + r

where the first term is increasing and the second is in Un−1(g). Then by induction yJ is expressable
in terms of yI with I increasing and I ≤ n. �

Now let P be the algebra of polynomials in variables x1 . . . xn . . .. To avoid confusion, I’ll denote
the variables as zi instead to make clear which algebra the elements lie in. Filter P so Pn is the
polynomials of degree at most n. Set zI = zi1 . . . zin for I = (i1 . . . in)

Lemma 4. For all n, there exists a unique function fn : g⊗ Pn → P such that
(An) fn(xi ⊗ zI) = zizI for i ≤ I, zI ∈ Pn.
(Bn) fn(xi ⊗ zI) = zizI mod Pq for zI ∈ Pq and q ≤ n.
(Cn) fn(xi ⊗ fn(xj ⊗ zJ)) = fn(xj ⊗ fn(xi ⊗ zJ)) + fn([xi, xj ]⊗ zJ) for zJ ∈ Pn−1
Furthermore, the restriction of fn to g⊗ Pn−1 is fn−1.
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Proof. First, note that condition Cn is actually well defined because fn(xj⊗zj) is in Pn by condition
Bn.

We will proceed by induction. The base case is when n = 0, in which case f0 must map xi ⊗ 1
to zi to satisfy A0. Then conditions B0 and C0 are vacuously satisfied.

Now suppose we have a unique fn−1 satisfying An−1, Bn−1 and Cn−1. We need to define fn on
elements of the form xi ⊗ zJ where J can be of length n. We may as well assume J is increasing
since P is commutative. If i ≤ J , then fn(xi ⊗ zJ) = zizJ in order to fulfil An. Now suppose
J = (j, J ′) and i > j. Then

fn(xi ⊗ zjzJ ′) = fn(xi ⊗ fn(xj ⊗ zJ ′))

= fn(xi ⊗ fn−1(xj ⊗ zJ ′))

= fn(xj ⊗ fn−1(xi ⊗ zJ ′)) + fn−1([xi, xj ]⊗ zJ ′)

using the fact that fn and fn−1 agree where they are both defined and trying to satisfy condition
Cp. But now j < i and j ≤ J ′ so by property Bn−1

fn(xj ⊗ fn−1(xi ⊗ zJ ′)) = fn(xj ⊗ (zizJ ′ + w))

where w ∈ Pn−1. By property An, this equals zjzizJ ′ + fn−1(xj ⊗ w). Thus we should define
fn(xi ⊗ zJ) = zizJ when i ≤ J , and otherwise

fn(xi ⊗ zjzJ ′) = zizJ + fn−1(xj ⊗ w) + fn−1([xi, xj ]⊗ zJ ′)(1)

If this satisfies An, Bn, and Cn it will be the unique extension of fn−1, for conditions An, Bn, and
Cn when restricted to Pn−1 are conditions An−1, Bn−1, and Cn−1 which are satisfied by a unique
fn−1. Property An is obviously satisfied, and so is Bn, since the second and third terms are in Pn−1
by Bn−1. It remains to verify Cn.

Now we need to check fn(xi⊗fn(xj⊗zJ)) = fn(xj⊗fn(xi⊗zJ))+fn([xi, xj ]⊗zJ) for zJ ∈ Pn−1.
By the way we constructed fn, Cn is satisfied if j < i and j ≤ J since

fn(xi ⊗ fn−1(xj ⊗ zJ)) = fn(xi ⊗ zjzJ)

= zizjzJ + fn−1(xj ⊗ w) + fn−1([xi, xj ]⊗ zJ)

= fn(xj ⊗ fn−1(xi ⊗ zJ)) + fn−1([xi, xj ]⊗ zJ)

Furthermore, if we flip the role of i and j since [xi, xj ] = −[xj , xi] this holds as long as i ≤ J ′ and
i < j. If i = j, there is nothing to prove. Thus the only remaining cases are when neither i ≤ J or
j ≤ J : J = (k,K) where k < i, j. Then by induction (zJ ∈ Pn−1)

fn(xj ⊗ zJ) = fn(xj ⊗ fn(xk ⊗ zK))

