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1. Introduction

The Greeks tried unsuccessfully to square the circle with a compass and straightedge. In the 19th
century, Lindemann showed that this is impossible by demonstrating that π is not a root of any
polynomial with integral coefficients. Such numbers are said to be transcendental. Although the
distinction between algebraic and transcendental numbers seems similar to the distinction between
rational and irrational numbers, transcendental numbers are considerably more mysterious.

For example, it is a standard fact that the algebraic numbers are countable, while the tran-
scendentals are uncountable. Although there are more transcendental numbers, it is surprisingly
difficult to exhibit any transcendental number, let alone show a naturally occurring number like e
or π is transcendental.1

We will first discuss Liouville’s theorem, which shows that certain specially constructed numbers
are transcendental. We then follow Hermite in proving that e is transcendental. The idea is to
approximate the function ez by rational functions, known as Padé approximants, and use these
good approximations to show e cannot be algebraic. The actual proof is short and self-contained,
but cryptic in isolation. We then illustrate how Padé approximants give a natural derivation of the
continued fraction expansion of e, following Cohn [3]. Finally, we prove the Lindemann-Weierstrass
theorem and as a consequence shows that π is transcendental, following the standard method as
presented in [4] or [2].

2. Approximation and Transcendental Numbers

We first prove a classical approximation theorem for algebraic numbers which will let us show
that certain explicit, specially constructed numbers are transcendental.

Theorem 1 (Liouville). Let β be a solution to a polynomial f(x) =
∑

i aix
i of degree d with

integral coefficients. Then there exists a constant δ, depending on β, such that for any rational
number p

q 6= β with q > 0, we have ∣∣∣∣pq − β
∣∣∣∣ > δ

qd
.

Proof. We factor f(x) = ad(x− β)m(x−α1)
m1 . . . (x−αn)mn over the complex numbers. Let γ be

the minimum distance between β and any of the αi. For any δ < γ, no root αi of f(x) satisfies

|αi − β| <
δ

qd
< γ.

Thus we may assume that p
q is not a root, so qdf(pq ) is a non-zero integer. Thus

|qda0 + qd−1pa1 + . . .+ adp
d| ≥ 1

Date: 2012, updated April 17, 2016.
1In contrast, it is elementary to find families of irrational numbers, like

√
n for n square-free.
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and hence using the factorization that∣∣∣∣pq − β
∣∣∣∣m ≥ 1

adqd(
p
q − α1)m1 . . . (pq − αn)mn

.(1)

If

∣∣∣∣pq − β
∣∣∣∣ > γ and δ < γ, the proof is finished. So suppose that that

∣∣∣∣pq − β
∣∣∣∣ ≤ γ. Under this

assumption, letting ρ be the maximum of |αi − β| we see that∣∣∣∣αi − p

q

∣∣∣∣ ≤ |αi − β|+ ∣∣∣∣β − p

q

∣∣∣∣ ≤ ρ+ γ

This gives the estimate ∣∣∣∣pq − α1

∣∣∣∣m1

. . .

∣∣∣∣pq − αn
∣∣∣∣mn ≤ (ρ+ γ)d−m.

Taking δ to be positive but less than both γ and
(
ad(ρ+ γ)d−m

)− 1
m and using (1) gives∣∣∣∣pq − β

∣∣∣∣m ≥ δm

qd

and hence after taking mth roots that∣∣∣∣pq − β
∣∣∣∣ ≥ δ

qd/m
≥ δ

qd
.

Thus no rational number satisfies ∣∣∣∣pq − β
∣∣∣∣ < δ

qd
. �

This theorem can be used to exhibit an explicit transcendental number. Consider the number
β =

∑∞
k=1 2−k!. If it were algebraic, then it would be the root of a degree d polynomial. By

Liouville’s theorem, there would be a δ > 0 such that no rational number p
q satisfies∣∣∣∣pq − β

∣∣∣∣ < δ

qd
.

This is not possible as the non-zero binary digits of β are far apart, so

n∑
k=1

2−k! will be too good an

approximation. More precisely, let q = 2K! and p =

K∑
k=1

2K!−k!. Then we have

∣∣∣∣pq − β
∣∣∣∣ =

∞∑
k=K+1

2−k! ≤
∞∑

k=(K+1)!

2−k =
2−(K+1)!

1− 2−1
= 2q−(K+1).

If we pick K so K > d and 2 · 2−K! < δ, we get∣∣∣∣pq − β
∣∣∣∣ ≤ 2q−1

qK
≤ δ

qd
.

This contradicts Liouville’s theorem, and hence β is transcendental.
Liouville’s theorem is a simple way to exhibit transcendental numbers. It is more work to show

natural constants such as e and π are transcendental.
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3. The Transcendence of e

This section will establish that e is a transcendental number. We first present the elementary
argument that e is irrational, and then look at the theory of Padé approximants to prove that er

is irrational for r ∈ Q\{0}. We then simplify the proof and use its essential features to prove that
e is transcendental.

3.1. The irrationality of e. It is very easy to show that e is irrational using its definition as

e :=
∞∑
n=1

1

n!
.

Suppose e = a
b with a and b relatively prime integers. Then for n ≥ b,

N := n!

(
e−

n∑
k=0

1

k!

)

is an integer because n!e and n!
k! are integers. However, estimating N shows that

0 < N =
1

n+ 1
+

1

(n+ 1)(n+ 2)
+ . . . <

1

n+ 1
+

1

(n+ 1)2
+ . . . =

1

n

which is impossible. Thus e is irrational.

3.2. Interlude. The above argument demonstrates the general method of proving that numbers
are transcendental: first use analytic properties to approximating the number, and then suppose
the number is algebraic and use the assumption to show the error is an integer between 0 and 1.
Sometime it is more convenient to use the assumption to show the estimate is a non-zero multiple
of a large integer but show the error cannot be that big.

The analytic content used to prove that e is irrational was the power series expansion of ez

around z = 0. Unfortunately, this does not generalize to showing e is transcendental, or even that
related numbers like e5 are irrational. The approximation of ez by a truncated power series is too
weak to readily give proofs of these facts. Power series determine holomorphic functions which are
the basic building blocks of the world of complex analysis. Meromorphic functions are the next
simplest object, so we can hope to better approximate ez using rational functions, just as ratios of
integers provide better approximations to real numbers than integers do.

3.3. Approximations by Rational Functions. Hermite was able to use the idea of approxi-
mating ez by rational functions to show that e is transcendental. The theory of approximating
general power series was first studied systematically by Hermite’s student Padé near the end of the
nineteenth century, so these rational functions are called Padé approximants despite the special
cases we care about being used earlier.

Definition 2. For an analytic function f(z) and pair (n,m) of non-negative integers, a Padé

approximant of order (n,m) at 0 is a rational function R(z) = P (z)
Q(z) with deg(P ) ≤ n and deg(Q) ≤

m such when expanded as power series around 0 we have

f(z)−R(z) = O(zn+m+1).

Padé approximants are analogous to rational approximations of irrational numbers, so we hope
for similarities with the theory of approximating real numbers by rationals. From the theory of
continued fractions, we know:



4 JEREMY BOOHER

Fact 3. Let α be an irrational number. For any n, there exists a rational number p
q with p and q

relatively prime integers and q > n such that∣∣∣∣pq − α
∣∣∣∣ < 1

q2
.

The quantity |p− qα| is an estimate in the error of the approximation relative to the size of
the denominator, and goes to zero as the size of the denominator becomes large. For a Padé

approximant P (z)
Q(z) of f(z), the analogous term is P (z)−Q(z)f(z) and being small means vanishing

to a large order at z = 0.
We are mainly interested in Padé approximants for ez, so instead of dealing with the general

theory we will show that they are unique and then construct Padé approximants for ez directly.

Proposition 4. The Padé approximant of order (n,m) is unique up to scaling P and Q.

Proof. Suppose P1(z)
Q1(z)

and P2(z)
Q2(z)

are both Padé approximants to the same function, both of order

(n,m). Then when expanding them as power series around 0, we have

P1(z)

Q1(z)
− P2(z)

Q2(z)
= O(zm+n+1)

Combining the fractions, we see that since Q1(z) and Q2(z) are nonzero at z = 0, the order of
vanishing of P1(z)Q2(z)−P2(z)Q1(z) must be at least m+n+1. But this is a polynomial of degree
at most m+ n, so it vanishes identically. Thus P1 = cP2 and Q1 = cQ2. �

Since there are m + n + 2 coefficients to pick and P (x)
Q(x) depends only on the polynomials up

to scalars, we expect to be able to force m + n + 1 coefficients to agree. So general existence
theorems for Padé approximants are not surprising. However, we simply need to understand the
approximants for ez. One simple way to do this is to reformulate definition of Padé approximants in
terms of complex analysis. Clearing the denominator in the definition, we can equally well require
that the polynomials P (z) and Q(z) satisfy

P (z)− ezQ(z) = O(zm+n+1)

as power series around 0, or equivalently that

P (z)− ezQ(z)

zm+n+1

is holomorphic at z = 0.
To find p and q, the key is experience with evaluating integrals involving the exponential function

multiplied by a polynomial. For example,∫ 1

0
xez−xzdx =

−1

z
xez−xz

∣∣1
0

+

∫ 1

0

ez−xz

z
dx =

ez − z − 1

z2
.

In general, if r(x) is a polynomial of degree n, then∫ 1

0
r(x)ez−xzdx =

P (z)ez −Q(z)

zn+1

where Q(z) and P (z) are polynomials obtained via repeated integration by parts. To find Padé
approximants, we need the polynomials P (z) and Q(z) produced by integration by parts to have
low degrees. This requires a special choice of r(x).

Proposition 5. For any polynomial r(x) of degree m+ n,∫ 1

0
r(x)ez−xzdx =

F (z, 0)ez − F (z, 1)

zm+n+1
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where F (z, x) is the sum

(2) F (z, x) := r(x)zm+n + r′(x)zm+n−1 + . . .+ r(n+m)(x).

In particular, for any m and n, there exist a polynomial r(x) of degree m+ n such that∫ 1

0
r(x)ez−xzdx =

P (z)ez −Q(z)

zm+n+1

where deg(P ) ≤ m and deg(Q) ≤ n.

Proof. The formula for F can be found by repeated integration by parts, but we can just verifying
it directly:

d

dx

(
−F (z, x)ez−xz

)
=

n+m∑
i=0

(
r(i)(x)zm+n+1−iez−xz − r(i+1)(x)zm+n−iez−xz

)
= r(x)zm+n+1ez−xz.

Selecting r(x) so that r(0) = r′(0) = . . . = r(n)(0) = 0 and r(1) = r′(1) = . . . = r(m)(1) = 0
forces the degree of P (z) = F (z, 0) and Q(z) = F (z, 1) to be at most m and n respectively. To do
this, take r(x) = xn(1− x)m. �

Corollary 6. For any pair (n,m) there exist a Padé approximant of order (n,m) for ez.

3.4. The Irrationality of Nonzero Rational Powers of e. These basic ideas about Padé
approximants provide a method (following [1]) to show powers of e are irrational.

Proposition 7. Let a be a non-zero rational number. Then ea is irrational.

Proof. It suffices to prove this when the exponent is a positive integer, since powers of rational
numbers are rational. Let ep = a

b with a, b positive and relatively prime. By our analogy with
approximation of rational numbers, we want to take z = p and use the fact that P (p)−Q(p)ep is an
estimate on the error. Combined with the hypothesis that ep is rational, it will yield a contradiction.
The error is closely related to the integrals of the previous section. If we set r(x) = xn(1−x)n, the
relevant integral becomes ∫ 1

0
r(x)ep−xpdx =

F (p, 0)ep − F (p, 1)

p2n+1
.

Using the assumption that er is rational, a nice bound is

aF (p, 0)− bF (p, 1) = bp2n+1

∫ 1

0
ep−pxxn(1− x)ndx ≤ bp2n+1ep = ap2n+1.

However, we know that r(k)(0) = r(k)(1) = 0 for 0 ≤ k < n. Thus the only derivatives appearing
in (??) are at least the nth derivative. Since r(x) has integral coefficients the nth and further
derivatives at 0 and 1 must be multiples of n! by Taylor’s formula. Thus aF (p, 1) − bF (p, 0) is a
multiple of n!. It is not zero since the integral is clearly positive. If we chose n so that n! > ap2n+1

(possible since n! > e
(
n
e

)n
) we get a contradiction. Thus ep is irrational. �

As we attempt to generalize this, there is one simplification to keep in mind. We argued that
F (p, 1) and F (p, 0) are multiples of a large number (n! in this case). This happens because the first
n derivatives of f(x) are zero at z = 0 and z = 1. Since f has integral coefficients, Taylor’s formula
implies the higher derivatives are multiples of n!. It would be better to divide r(x) by n! so that
F (p, 1) and F (p, 0) are integers and show the error is an integer between 0 and 1 than to try to keep
track of divisibility. This will be implemented in the next section as we show e is transcendental.
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3.5. Transcendence of e. Suppose e is algebraic, so there exists integers bi ∈ Z such that

b0 + b1e+ . . .+ bde
d = 0.

We want to approximate e, e2, . . . , ed by rational functions, and then evaluate the error terms.
One way to approximate the powers of e would simply be to use Padé approximants for each one.
But they will be unrelated, and the argument becomes unnecessarily complicated.2 The correct
approach is a generalization of the problem of simultaneous approximation of irrationals.

Fact 8 (Dirichlet). Given α1, . . . , αr in R and n > 0, there exist p1, . . . , pr, q ∈ Z with 0 < q ≤ n
such that ∣∣∣∣piq − αi

∣∣∣∣ < 1

qn
1
r

.

The key is to approximate the irrationals by fractions of the same denominator. As before, the
quantity |pi − qαi| is an estimate of the error relative the size of the denominator that becomes
small as q becomes large.

By analogy, we need to approximate e, e2, . . . , ed by rational functions with the same denomina-
tor. We look at integrals of the form∫ 1

0
r(x)ez−xzdx =

F (z, 0)ez − F (z, 1)

zn+1

If we simply try plugging in different values of z, the denominator changes. To get the same
denominator, we need to fix z and change the upper bound of integration. This will replace the e
by em while keeping the F (z, 0) term. Therefore we are led to look at∫ m

0
r(x)em−xdx = F (1, 0)em − F (1,m)

as a measure of the error of approximating em by F (1,m)
F (1,0) .

So to set up the proof, define

F (x) = r(x) + r′(x) + . . .+ rdeg(r)(x) and I(m) :=

∫ m

0
r(x)em−xdx = F (0)em − F (m).

Since we want the degrees of F (j) to be small for j = 0, 1, 2 . . . , d, take

r(x) =
1

(n− 1)!
xn−1 ((x− 1)(x− 2) . . . (x− d))n .

This is very similar to the choice of xn(1− x)n from the irrationality argument, except we look at
more points and we simplify by dividing by (n− 1)!.

If we approximate em by F (m)
F (0) , the error is

0 + b1

(
e− F (1)

F (0)

)
+ . . .+ bd

(
ed − F (m)

F (0)

)
.

Multiplying through by the common denominator F (0) gives

0 + b1I(1) + b2I(2) + . . .+ bdI(d).

as an estimate of the error. The term I(m) = F (m)−F (0)em corresponds to the error term bαi−ai
when we approximate the real number αi by ai

b .

Theorem 9. The number e is transcendental.

2This approach is needed to prove the Lindemann-Weierstrass theorem in section 5.1. That proof uses the same
ideas as in Hermite’s proof but requires more work. The transcendence of e does follow immediately.
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Proof. Suppose e is algebraic and satisfies

b0 + b1e+ . . .+ bde
d = 0

where the bi are integers. We have defined

r(x) =
1

(n− 1)!
xn−1 ((x− 1)(x− 2) . . . (x− d))n

F (x) = r(x) + r′(x) + . . .+ r(nd−1)(x)

I(m) =

∫ m

0
em−xr(x)dx = F (0)em − F (m).

We consider the error term

J : = b1I(1) + b2I(2) + . . .+ bdI(d)

= b0 (F (0)− F (0)) + b1 (F (0)e− F (1)) + b2
(
F (0)e2 − F (2)

)
+ . . .+ bd

(
F (0)ed − F (d)

)
= −(b0F (0) + b1F (1) + . . .+ bdF (d)).

The first step is to show that J is a nonzero integer. We will do this when n is a prime larger
than |b0|. First, a lemma.

Lemma 10. Let m = 0, 1, . . . , d and k be a positive integer. Then r(k)(m) is an integer. Unless

k = n− 1 and m = 0, r(k)(m) is a multiple of n.

Proof. The derivative r(k)(m) is k! times the coefficient of (x−m)k in the power series expansion of
r(x) around m. By the definition of r(x), it vanishes to order n−1 at 0 and to order n at 1, 2, . . . , d.

Therefore when r(k)(m) is non-zero k ≥ n−1 and hence the denominator is canceled out. Provided
n is much larger than d, rn−1(0) is clearly the only derivative not a multiple of n. �

This immediately shows that F (m) is an integer, and hence J is an integer also. To show J is
a nonzero integer, note that all of the derivatives appearing in the sums F (0), F (1) . . . F (d) are

multiples of n except for r(n−1)(0). But since |b0| < n and n is prime, the term b0r
(n−1)(0) is not a

multiple of n. Therefore J is a non-zero integer.
The second step is to estimate the integral. If y is in the interval [0, d] then

|r(y)| ≤ 1

(n− 1)!
(2d)n−1(2d)n . . . (2d)n =

1

(n− 1)!
(2d)dn−1.

As (n − 1)! grows faster than cn, this is less than any ε > 0 for sufficiently large n. But then

|I(m)| =
∣∣∣∣∫ m

0
r(x)em−xdx

∣∣∣∣ ≤ memε, so

|J | ≤ |b1I(1)|+ |b2I(2)|+ . . .+ |bdI(d)|

≤ ε
(
b1 · e+ b2 · 2e2 + . . .+ bd · ded

)
which can be made less than 1 by appropriate choice of ε. This contradicts the fact that J is a
non-zero integer. Therefore e is transcendental. �

Corollary 11. For any non-zero rational number a, ea is transcendental.

Proof. Suppose β = ea = e
p
q is algebraic where p and q are integers. We may assume both are

positive. Then e satisfies the equation zp − βq which has algebraic coefficients. Since the algebraic
numbers form an algebraically closed field, e is algebraic, a contradiction. �

Remark 12. The choice to use the different exponents n− 1 and n in

r(x) = xn−1 ((x− 1)(x− 2) . . . (x− d))n

simplifies Hermite’s original by making it clear that J is a non-zero integer.
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4. An Application of Padé Approximants to the Continued Fraction Expansion of e

Continued fractions of rational numbers and of quadratic irrationals are finite and periodic re-
spectively. There are also surprising patterns in the continued fraction expansions of transcendental
numbers like e. Padé approximants provide a way to find the continued fraction expansion of e.
(Another way is to follow Euler and look at a differential equation called the Riccati equation.)

A few minutes with a calculator will suggest that the continued fraction expansion of e is
[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .]. (Sometimes this is re-written as [1, 0, 1, 1, 2, 1, 1, 4, 1, 1, . . .] to ex-
tend the pattern.) Using the standard notation for continued fractions, for i ≥ 1 we set a3i = 2i,
a3i+2 = a3i+1 = 1. Letting [a1, a2, . . . , ai] = pi

qi
, in general we have

pi+2 = ai+2pi+1 + pi and qi+2 = ai+2qi+1 + qi.

In this case, we can recursively calculate

p3n = 2np3n−1 + p3n−2, q3n = 2nq3n−1 + q3n−2

p3n+1 = p3n + p3n−1, q3n+1 = q3n + q3n−1

p3n+2 = p3n+1 + p3n, q3n+2 = q3n+1 + q3n.

The question is whether lim
n→∞

[a0, a1, a2, . . . , an] = lim
n→∞

pn
qn

equals e. To check this, we can just

check that
lim
n→∞

qne− pn = 0.

Using the connection with Padé approximants, this should be given by an integral

∫ 1

0
r(x)exdx.

