PBW THEOREM

JEREMY BOOHER

1. REMINDERS

Definition 1. The universal enveloping algebra for a Lie group \mathfrak{g} is an algebra $U(\mathfrak{g})$ with map $\iota: \mathfrak{g} \rightarrow U(\mathfrak{g})$ such that for any map of Lie algebras $\phi: \mathfrak{g} \rightarrow A$ there is a unique map of algebras $\phi^{\prime}: U(\mathfrak{g}) \rightarrow A$ with $\phi=\phi^{\prime} \circ \iota$.

The representing object is the tensor algebra modulo the ideal generated by $x \otimes y-y \otimes x-[x, y]$ with the obvious map. We will prove
Theorem 2 (Poincaré-Birkhoff-Witt). For a Lie algebra $\mathfrak{g}, \operatorname{Sym}(\mathfrak{g}) \simeq \operatorname{gr}(U(\mathfrak{g}))$.
Note that \mathfrak{g} need not be finite dimensional, and the characteristic of the base field may be nonzero.

2. PBW

Let $\left\{x_{1}, \ldots, x_{n}, \ldots\right\}$ be an ordered basis for \mathfrak{g}. Let y_{i} be the image of x_{i} in $U(\mathfrak{g})$ under the canonical map $\iota: \mathfrak{g} \rightarrow U(\mathfrak{g})$. For $I=\left(i_{1}, \ldots, i_{n}\right)$, let y_{I} denote $y_{i_{1}} \ldots y_{i_{n}} \in U(\mathfrak{g})$. Say $I \leq m$ if $i_{j} \leq m$ for all j. Call I increasing if $i_{1} \leq i_{2} \leq \ldots \leq y_{n}$.
Lemma 3. The set of all y_{I} with I increasing and $I \leq n$ generates $U_{n}(\mathfrak{g})$.
Proof. Let π be a permuation of n elements. I claim that

$$
\iota\left(g_{1}\right) \ldots \iota\left(g_{n}\right)-\iota\left(g_{\pi(1)}\right) \ldots \iota\left(g_{\pi(n)}\right) \in U_{n-1}(\mathfrak{g})
$$

which it suffices to check on transpositions flipping i and $i+1$. Then

$$
\iota\left(g_{1}\right) \ldots \iota\left(g_{i}\right) \iota\left(g_{i+1}\right) \ldots \iota\left(g_{n}\right)-\iota\left(g_{1}\right) \ldots \iota\left(g_{i+1}\right) \iota\left(g_{i}\right) \ldots \iota\left(g_{n}\right)=\iota\left(g_{1}\right) \ldots \iota\left(\left[g_{i}, g_{i+1}\right]\right) \ldots \iota\left(g_{n}\right) \in U_{n-1}
$$

Now $U_{n}(\mathfrak{g})$ is generated by elements of the form $y_{J}=\iota\left(x_{j_{1}}\right) \ldots \iota\left(x_{j_{n}}\right)$ where $J=\left(j_{1}, \ldots, j_{n}\right)$ is not necessarily increasing. Let π be the permutation with $\pi\left(j_{1}\right) \leq \pi\left(j_{2}\right) \ldots \leq \pi\left(j_{n}\right)$. Then

$$
y_{J}=\iota\left(x_{j_{1}}\right) \ldots \iota\left(x_{j_{n}}\right)=\iota\left(x_{\pi\left(j_{1}\right)}\right) \ldots \iota\left(x_{\pi\left(j_{n}\right)}\right)+r
$$

where the first term is increasing and the second is in $U_{n-1}(\mathfrak{g})$. Then by induction y_{J} is expressable in terms of y_{I} with I increasing and $I \leq n$.

Now let P be the algebra of polynomials in variables $x_{1} \ldots x_{n} \ldots$. To avoid confusion, I'll denote the variables as z_{i} instead to make clear which algebra the elements lie in. Filter P so P_{n} is the polynomials of degree at most n. Set $z_{I}=z_{i_{1}} \ldots z_{i_{n}}$ for $I=\left(i_{1} \ldots i_{n}\right)$

Lemma 4. For all n, there exists a unique function $f_{n}: \mathfrak{g} \otimes P_{n} \rightarrow P$ such that
$\left(A_{n}\right) f_{n}\left(x_{i} \otimes z_{I}\right)=z_{i} z_{I}$ for $i \leq I, z_{I} \in P_{n}$.
$\left(B_{n}\right) f_{n}\left(x_{i} \otimes z_{I}\right)=z_{i} z_{I} \bmod P_{q}$ for $z_{I} \in P_{q}$ and $q \leq n$.
$\left(C_{n}\right) f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{J}\right)\right)=f_{n}\left(x_{j} \otimes f_{n}\left(x_{i} \otimes z_{J}\right)\right)+f_{n}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right)$ for $z_{J} \in P_{n-1}$
Furthermore, the restriction of f_{n} to $\mathfrak{g} \otimes P_{n-1}$ is f_{n-1}.

