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1. Introduction

The law of quadratic reciprocity gives a beautiful description of which primes are squares modulo
p. Special cases of this law going back to Fermat, and Euler and Legendre conjectured it, but the
first complete proof is due to Gauss, who in fact gave eight proofs. It states that if p and q are
distinct odd primes, and at least one of them is congruent to 1 modulo 4, then p is a square modulo
q if and only if q is a square modulo p. If both are 3 modulo 4, p is a square modulo q if and only
if q is not a square modulo p. This is more clearly stated using the Legendre symbol.

Definition 1. Let p be a prime and a be an integer relatively prime to p. Then
(
a
p

)
is defined to

be 1 if x2 ≡ a mod p has a solution, −1 otherwise.

By convention, if a is a multiple of p the Legendre symbol is defined to be zero. With this
notation, the law can be compactly stated as follows.

Theorem 2 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then
(
p
q

)(
q
p

)
=

(−1)
p−1
2

q−1
2 .

Two proofs relying on the same idea are given in Section 2: they are one of the proofs due to
Gauss and a modern reformulation in terms of the language of algebraic number theory.

The search for generalizations of quadratic reciprocity was a major goal in the development of
algebraic number theory. Versions for third and fourth powers were investigated by Gauss and
Jacobi, and proven by Eisenstein. Some of these generalizations are discussed in Section 3. A
generalization and unification of many such laws took place in the early twentieth century with the
development of class field theory. Section 4 briefly outlines how class field theory connects with the
law of quadratic reciprocity.

A great deal of information about the development of reciprocity laws and many unusual proofs
are to be found in Lemmermeyer [3].

1.1. Preliminary Facts. The law of quadratic reciprocity can be reformulated in terms of p∗ :=

(−1)
p−1
2 p, which has the property that p∗ ≡ 1 mod 4. This form matches the proofs we will give.

Theorem 3 (Quadratic Reciprocity’). Let p and q be odd primes, and p∗ = (−1)
p−1
2 p. Then(

p∗

q

)
=
(
q
p

)
.

The equivalence relies on some standard properties of the Legendre symbol.

Proposition 4. Let p be a prime and a ∈ Z.

(1)
(
a
p

)
≡ a

p−1
2 mod p (this is known as Euler’s criterion).

(2) The Legendre symbol is a homomorphism from (Z/pZ)× to {±1}.
(3)

(
−1
p

)
= (−1)

p−1
2 .
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(4)
(
2
p

)
= (−1)

p2−1
8 .

The last two statements are known as the supplemental laws, since they deal with exceptional
cases not covered by the statement of quadratic reciprocity. These easy statements, as well as the
equivalence of the two statements of quadratic reciprocity, are proven in most elementary number
theory books, for example Ireland and Rosen [2, Chapter 5].

2. Gauss’s Proof and Algebraic Number Theory

After introducing the splitting of primes and the Frobenius element in basic algebraic number
theory, a simple proof of the quadratic reciprocity law becomes possible. Although the full language
of algebraic number theory did not develop until the end of the 19th century, this proof is essentially
due to Gauss. After presenting the modern proof, we explain how Gauss would have proven it using
Gauss sums to bypass non-existent language and techniques.

2.1. Proof Using Galois Theory and Algebraic Number Theory. To prove the main case
of quadratic reciprocity, Theorem 3, we will look at the splitting of primes in the unique quadratic

subfield of a cyclotomic field. Let p and q be odd primes, and let p∗ be (−1)
p−1
2 p as before. Consider

the cyclotomic field Q(ζp), where ζp is a primitive pth root of unity.

Proposition 5. There is a unique quadratic subfield K = Q(
√
p∗) of Q(ζp).

Proof. We know that Q(ζp) is a Galois extension of Q with Galois group (Z/pZ)×. As Gal(Q(ζp)/Q)
is cyclic, there is a unique index two subgroup, which consists of the quadratic residues modulo
p. By the fundamental theorem of Galois theory there is a unique quadratic field K contained
in Q(ζp) and Gal(Q(ζp)/K) is the subgroup of quadratic residues. Furthermore, the discriminant
of Q(ζp) is a power of p, so the only prime that ramifies in K is p. But the only quadratic field
ramified only at p is Q(

√
p∗).1 �

Now we wish to understand how the rational prime q splits in the ring of integers of K. There
are two ways to do this: directly using an understanding of quadratic fields, and indirectly using
the Frobenius of q.

Proposition 6. The following are equivalent:

(1) The prime q splits in OK .

(2) The polynomial x2 − x+ 1−p∗
4 factors modulo q, i.e.

(
p∗

q

)
= 1.

(3) The element Frobq ∈ Gal(Q(ζp)/Q) fixes K.

Proof. Standard algebraic number theory gives that (1) is equivalent to (2). Because p∗ ≡ 1 mod 4,

the ring of integers OK is Z[1+
√
p∗

2 ], so q splits if and only if the minimal polynomial of x2−x− 1−p∗
4

factors modulo q. But this factors over Fq if and only if the roots lie in Fq, in other words
(
p∗

q

)
= 1.

Therefore the first two conditions are equivalent.
An argument using the Frobenius element shows that (1) and (3) are equivalent. Recall that the

Frobenius element Frobq ∈ Gal(Q(ζp)/Q) is a lift of the Frobenius automorphism of the residue
field. More precisely, let q be a prime above q in Z[ζp], the ring of integers of Q(ζp), and let k′ be
the residue field Z[ζp]/q, a finite extension of k = Fq. Then Frobq is an element of Gal(Q(ζp)/Q)
that reduces to the qth power map in Gal(k′/k). It is unique because the extension is Abelian and
unramified at q. Likewise, we can define a Frobenius Frob′q for K over Q. Looking at the reduction

on residue fields, it is clear that Frobq |K = Frob′q. Now the order of a Frobenius is the degree of

the residue field extension, so q splits completely in OK if and only if Frob′q is the identity. This
happens if and only if Frobq fixes K. �

1The field Q(
√
−p∗) is also ramified at 2
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The final step is to obtain a criterion for when Frobq fixes K using Galois theory.

Proposition 7. The Frobenius element Frobq fixes K if and only if
(
q
p

)
= 1.

Proof. Recall the isomorphism Gal(Q(ζp)/Q) ' (Z/pZ)× identifies a ∈ (Z/pZ)×) with the auto-
morphism σa over Q sending ζp to ζap . Now the residue extension k′/k is generated by adjoining
pth roots of unity to k, so σq reduces to the Frobenius automorphism of the residue fields. Since
in this case the Frobenius is unique, we see that Frobq = σq. Then Frobq fixes K if and only if
q ∈ (Z/pZ)× lies in Gal(Q(ζp)/K), which by construction is the subgroup of quadratic residues
modulo p. �

Combining Propositions 6 and 7 gives that
(
p∗

q

)
= 1 if and only if

(
q
p

)
= 1, so(

p∗

q

)
=

(
q

p

)
.

This completes the proof of the law of quadratic reciprocity in the guise of Theorem 3.

2.2. Proof Using Gauss Sums. The main idea in the alternative formulation is that Gauss sums
allow us to construct K and identify the splitting of q concretely. We first recall their definition
and basic properties, then rephrase the above proof in Gauss’s language.

Let n be a positive integer and χ be a group homomorphism (Z/nZ)× → C×. Since all irreducible
representations of (Z/nZ)× are one dimensional, χ is often simply called a character. It can be
extended to a map Z→ C by periodicity and setting it to be 0 on integers not relatively prime to
n. Fix a primitive nth root of unity ζn.

Definition 8. The Gauss sum g(χ) is defined to be

g(χ) =
∑

x∈(Z/nZ)×
χ(x)ζxn .

Remark 9. The function x 7→ ζxn is an additive character of Z/nZ. In general, a Gauss sum is
a combination of a multiplicative character with an additive character. A fruitful analogy is the
group R+ and the Gamma function.

If p is an odd prime, let χp denote the quadratic character, so χp(a) =
(
a
p

)
. We are mainly

interested in g(χp), and would like to reduce it modulo q. This is a complex number so a priori this
makes no sense. However, the Gauss sum can be interpreted as an algebraic integer or an element
of a finite field as follows. Since χp takes on only the values ±1, g(χp) lies in Z[ζp], the ring of
integers of Q(ζp). It is therefore possible to reduce this modulo q. Alternately, we can interpret
the definition as an element in the finite extension of Fq obtained by adjoining pth roots unity.

We can use Gauss sums to recover the unique quadratic subfield of Q(ζp) by calculating the size
of g(χp). Then the algebraic number theory in the proof can be replaced by concrete calculations
with the Gauss sum. The following proposition is analogous to Proposition 5.

Proposition 10. For p a prime, g(χp)
2 = p∗. Thus Q(g(χp)) is a quadratic subfield of Q(ζp).

Proof. To prove this, we will use a “twisted” Gauss sum

ga(χp) =
∑
x∈Fp

χp(x)ζaxp .

Note that g0(χp) = 0 since half the elements of Fp are quadratic non-residues and half are quadratic
residues. We will calculate

S =
∑
a∈F×

p

ga(χp)
2 =

∑
a∈Fp

ga(χp)
2
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in two different ways. On one hand, as multiplying by a 6= 0 is a permutation of F×p so

ga(χp) = χp(a)−1
∑
ax∈Fp

χp(ax)ζaxp = χp(a)−1g(χp).

Thus we can evaluate S as

S =
∑
a∈Fp

ga(χp)
2 =

∑
a∈F×

p

χp(a)−2g(χp)
2 = g(χp)

2
∑
a∈F×

p

1 = (p− 1)g(χ)2.

On the other hand,

S =
∑
a∈Fp

∑
x,y∈Fp

χp(x)χp(y)ζa(x+y)p

=
∑
x,y∈Fp

χp(x)χp(y)
∑
a∈Fp

ζa(x+y)p .

When x+ y 6= 0, the inner sum is a sum over all pth roots of unity, so equals 0. Otherwise it is the

sum of p ones, and χp(x)χp(−x) = (−1)
p−1
2 . Therefore we obtain

S =
∑
x∈F×

p

(−1)
p−1
2 p = (p− 1)p∗.

Equating the two expressions for S gives g(χ)2 = p∗. �

Remark 11. The problem of determining the sign of g(χp) is more delicate - see for example Ireland
and Rosen [2, 6.4]. It is related to the functional equation for Dirichlet L-functions.

Let us try to use this alternative description of this quadratic subfield to determine when a prime
q is split without using this language. We have the following, analogous to Proposition 6.

Proposition 12. Let q be an odd prime not equal to p. Then
(
p∗

q

)
= 1 if and only if g(χp)

q ≡ g(χp)

mod q.

Proof. Recall that Euler’s criterion says that
(
a
p

)
≡ a

p−1
2 mod p. So using Proposition 10,

g(χp)
q−1 ≡ (p∗)

q−1
2 ≡

(
p∗

q

)
mod q

Multiplying by g(χp), we see the equivalence. �

Of course, the condition that g(χp)
q = g(χp) mod q is exactly the condition, suitably interpreted,

that Frobq fixes the quadratic subfield Q(g(χp)).
Finally, we obtain an analogue of Proposition 7 by a direct calculation.

Proposition 13. Let q be an odd prime not equal to p. Then g(χp)
q =

(
q
p

)
g(χp) mod q.

Proof. Recall that (a+ b)q ≡ aq + bq mod q, so

g(χp)
q ≡

∑
a∈F×

p

(
a

p

)
ζap

q

mod q

≡
∑
a∈F×

p

(
a

p

)q
ζaqp mod q

≡
(
q

p

)−1 ∑
a∈F×

p

(
aq

p

)
ζaqp mod q
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where the last step uses that
(
a
p

)
is ±1, so raising it to an odd power does not change it. But the

last sum is just g(χp) since multiplying by q is a permutation of F×p . Therefore

g(χp)
q ≡

(
q

p

)
g(χp) mod q. �

Combining the last two propositions, we see that
(
p∗

q

)
= 1 if and only if

(
q
p

)
= 1, again yielding

quadratic reciprocity.

3. Generalizations of Quadratic Reciprocity

There are two obvious directions to generalize quadratic reciprocity: ask the same questions
about nth powers instead of squares, and ask the question about the residue fields of number fields
other than Q. To get nice answers, one needs the nth roots of unity to lie in the number field.

3.1. Cubic Reciprocity. The simplest example of this is the law of cubic reciprocity, which
addresses the question of third powers in Q(ζ3). The first step is to define a cubic residue symbol
using the idea behind Euler’s criterion.