Again, we have a choice of what to use for r(x). If we take r(x) = xn(1−x)n
n! , the integral evaluates

to some of the convergents of e. Denote the integral by I(n). For example, n = 1 gives 3 − e,
n = 2 gives 7e − 19, and I(3) = 193 − 71e. The second, fifth, and eighth convergents to e are 3,
19/7, and 193/71. Where are the other convergents coming from? Our choice of r(x) gives a good
approximation because the degree of the numerator and denominator are balanced. We would still
expect a good approximation if the degrees where n and n+ 1. Define J(n) and K(n) to be

J(n) :=

∫ 1

0

xn+1(1− x)n

n!
exdx and K(n) :=

∫ 1

0

xn(1− x)n+1

n!
exdx.

Lemma 13. The integrals are related to the convergents of e as follows:

I(n) = (−1)n(q3n−1e− p3n−1)
J(n) = (−1)n+1(q3ne− p3n)

K(n) = (−1)n(q3n+1e− p3n+1).

Proof. We will prove the results by showing that the integrals satisfy the same initial conditions
and recurrence relations as the convergents. Now we have that

I(1) =

∫ 1

0
x(1− x)exdx = 3− e

J(1) =

∫ 1

0
x2(1− x)exdx = 3e− 8

K(1) =

∫ 1

0
x(1− x)2exdx = 11− 4e.

Furthermore, integration by parts gives that

I(n+ 1) =

∫ 1

0

xn+1(1− x)n+1

(n+ 1)!
exdx = −

∫ 1

0

−xn+1(1− x)n + xn(1− x)n+1

n!
exdx = J(n)−K(n).
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In addition,

J(n) =

∫ 1

0

xn+1(1− x)n

n!
exdx

= −
∫ 1

0

(n+ 1)xn(1− x)n − nxn+1(1− x)n−1

n!
exdx

= −
∫ 1

0

(2n+ 1)xn(1− x)n − nxn(1− x)n−1

n!
exdx

= −(2n+ 1)I(n) + J(n− 1)

= −2nI(n) +K(n− 1)

Finally, elementary algebra shows that

K(n) =

∫ 1

0

xn(1− x)n+1

n!
exdx =

∫ 1

0

xn(1− x)n

n!
exdx−

∫ 1

0

xn+1(1− x)n

n!
exdx = I(n)− J(n).

In particular, these relations among the integrals are the same recurrence relations as the numerator
and denominator of the convergents. �

It is now easy to derive the continued fraction expansion of e.

Theorem 14. We have that e = [2, 1, 2, 1, 1, 4, 1, 1, . . .].

Proof. It suffices to show that limn→∞ pn − qne = 0. But this expression is given by I(m), J(m),
or K(m) where m ≈ n/3. But as n→∞ the size of all three integrals goes to 0 since the interval
is a constant length, xj(1 − x)kex is bounded, and the denominator n! goes to infinity. Therefore
the limit is 0, so [2, 1, 1, 4, 1, 1, 6, . . .] gives a continued fraction expansion of e. �

5. More General Transcendence Results

It is possible to prove that π is irrational and transcendental using arguments analogous to those
for e. This is not surprising, as eπi = −1 connects the two. However, it is also a consequence of a
much more general theorem which Lindemann proved for n = 1 and Weierstrass proved in general.

Theorem 15 (Lindemann-Weierstrass). Let β1, . . . , βn be algebraic numbers not all zero, and
α1, . . . , αn be distinct algebraic numbers. Then

β1e
α1 + β2e

α2 + . . .+ βne
αn 6= 0.

Corollary 16. The number π is transcendental.

Proof. Suppose π is algebraic. Then so is πi, and taking α1 = 0, α2 = πi and β1 = β2 = 1 we have
that

1 + eπi 6= 0. �

Corollary 17. If α is a non-zero algebraic integer, eα, sin(α), and cos(α) are transcendental.

Proof. Suppose eα satisfies a polynomial equation of degree n. Then letting αj = jα for 0 ≤ j ≤ n
and βj be the (algebraic) coefficient of xj , the theorem produces a contradiction. For the other
parts, write the trigonometric functions in terms of exponentials. �

The proof of Lindemann’s theorem has two components. The first is an analytic argument similar
to the proof that e is transcendental that establishes the theorem in the special case that the βi
are rational and that there are integers n0 = 0 < n1 < n2 < . . . < nr = n such that

(3) βnt+1 = βnt+2 = . . . = βnt+1 and αnt+1, αnt+2, . . . , αnt+1 are all of the conjugates of αnt+1.