Date: May 8, 2009.

Proof. First, note that condition C_{n} is actually well defined because $f_{n}\left(x_{j} \otimes z_{j}\right)$ is in P_{n} by condition B_{n}.

We will proceed by induction. The base case is when $n=0$, in which case f_{0} must map $x_{i} \otimes 1$ to z_{i} to satisfy A_{0}. Then conditions B_{0} and C_{0} are vacuously satisfied.

Now suppose we have a unique f_{n-1} satisfying A_{n-1}, B_{n-1} and C_{n-1}. We need to define f_{n} on elements of the form $x_{i} \otimes z_{J}$ where J can be of length n. We may as well assume J is increasing since P is commutative. If $i \leq J$, then $f_{n}\left(x_{i} \otimes z_{J}\right)=z_{i} z_{J}$ in order to fulfil A_{n}. Now suppose $J=\left(j, J^{\prime}\right)$ and $i>j$. Then

$$
\begin{aligned}
f_{n}\left(x_{i} \otimes z_{j} z_{J^{\prime}}\right) & =f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{J^{\prime}}\right)\right) \\
& =f_{n}\left(x_{i} \otimes f_{n-1}\left(x_{j} \otimes z_{J^{\prime}}\right)\right) \\
& =f_{n}\left(x_{j} \otimes f_{n-1}\left(x_{i} \otimes z_{J^{\prime}}\right)\right)+f_{n-1}\left(\left[x_{i}, x_{j}\right] \otimes z_{J^{\prime}}\right)
\end{aligned}
$$

using the fact that f_{n} and f_{n-1} agree where they are both defined and trying to satisfy condition C_{p}. But now $j<i$ and $j \leq J^{\prime}$ so by property B_{n-1}

$$
f_{n}\left(x_{j} \otimes f_{n-1}\left(x_{i} \otimes z_{J^{\prime}}\right)\right)=f_{n}\left(x_{j} \otimes\left(z_{i} z_{J^{\prime}}+w\right)\right)
$$

where $w \in P_{n-1}$. By property A_{n}, this equals $z_{j} z_{i} z_{J^{\prime}}+f_{n-1}\left(x_{j} \otimes w\right)$. Thus we should define $f_{n}\left(x_{i} \otimes z_{J}\right)=z_{i} z_{J}$ when $i \leq J$, and otherwise

$$
\begin{equation*}
f_{n}\left(x_{i} \otimes z_{j} z_{J^{\prime}}\right)=z_{i} z_{J}+f_{n-1}\left(x_{j} \otimes w\right)+f_{n-1}\left(\left[x_{i}, x_{j}\right] \otimes z_{J^{\prime}}\right) \tag{1}
\end{equation*}
$$

If this satisfies A_{n}, B_{n}, and C_{n} it will be the unique extension of f_{n-1}, for conditions A_{n}, B_{n}, and C_{n} when restricted to P_{n-1} are conditions A_{n-1}, B_{n-1}, and C_{n-1} which are satisfied by a unique f_{n-1}. Property A_{n} is obviously satisfied, and so is B_{n}, since the second and third terms are in P_{n-1} by B_{n-1}. It remains to verify C_{n}.