Definition 14. For α ∈ Z[ζ3] and π a prime of Z[ζ3], define the cubic residue character
(
α
π

)
3

to be

the unique root of unity congruent to α(Nπ−1)/3 modulo π. If π|3, define
(
α
π

)
= 0.

Just as we needed to use p∗ instead of p to obtain a nice formulation of quadratic reciprocity, we
need a way to distinguish one of the six associates of a prime in Z[ζ3].

Definition 15. If π is a prime in Z[ζ3], then π is primary if π ≡ 2 mod 3.

The main law of cubic reciprocity is now easy to state.

Theorem 16 (Cubic Reciprocity). Let π1 and π2 be distinct primary primes (not above 3). Then(
π1
π2

)
3

=

(
π2
π1

)
3

.

There are also supplemental laws for the prime above 3 and the units.
The first proof, first published by Eisenstein in 1844, uses the same techniques appearing in the

previous proofs of quadratic reciprocity. The necessary result about Gauss sums is the following
analogue of Proposition 10.

Proposition 17. Let π be a primary prime and χπ be the cubic residue character. Then g(χπ)3 =
π2π.

The elementary proof of this uses Jacobi sums, which for characters χ1 and χ2 is J(χ1, χ2) :=∑
x∈Fp

χ1(x)χ2(1− x). A complete proof is contained in Ireland and Rosen [2, Chapter 8 and 9].

The proof of cubic reciprocity proceeds in cases, depending on whether π1 and π2 are inert or
split primes. For example, suppose π1 = q is inert and π2 split, with norm p. Then the proposition
combined with the definition of the cubic residue character tells us that

g(χπ2)q
2−1 ≡ χq(pπ2) mod q

Evaluating g(χπ2)q
2

directly using the binomial theorem and then comparing gives one case of cubic
reciprocity. The other cases are similar.
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3.2. Eisenstein Reciprocity. The Eisenstein Reciprocity Law generalizes quadratic and cubic
reciprocity to deal with pth powers in the cyclotomic field Q(ζp).

2 Two of the difficulties are the
failure of unique factorization, necessitating the use of ideals, and the more complicated splitting
of the Gauss sums.

The power residue symbol is a generalization of the quadratic and cubic character. Let p be a
prime, and q a prime ideal in OQ(ζp) above q. Suppose that q is relatively prime to p.

Definition 18. Let α ∈ Z[ζp] and q be a prime ideal of Z[ζp] not containing p. The pth power residue

symbol,
(
α
q

)
p

is defined, if α 6∈ q, to be the unique pth root of unity such that α(Nq−1)/p ≡
(
α
q

)
p

mod q. If α ∈ q, define the residue symbol to be 0.

Like the Legendre symbol and cubic residue character, the power residue symbol is obviously
multiplicative and depends on α only modulo q.

As in the case for cubic reciprocity, we need to deal with the ambiguity introduced by units.

Definition 19. A nonzero element α ∈ Z[ζp] is called primary if it is not a unit, is prime to p, and
is congruent to a rational integer modulo (1− ζp)2.

We can now state the pth power reciprocity law.

Theorem 20 (Eisenstein Reciprocity). Let p be an odd prime, a ∈ Z prime to p, and α ∈ Z[ζp] a
primary element. Suppose furthermore α and a are coprime. Then(α

a

)
p

=
( a
α

)
p
.

The proof of this theorem is found in Ireland and Rosen [2, Chapter 14]. A major ingredient is
the the Stickelberger Relation, which gives the non-obvious factorization for Gauss sums in Q(ζp):
it is a generalization of Proposition 10 and 17.

4. Class Field Theory and Reciprocity Laws

All of the above reciprocity laws can be proven using class field theory, in particular the existence
of the Artin map identifying the Galois group of an Abelian extension of number fields with a
quotient of the idele class group.3 There are several ways to proceed (outlined in Exercises 1 and
2 of Cassels and Frölich [1]): we will use Hilbert symbols and the Hilbert reciprocity law.

Let n a positive integer, K be a number field containing the nth roots of unity, and v a place of
K. Let a, b ∈ K×. One can define the norm residue symbol (a, b)v using the local Artin map ψv
for the extension K( n

√
a)/K via the formula

( n
√
a)ψv(b) = (a, b)v

n
√
a.