The second component is algebraic in nature, and uses ideas from the theory of symmetric poly-
nomials to extend the first part to the general theorem.
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5.1. The Analytic Part. With the hypothesis (3) on the αi and the βi given above, fix a b for
which the bαi is an algebraic integer for each i. We need to approximate eαiz by a quotient of
rational functions, but the argument is now more complicated because the αi are no longer just
1, 2, . . . , d. Trying a similar approach, let

ri(x) = bn(p)(x− α1)
p . . . (x− αn)p/((p− 1)!(x− αi))(4)

where p is a large prime number. Define

Ii(α) =

∫ α

0
ri(z)e

α−zdz.

This is a generalization of the I(m), and is well defined independent of the path from 0 to z because
the integrand is holomorphic. Via integration by parts, we can evaluate this integral as

(5) Ii(α) = Fi(0)eα − Fi(α) where Fi(z) =

np−1∑
k=0

r
(k)
i (z).

Lemma 18. Let m = 1, . . . , n and k be a positive integer. Then r
(k)
i (αm) is an algebraic integer.

Unless k = p− 1 and m = i, r
(k)
i (m) is p times an algebraic integer.

This is essentially the same as Lemma 10. Finally define

Ji = β1Ii(α1) + β2Ii(α2) + . . .+ βnIi(αn).

We will give bounds on |J1 . . . Jn| using the hypothesis that

β1e
α1 + . . .+ βne

αn = 0.

Using (5) on Ji, the terms involving powers of e in Ji disappear and we have

Ji = −β1Fi(α1)− β2Fi(α2)− . . .− βnFi(αn).

By the lemma, all of the terms in the sums for Fi(αj) are p times an algebraic integer except for

the term r
(p−1)
i (αi). Now recognize that

r
(p−1)
i (αi) = bnp

∏
1≤k≤n
k 6=i

(αi − αk)p = (g′(αi))
p

where

g(x) =

n∏
k=1

(bx− bαk) ∈ Z[X].

If we now look at the product J1J2 . . . Jn, all but one term in the product will be p times an
algebraic integer. This term is the product of the terms from each of the Ji that are not multiples
of p, and so is

g′(α1)
pg′(α2)

p . . . g′(αn)p.

It is a rational integer, since all of the g′(αi) are algebraic integers and it is invariant under the action
of the Galois group since the αi include complete sets of conjugates. Since g′(α1)g

′(α2) . . . g
′(αn) is

independent of p, for large p it cannot be a multiple of p. Thus J1J2 . . . Jn is a non-zero algebraic
integer.

We will next show that J1J2 . . . Jn is rational by showing it is symmetric in αnt+1, . . . , αnt+1

(recall this is the grouping of the αi into sets of conjugates). So let σ be any permutation of
nt + 1, . . . , nt+1 and extend it by the identity to be a permutation on 1, 2, . . . , n. Now

J1J2 . . . Jn = (−1)n
n∏
i=1

(β1Fi(α1) + β2Fi(α2) + . . .+ βnFi(αn)).
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Unraveling the definition of Fi(αj), we see that applying σ to it gives Fσ(i)(ασ(j)). But then applying
σ to the product and using the fact that βi ∈ Q, we obtain

n∏
i=1

(
β1Fσ(i)(ασ(1)) + . . .+ βnFσ(i)(βσ(n))

)
=

n∏
i=1

(
βσ−1(1)Fi(α1) + . . .+ βσ−1(n)Fi(βn)

)
by re-indexing. By hypothesis βnt+1 = βnt+2 = . . . = βnt+1 , so the product is invariant. Therefore
it is a non-zero rational integer.