Now we need to check $f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{J}\right)\right)=f_{n}\left(x_{j} \otimes f_{n}\left(x_{i} \otimes z_{J}\right)\right)+f_{n}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right)$ for $z_{J} \in P_{n-1}$. By the way we constructed f_{n}, C_{n} is satisfied if $j<i$ and $j \leq J$ since

$$
\begin{aligned}
f_{n}\left(x_{i} \otimes f_{n-1}\left(x_{j} \otimes z_{J}\right)\right) & =f_{n}\left(x_{i} \otimes z_{j} z_{J}\right) \\
& =z_{i} z_{j} z_{J}+f_{n-1}\left(x_{j} \otimes w\right)+f_{n-1}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right) \\
& =f_{n}\left(x_{j} \otimes f_{n-1}\left(x_{i} \otimes z_{J}\right)\right)+f_{n-1}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right)
\end{aligned}
$$

Furthermore, if we flip the role of i and j since $\left[x_{i}, x_{j}\right]=-\left[x_{j}, x_{i}\right]$ this holds as long as $i \leq J^{\prime}$ and $i<j$. If $i=j$, there is nothing to prove. Thus the only remaining cases are when neither $i \leq J$ or $j \leq J: J=(k, K)$ where $k<i, j$. Then by induction $\left(z_{J} \in P_{n-1}\right)$

$$
\begin{aligned}
f_{n}\left(x_{j} \otimes z_{J}\right) & =f_{n}\left(x_{j} \otimes f_{n}\left(x_{k} \otimes z_{K}\right)\right) \\
& =f_{n}\left(x_{k} \otimes f_{n}\left(x_{j} \otimes z_{K}\right)\right)+f_{n}\left(\left[x_{j}, x_{k}\right] \otimes z_{K}\right)
\end{aligned}
$$

Now $f_{n}\left(x_{j} \otimes z_{K}\right)=z_{j} z_{K}+w$ where $w \in P_{n-2}$ by B_{n-1}. Then

$$
\left.f_{n}\left(x_{k} \otimes f_{n}\left(x_{j} \otimes z_{J}\right)\right)=f_{p}\left(x_{i} \otimes f_{n}\left(x_{k} \otimes\left(z_{j} z_{K}+w\right)\right)\right)+f_{n}\left(x_{i} \otimes f_{n}\left(\left[x_{j}, x_{k}\right] \otimes z_{K}\right)\right)\right)
$$

Since $i>k$ and $k \leq j, K$ and $w \in P_{n-2}, C_{n}$ holds for the first term. C_{n} holds for the second term by induction. Thus this expands as

$$
\left.\left.\left.\begin{array}{r}
f_{n}\left(x _ { i } \otimes f _ { n } \left(x_{k} \otimes\right.\right.
\end{array} f_{n}\left(x_{j} \otimes z_{K}\right)\right)\right)+f_{n}\left(x_{i} \otimes f_{n}\left(\left[x_{j}, x_{k}\right] \otimes z_{K}\right)\right)\right)=f_{n}\left(x_{k} \otimes f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{K}\right)\right)\right)+\quad+\quad+f_{n}\left(\left[x_{i}, x_{k}\right] \otimes f_{n}\left(x_{j} \otimes z_{K}\right)\right)+f_{n}\left(\left[x_{j}, x_{k}\right] \otimes f_{n}\left(x_{i}, z_{K}\right)\right)+f_{n}\left(\left[x_{i},\left[x_{j}, x_{k}\right]\right] \otimes z_{K}\right)
$$

A similar statement holds if interchange the role of i and j. Then

$$
\begin{aligned}
& f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{J}\right)\right)-f_{n}\left(x_{j} \otimes f_{n}\left(x_{i} \otimes z_{J}\right)\right) \\
= & f_{n}\left(x_{k} \otimes\left[f_{n}\left(x_{i} \otimes f_{n}\left(x_{j} \otimes z_{K}\right)\right)-f_{n}\left(x_{j} \otimes f_{n}\left(x_{i} \otimes z_{K}\right)\right)\right]\right)+f_{n}\left(\left[x_{i},\left[x_{j}, x_{k}\right]\right] \otimes z_{K}\right)-f_{n}\left(\left[x_{j},\left[x_{i}, x_{k}\right]\right] \otimes z_{K}\right) \\
= & f_{n}\left(x_{k} \otimes f_{n}\left(\left[x_{i}, x_{j}\right] \otimes z_{K}\right)\right)+f_{n}\left(\left[x_{i},\left[x_{j}, x_{k}\right]\right] \otimes z_{K}\right)-f_{n}\left(\left[x_{j},\left[x_{i}, x_{k}\right]\right] \otimes z_{K}\right) \\
= & f_{n}\left(\left[x_{i}, x_{j}\right] \otimes f_{n}\left(x_{k} \otimes z_{K}\right)\right)+f_{n}\left(\left[x_{k},\left[x_{i}, x_{j}\right]\right] \otimes z_{K}\right) f_{n}\left(\left[x_{i},\left[x_{j}, x_{k}\right]\right] \otimes z_{K}\right)-f_{n}\left(\left[x_{j},\left[x_{i}, x_{k}\right]\right] \otimes z_{K}\right) \\
= & f_{n}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right)+f_{n}\left(\left(\left[x_{k},\left[x_{i}, x_{j}\right]\right]+\left[x_{i},\left[x_{j}, x_{k}\right]\right]-\left[x_{j},\left[x_{i}, x_{k}\right]\right]\right) \otimes z_{K}\right) \\
= & f_{n}\left(\left[x_{i}, x_{j}\right] \otimes z_{J}\right)
\end{aligned}
$$

by the Jacobi identity. Thus C_{p} holds in general, completing the proof.
Theorem 5. The y_{I} for I increasing form a basis for $U(\mathfrak{g})$ as a vector space.
Proof. Combining the maps for all n, we see there is a bilinear mapping $f: \mathfrak{g} \times P \rightarrow P$ such that $f\left(x_{i}, z_{I}\right)=z_{i} z_{I}$ for $i \leq I$ and

$$
f\left(x_{i}, f\left(x_{j}, z_{J}\right)\right)=f\left(x_{j}, f\left(x_{i}, z_{J}\right)\right)+f\left(\left[x_{i}, x_{j}\right], z_{J}\right)
$$

This is a representation ρ of \mathfrak{g} on P with the property that $\rho\left(x_{i}\right) z_{I}=z_{i} z_{I}$. By the universal property of $U(\mathfrak{g})$, there is a map $\psi: U(\mathfrak{g}) \rightarrow \operatorname{End}(P)$ with $\psi\left(y_{i}\right) z_{I}=z_{i} z_{I}$ for $i \leq I$. Then by induction if $I=\left(i_{1}, \ldots, i_{n}\right)$ is increasing we see

$$
\psi\left(y_{i_{1}} \ldots y_{i_{n}}\right) \cdot 1=z_{i_{1}} \ldots z_{i_{n}}
$$

But the polynomials on the right hand side are linearly independent, so the y_{I} with I increasing are linearly independent as well. We already showed they generate $U(\mathfrak{g})$.

This then implies all the forms of the PBW theorem.
Corollary 6. The canonical mapping of \mathfrak{g} to $U(\mathfrak{g})$ is injective.
Using the construction of the universal enveloping algebra as a quotient of the tensor algebra, there is a natural filtration on $U(\mathfrak{g})$ where $U_{n}(\mathfrak{g})$ is generated by products of the form $x_{1} \otimes \ldots \otimes x_{p}$ where $x_{i} \in \mathfrak{g}$ and $p \leq n$. Remember that $\operatorname{gr}(U(\mathfrak{g}))=\underset{n=0}{\oplus} G^{n}$ where $G^{n}=U_{n}(\mathfrak{g}) / U_{n-1}(\mathfrak{g})$ and $G^{0}=k$. Note that $G^{1} \simeq \mathfrak{g}$. Multiplication in $U(\mathfrak{g})$ makes this into a commutative ring by the first lemma.

Corollary 7. $\operatorname{Sym}(\mathfrak{g}) \simeq \operatorname{gr}(U(\mathfrak{g}))$
Proof. Since $\operatorname{gr}(U(\mathfrak{g}))$ is commutative, by the universal property of the symmetric algebra the map $\mathfrak{g} \rightarrow \operatorname{gr}(U(\mathfrak{g}))$ extends to a map $\operatorname{Sym}(\mathfrak{g}) \rightarrow \operatorname{gr}(U(\mathfrak{g}))$. We know that expressions of the form $x_{1}^{v_{1}} \ldots x_{n}^{v_{n}} \ldots$ with $\sum v_{i} \leq n$ form a basis for $U_{n}(\mathfrak{g})$. The ones with sum exactly n form a basis for G^{n}. Thus elements of this form give a basis for $\operatorname{gr}(U(\mathfrak{g}))$, and the map $\operatorname{Sym}(\mathfrak{g}) \rightarrow \operatorname{gr}(U(\mathfrak{g}))$ sends the standard basis for $\operatorname{Sym}(\mathfrak{g})$ to this. Thus the map is an isomorphism.