This turns out to be a bilinear map K× ×K× → µn that can be studied using class field theory.
One important property is the product formula.

Theorem 21. Let a, b ∈ K×. Then
∏
v

(a, b)v = 1, where the product ranges over all places of K.

Given class field theory, this is not too difficult to prove.
In the case that n = 2, the norm residue symbol has a much more explicit description, and is

known as the Hilbert symbol.

2Additional special cases were proven first, most notably biquadratic reciprocity which deals with fourth powers
in Z[i].

3This is often called the Artin reciprocity law, not because it looks like other reciprocity laws but because special
cases give many of the reciprocity laws.
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Lemma 22. The norm residue symbol (a, b)v is 1 if and only if the equation z2 − ax2 − by2 = 0
has a non-trivial solution in OKv .

The proof of this lemma requires local class field theory. Note that the equation having a non-
trivial solution is equivalent to saying that a is a norm from the extension K(

√
b)/K.

In this special case, the product formula is known as the Hilbert reciprocity law. When K = Q, it
is equivalent to the law of quadratic reciprocity. We will show how to deduce quadratic reciprocity
from it by performing local calculations for the Hilbert symbols.

Let p and q be distinct odd primes, and p∗ = (−1)
p−1
2 p as before. We first consider the case

when v is a finite place of Q that is not equal to p or q.

Proposition 23. If v 6= p, q,∞, then (p∗, q)v = 1.

Proof. We first treat the case when v 6= 2. We need to show that z2 − p∗x2 − qy2 = 0 has a non-
trivial solution in Qv. Chevalley’s theorem says that the number of solutions in Fv is congruent to
zero modulo v (Chapter 1 Theorem 3 of Serre [4]), so since (0, 0, 0) is a solution there must be a
non-zero one as well. Since v 6= 2, Hensel’s lemma allows us to lift it to Qv.

When v = 2, Hensel’s lemma requires a solution modulo 8 to lift to Q2. Since p∗ ≡ 1 mod 4,
there are two cases: if p∗ ≡ 1 mod 8, take z ≡ x ≡ 1 mod 8, y ≡ 0 mod 8. if p∗ ≡ 5 mod 8, take
z ≡ x ≡ 1 mod 8 and y ≡ 2 mod 8. Then apply Hensel’s lemma. �

Now we deal with the case that v = p or q. Since (a, b)v = (b, a)v, it suffices to consider v = p.

Proposition 24. If v = p, then (p∗, q)p =
(
q
p

)
.

Proof. Suppose z2 − p∗x2 − qy2 = 0 has a non-trivial solution in Qp. This is homogenous, so we
may assume the solution is in Zp and that one of the variables is relatively prime to p. If p|z, then
since z2 − p∗x2 − qy2 = 0 we see that p|y and hence p∗x2 = z2 − qy2 ≡ 0 mod p2. Thus p|x, a
contradiction. Likewise p - y. Reducing modulo p, we see that z2 ≡ qy2 mod p, so q is a square

modulo p. Therefore if (p∗, q)p = 1, then we have
(
q
p

)
= 1.

Conversely, suppose
(
q
p

)
= 1, so by Hensel’s lemma there is an α ∈ Zp such that α2 = q. Then

α2 − p∗ · 02 − q · 12 = 0, so z2 − p∗x2 − qy2 = 0 has a non-trivial solution. �

Finally we deal with the infinite place.

Proposition 25. If v =∞, then (p∗, q)∞ = 1.

Proof. The only obstruction to z2 − p∗x2 − qy2 = 0 having a non-trivial solution in Q∞ = R is the
sign of p∗ and q. As long as p∗x2 +qy2 takes on a positive value, a square root exist. But p∗x2 +qy2

can be made positive since q is always positive. �

We can now combine these calculations with the Hilbert reciprocity law to deduce quadratic
reciprocity. Theorem 21, combined with Proposition 23-25 says that

1 =
∏
v

(p∗, q)v = (p∗, q)p(p
∗, q)q(p

∗, q)∞ =

(
q

p

)(
p∗

q

)
.

It is worth noting that Hilbert reciprocity allows the supplemental laws to be recovered using the
same techniques.
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