However, estimating the integral as in the proof of the transcendence of e gives that

|J1 . . . Jn| ≤
n∏
i=1

∑
|βk||αk|e|αk||ri(αk)| < 1

for large enough p as (p − 1)! grows faster than cp. But a non-zero rational integer cannot have
absolute value less than 1, so our hypothesis that

β1e
α1 + . . .+ βne

αn = 0

leads to a contradiction. �

5.2. The Algebraic Part. We now reduce from the general case of Lindemann’s theorem to the
case (3) when the βi are rational and that there are integers n0 = 0 < n1 < n2 < . . . < nr = n such
that

βnt+1 = βnt+2 = . . . = βnt+1 and αnt+1, αnt+2, . . . , αnt+1

are a complete set of conjugates.
To reduce to the case that the βi are rational, we will inductively construct a sequence of non-zero

polynomials Fi with rational coefficients in 2n+1−i variables such that Fi(βi, . . . , βn, e
α1 , . . . , eαn) =

β1e
α1 + . . . + βne

αn . To construct the Fi, let F1(x1, . . . , xn, y1, . . . , yn) = x1y1 + . . . + xnyn. In
general, let

Fi(xi, . . . , xn, y1, . . . , yn) :=
∏
β′

Fi−1(β
′, xi, . . . , xn, y1, . . . , yn)

where the product ranges over all β′ that are conjugate to βi−1. The definition is invariant under
permuting the conjugates of βi−1, so Fi has rational coefficients. By induction, if Fi has degree Ni

the coefficient of yNi1 is always non-zero.
Next we expand out the polynomial Fn+1(e

α1 , . . . , eαn) (of degree N) in the form

β′1e
α′1 + . . .+ β′me

α′m

We wish to show that at least one of the coefficients β′i is non-zero. Without loss of generality,
we may assume that α1 has the largest absolute value of the αi. The exponents α′i that arise are

those of the form
n∑
j=1

cjαj where
∑

j cj = N . The only way to get an exponent of Nα1 is to pick

c1 = N , cj = 0 for j 6= 1 since |α1| is the largest of all |αj |. Since the coefficient of y1 is non-zero,
this implies that the term eNα1 has a non-zero coefficient. Thus we are in the case where the β′i
are rational, the α′n are algebraic, and not all of the β′i are zero. This expression is zero if the
original expression was, so it suffices to prove Lindemann’s theorem when all of the βi are rational.
Multiplying through by the common denominator, we may also assume the β′i are rational integers.

We now will further restrict to the case when all of the conjugates of αi appear with the same
rational coefficient. Pick a polynomial with integral coefficients that has all of the αi as roots. Let
αn+1, . . . , αN be the additional roots of this polynomial. Extend the definition of βi to be zero for
n < i ≤ N , and consider the product∏

σ∈SN

(β1e
ασ(1) + . . .+ βNe

ασ(N)) .
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If
β1e

α1 + . . .+ βne
αn = 0

the entire product is zero. If we were to expand the product, it would again be of the form

β′1e
α′1 + . . .+ β′me

α′m .

Now if βeα arises as a term in this product, α = c1α1+ . . .+cNαN where c1+c2+ . . .+cN = N ! and
β is a product of rational integers. There will also be terms with exponent c1ασ(1) + . . .+ cNασ(N)

for any permutation. These terms will run through a complete set of conjugates for α (along with
other things) but have the same value of β. By grouping terms in this way, it is clear that the

coefficient for each conjugate eα
′

will be the same. Furthermore, at least one will be non-zero: in
each product

(β1e
ασ(1) + . . .+ βNe

ασ(N))

pick the non-zero term with the largest value of αi, where the ordering is done first by real part and
then by imaginary part. This term in the expansion will be non-zero, and cannot be canceled by
anything else because each of the exponents is the largest possible. This completes the reduction
to the case where (3) holds which we already proved using the analytic argument. �

6. Later Results

The two results presented here were known in the 19th century. Over the course of the 20th
century, the integrals and use auxiliary functions r(x) were generalized considerably yielding more
powerful results. The results are proven using the same strategies, but more complicated functions.
Details and proofs of the following can be found in Baker [2].

Theorem 19 (Gelfond-Schneider). Let α be an algebraic number not equal to 0 or 1, and β an
algebraic number that is not rational. Then αβ is transcendental.

Theorem 20 (Baker). If β0, β1 . . . , βn and α1 . . . , αn are algebraic numbers, then

β0 + β1 log(α1) + . . .+ βn log(αn)

is either zero or transcendental.

Baker’s work also allows lower bounds to be constructed which suffice to solve the class number
one problem.

Some other results and approaches are presented in Lang [5].
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