= fn(xk ⊗ fn(xj ⊗ zK)) + fn([xj , xk]⊗ zK)

Now fn(xj ⊗ zK) = zjzK + w where w ∈ Pn−2 by Bn−1. Then

fn(xk ⊗ fn(xj ⊗ zJ)) = fp(xi ⊗ fn(xk ⊗ (zjzK + w))) + fn(xi ⊗ fn([xj , xk]⊗ zK)))

Since i > k and k ≤ j,K and w ∈ Pn−2, Cn holds for the first term. Cn holds for the second term
by induction. Thus this expands as

fn(xi ⊗ fn(xk ⊗ fn(xj ⊗ zK))) + fn(xi ⊗ fn([xj , xk]⊗ zK))) = fn(xk ⊗ fn(xi ⊗ fn(xj ⊗ zK)))+

+fn([xi, xk]⊗ fn(xj ⊗ zK)) + fn([xj , xk]⊗ fn(xi, zK)) + fn([xi, [xj , xk]]⊗ zK)
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A similar statement holds if interchange the role of i and j. Then

fn(xi ⊗ fn(xj ⊗ zJ))− fn(xj ⊗ fn(xi ⊗ zJ))

=fn(xk ⊗ [fn(xi ⊗ fn(xj ⊗ zK))− fn(xj ⊗ fn(xi ⊗ zK))]) + fn([xi, [xj , xk]]⊗ zK)− fn([xj , [xi, xk]]⊗ zK)

=fn(xk ⊗ fn([xi, xj ]⊗ zK)) + fn([xi, [xj , xk]]⊗ zK)− fn([xj , [xi, xk]]⊗ zK)

=fn([xi, xj ]⊗ fn(xk ⊗ zK)) + fn([xk, [xi, xj ]]⊗ zK)fn([xi, [xj , xk]]⊗ zK)− fn([xj , [xi, xk]]⊗ zK)

=fn([xi, xj ]⊗ zJ) + fn(([xk, [xi, xj ]] + [xi, [xj , xk]]− [xj , [xi, xk]])⊗ zK)

=fn([xi, xj ]⊗ zJ)

by the Jacobi identity. Thus Cp holds in general, completing the proof. �

Theorem 5. The yI for I increasing form a basis for U(g) as a vector space.

Proof. Combining the maps for all n, we see there is a bilinear mapping f : g× P → P such that
f(xi, zI) = zizI for i ≤ I and

f(xi, f(xj , zJ)) = f(xj , f(xi, zJ)) + f([xi, xj ], zJ)

This is a representation ρ of g on P with the property that ρ(xi)zI = zizI . By the universal
property of U(g), there is a map ψ : U(g) → End(P ) with ψ(yi)zI = zizI for i ≤ I. Then by
induction if I = (i1, . . . , in) is increasing we see

ψ(yi1 . . . yin) · 1 = zi1 . . . zin

But the polynomials on the right hand side are linearly independent, so the yI with I increasing
are linearly independent as well. We already showed they generate U(g).

�

This then implies all the forms of the PBW theorem.

Corollary 6. The canonical mapping of g to U(g) is injective.

Using the construction of the universal enveloping algebra as a quotient of the tensor algebra,
there is a natural filtration on U(g) where Un(g) is generated by products of the form x1⊗ . . .⊗xp
where xi ∈ g and p ≤ n. Remember that gr(U(g)) =

∞
⊕
n=0

Gn where Gn = Un(g)/Un−1(g) and

G0 = k. Note that G1 ' g. Multiplication in U(g) makes this into a commutative ring by the first
lemma.

Corollary 7. Sym(g) ' gr(U(g))

Proof. Since gr(U(g)) is commutative, by the universal property of the symmetric algebra the map
g → gr(U(g)) extends to a map Sym(g) → gr(U(g)). We know that expressions of the form
xv11 . . . xvnn . . . with

∑
vi ≤ n form a basis for Un(g). The ones with sum exactly n form a basis for

Gn. Thus elements of this form give a basis for gr(U(g)), and the map Sym(g) → gr(U(g)) sends
the standard basis for Sym(g) to this. Thus the map is an isomorphism. �


