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As a concrete example of the representation theory we have been learning, let us look at the
symmetric groups Sn and attempt to understand their representations. We previously calculated
the character table of S4.

1 6 8 6 3
(1) (1 2) (1 2 3) (1 2 3 4) (1 2)(3 4)

trivial 1 1 1 1 1
sign 1 -1 1 -1 1
standard 3 1 0 -1 -1
sign ⊗ standard 3 -1 0 1 -1
other 2 0 -1 0 2

Table 1. Irreducible Characters of S4

The trivial, sign, and standard representations are natural representations, and the tensor prod-
uct of the sign and standard representation is a natural operation to do. We found the last irre-
ducible representation by using the orthogonality relations, and later constructed the representation
by looking at a quotient of S4.

Here is a partial character table of S5. It is easy to find the conjugacy classes, as they correspond
to the 7 partitions of 5.

1 10 20 30 24 15 20
(1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)

trivial 1 1 1 1 1 1 1
sign 1 -1 1 -1 1 1 -1
standard 4 2 1 0 -1 0 -1
sign ⊗ standard 4 -2 1 0 -1 0 1

Table 2. Some Irreducible Characters of S5

These four representations are the obvious ones. There are three more, so the orthogonality
relations don’t help. We can search for more in an ad hoc way (and find, for example, that Λ2(V ),
where V is the standard representation is irreducible). However, we want a more principled way
to proceed. The answer is the theory of Young Tableaux. An algebraic prospective is presented
in Fulton and Harris, Lecture 4 [1]. There is a combinatorial focus in Sagan [2]. Zhao presents a
readable survey without most of the proofs [3] that is freely available.

1. Young Tableaux

Given a partition of n, represent it by λ = (λ1, λ2, . . . , λr), where n = λ1 + λ2 + . . . + λr. By
convention, we order the partition so λ1 ≥ λ2 ≥ . . . ≥ λr.
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Definition 1. Given a partition λ of n, a Young diagram of shape λ is an array of boxes arranged
in rows. There are λi boxes in row i, the boxes are left justified, and by the convention on partitions
the lengths of rows are non-increasing.

1 2
4
5
3

Figure 1. A Young diagram and Young tableau of shape (2, 1, 1, 1)

Definition 2. A Young tableau of shape λ is an assignment of the numbers 1, 2, . . . , n to the n
boxes of the Young diagram associated to λ.

The symmetric group Sn acts on Young tableau by acting on the entries. For example,

(1 3)

1 2
4
5
3

=

3 2
4
5
1

.

The action of Sn on the set of all tableau isn’t actually interesting, since it is simply the regular
representation where we write numbers 1 through n in a pretty picture. Instead, we need to act on
tabloids.

Definition 3. A Young tabloid is an equivalence class of Young tableau under the relation that
two tableau are equivalent if each row contains the same elements.

Despite being equivalence classes, we will continue to denote tabloids by simply drawing a rep-
resentative tableau.

Definition 4. Let Mλ be the representation of Sn whose basis is indexed by the set of Young
tabloids and the action on the basis is the action on the tabloids.

This is an example of a permutation module. For example, if λ = (3, 2) then we have the
following action:

(1 2 3)

[
2 · 1 2 3

4 5
− 1 2 4

5 3

]
= 2 · 1 2 3

4 5
− 2 3 4

1 5

Example 5. Let λ = (5). The permutation module Mλ is the trivial module, as all tableaux of
this shape have just one row, hence all are equivalent. If λ = (1, 1, 1, 1, 1), we get the regular
representation of S5. There is only one element in each row, so there is one basis vector for each
assignment of {1, 2, 3, 4, 5} to the 5 boxes.

If λ = (4, 1), there are five tabloids:

1 2 3 4
5

, 1 2 3 5
4

1 2 4 5
3

1 3 4 5
2

2 3 4 5
1

.

What is in the box in the second row uniquely determines the class. A permutation σ ∈ S5 acts
on these by permuting the element in the second row, so Mλ is the permutation representation.
Recall it decomposes as a direct sum of the trivial and standard representations.

Now that we have a supply of new representations of Sn, we need to analyze them. The dimension
is very easy to calculate.
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Proposition 6. Let λ = (λ1, λ2, . . . , λr) be a partition of n. Then

dimMλ =
n!

λ1!λ2! . . . λr!
.

Proof. A basis is given by tabloids of shape λ. There are n! ways to assign the numbers {1, 2, . . . , n}
to the boxes of a Young diagram of shape λ. Any permutation that fixes the rows preserves the
equivalence classes of Young tabloids. There are λ1! permutations that permute the first row, λ2!
the second, and so forth. Thus there are n!

λ1!λ2!...λr!
tabloids. �

The next task is to evaluate the character of Mλ. It is not too hard to do this by hand in any
particular case. There is also a nice general formula.

Proposition 7. Let λ = (λ1, λ2, . . . , λl) be a partition of n and g ∈ Sn. Let (m1, . . . ,mr) be the
cycle shape of g (this means g is a product of a m1 cycle, a m2 cycle, and so forth). The character

of the representation of Sn on Mλ, evaluated at g, is equal to the coefficient of xλ11 x
λ2
2 . . . xλll in the

product
r∏
i=1

(
xmi1 + xmi2 + . . .+ xmil

)
.

Proof. In any permutation representation, the number of fixed points of the action is the trace
(simply write down the action as a matrix and look on the diagonal). Which tabloids will g fix?
It fixes exactly those tabloids for which each cycle of g permutes the elements of a single row. In
other words, if we pick an assignment of the mi to rows such that

∑t
j=1mi,j = λi, then the tabloid

whose ith row consists of the λi elements occurring in these cycles will be fixed. The generating
function

r∏
i=1

(
xmi1 + xmi2 + . . .+ xmil

)
represents the ways to assign the cycles to rows. When expanding, the exponent of xi is the number
of elements assigned to row i. To get λi elements in each row, we are looking at the coefficient of

xλ11 x
λ2
2 . . . xλll . This is the number of tabloids fixed by g, and hence the trace. �

Example 8. Consider the partition λ = (3, 2). We have

Young diagram: dimMλ =
5!

3!2!
= 10 and χλ((1 2 3)) = 2.

For the last, note that the permutation (1 2 3) is actually one three cycle and two one cycles, so we
want the coefficient of x31x

2
2 in

(x31 + x32)(x1 + x2)
2.

It is very easy to compute the rest of the character of Mλ using the same method.

(1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)
χ(3,2) 10 4 1 0 0 2 1

Now that we have this new representation, we can try to decompose it and find additional
irreducible representations. The inner product of this character with itself is

1

120
(102 + 42 · 10 + 20 · 1 + 22 · 15 + 20) = 3.

This means there are three irreducible representations, as the only way 3 can be written as a sum
of squares is as 12 + 12 + 12. A calculation shows that

(χ(3,2), χtriv) = 1 and (χ3,2, χstandard) = 1.
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Subtracting these two characters out gives another irreducible character, call it χ. The tensor
product with the sign representation is again an irreducible character, so we now know 6 rows of
the character table. The orthogonality relations are now enough to fill in the rest.

1 10 20 30 24 15 20
(1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) (1 2)(3 4) (1 2)(3 4 5)

trivial 1 1 1 1 1 1 1
sign 1 -1 1 -1 1 1 -1
standard 4 2 1 0 -1 0 -1
sign ⊗ standard 4 -2 1 0 -1 0 1
χ 5 1 -1 -1 0 1 1
χ⊗ sign 5 -1 -1 1 0 1 -1
other 6 0 0 0 1 -2 0

Table 3. The Character Table of S5

It seems we were lucky that Mλ contained only one new irreducible representation. In fact, it
turns out is possible to partially order the partitions so that Mλ contains only permutations greater
than or equal to λ (see Corollary 19). So this suffices to compute the character table. However, it
would be nicer to have a concrete description of the irreducible modules, and a better method to
calculate their characters.

2. Specht Modules

We will construct Specht Modules to better understand irreducible representations of Sn.

Definition 9. Let t be a Young tableau of shape λ, and Ct be the permutations of Sn which
preserve the columns of t. Define

et =
∑
π∈Ct

sign(π)π(t) ∈Mλ.

Let the Specht module Sλ be the span of the et where t is a tableau of shape λ.

For example, if t = 1 2 3
5 4

then

et = 1 2 3
5 4

− 5 2 3
1 4

− 1 4 3
5 2

+ 5 3 4
1 2

.

Remember these are tabloids in Mλ, so the order of the rows doesn’t matter.

Lemma 10. Sλ is a representation of Sn.

Proof. To show it is a representation, we need to show that Sλ is actually a sub-module of Mλ. In
particular, we need to check that π(et) ∈ Sλ for t a tableau of shape λ. However,

eπt =
∑
σ∈Cπt

sign(σ)σ(π(t)) =
∑

σ∈πCtπ−1

sign(σ)σ(π(t))

=
∑
σ′∈Ct

sign(πσ′π−1)πσ′π−1(πt)

= π
∑
σ′∈Ct

sign(σ′)σ′(t) = πet.

�
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Example 11. In general, it requires some thought to find a basis for Sλ. However, in a few cases it
is quite easy.

Consider t = . St is the trivial representation, because all tableaux of this shape
are row equivalent.

Consider λ = (1, 1, 1, 1, 1). Sλ is the sign representation, because all permutations fix the columns
of any tableau of this shape. Fix a tableau t of shape λ. Any other tableau is of the form πt for
π ∈ Sn. On the other hand, any σ ∈ Sn preserves the columns of t. Thus

πet = eπt =
∑
σ∈Sn

sign(σ)σπ(t) = sign(π)et.

Therefore Sλ is the one dimensional sign representation.

Finally consider λ = . Sλ is the standard representation. To see this, let fi denote the

tabloid with i in the bottom box. Consider a tableau

t = a i j k
b

.

A direct calculation shows that et = a i j k
b

− b i j k
a

. Therefore Sλ is the span of all such

elements, so it is

Sλ = {c1f1 + . . .+ cnfn : c1 + c2 + c3 + . . .+ cn = 0}.

Our goal is to prove the following result.

Theorem 12. The Specht modules Sλ, where λ is a partition of n, form a complete list of irreducible
complex representations of Sn.

The proof will proceed in two steps. First we show that Sλ is an irreducible sub-module of
Mλ, second we show that Sλ 6= Sµ if µ 6= λ. Since the number of conjugacy classes of Sn is the
number of partitions is the number of non-isomorphic Specht modules, we have a complete list of
irreducibles.

2.1. Proof that Specht modules are irreducible. There are three main ingredients in the
proof. The first is putting an inner product on Mλ. Since we specified a basis for Mλ, the set of
tabloids, we pick the usual dot product as the inner product. In particular, (t, s) = δt,s, so the
inner product is non-zero if and only if the tableaux s and t are row equivalent.

The second idea is a “projection” operation. For a tableau t, define κt ∈ CSn as

κt =
∑
π∈Ct

sign(π)π.

Note that if it acts on the tabloid t we recover et.
The third ingredient is the sub-module lemma.

Lemma 13 (Submodule Lemma). Let U be a sub-module of Mλ. Then either

Sλ ⊂ U or U ⊂ (Sλ)⊥.
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Proof. Let t be a tableau of shape λ, and let u ∈ U . Write u =
∑
citi where the ti are tabloids of

shape λ. We have

κtu = κt(
∑
i

citi) =
∑
π∈Ct

∑
i

sign(π)ciπ(ti)

=
∑
i

∑
π∈Ct

sign(π)ciπ(ti)

=
∑
i

cieti .

However, I claim that eti = ±et. Because all the terms in the sum defining et are tabloids, we may
freely permute the rows of t without changing the value of et. Pick a permutation π which takes
the t to a tableau which is row equivalent to ti. Then modify π so that it only permutes elements
within the columns of t: this is possible as we only care about which row a given number ends up
in and t and ti have the same shape. Thus ti = πt as tabloids, so eti = πet. Therefore κtu is a
multiple of et. (This is why it is called a projection.)

Suppose κtu is a non-zero multiple of et. Then et ∈ U . Since Sλ is a cyclic module generated by
et (see Lemma 10), Sλ ⊂ U .

Otherwise, suppose for all choices of u ∈ U and tableau t, κtu = 0. Then

(u, et) = (u,
∑
π∈Ct

sign(π)πt) =
∑
π∈Ct

sign(π)(u, πt).

The inner product satisfies (u, πt) = (π−1u, t) as u = πt iff π−1u = t. Also, note sign(π) =
sign(π−1). Thus

(u, et) = (
∑
π∈Ct

sign(π−1)π−1u, t) = (κtu, t) = 0

Therefore U ⊂ (Sλ)⊥. �

Corollary 14. Sλ is an irreducible complex representation of Sn.

Proof. Let U be a sub-representation of Sλ. By the sub-module lemma, either Sλ ⊂ U or U ⊂
(Sλ)⊥. In characteristic 0, (v, v) = 0 implies v = 0, so in the second case U = 0. In the first,
U = Sλ. �

2.2. Proof that Specht modules are distinct. The main ingredient in this proof is an ordering
on Young diagrams.

Definition 15. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs). λ dominates µ, written λ ≥ µ, if for
each 1 ≤ i ≤ max (r, s) we have

λ1 + . . .+ λi ≥ µ1 + . . .+ µi.

By convention, if r > s, we set µi = 0 for i > s, and vice versa.

Informally, λ ≥ µ if λ is short and fat and µ is tall and skinny. For example,

≥ .

This is a partial ordering on the set of partitions of n (Young diagrams). It is only a total ordering
for a few small values of n.

Lemma 16 (Dominance Lemma). Let t and s be tableau of shape λ and µ. If, for each i, the
elements of row i of s are all in different columns of t, then λ ≥ µ
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Proof. Sort the entries of each column of t so that elements in the first i rows of s occur in the first
i rows of t. This is possible as the elements of row i of t are in different columns of s. This implies
that

λ1 + . . .+ λi ≥ µ1 + . . .+ µi.

Thus λ ≥ µ. �

Theorem 17. Let θ ∈ Hom(Sλ,Mµ) be a nonzero map of representations. Then λ ≥ µ.

Proof. Pick a vector et on which θ is non-zero. Now

0 6= θ(et) = θ(κtt) = kt(
∑
i

cisi)

where the si are tabloids in Mµ. Suppose kts 6= 0 for some s appearing in this sum. If there were
numbers b and c in the same row of s and same column of t, then pick a set of coset representatives
for Ct/(b c), say σ1 . . . , σr. Then σ1, . . . , σr, (b c)σ1, . . . , (b c)σr are the elements of Ct. However, σi
and (b c)σi have the opposite signs but act the same way on the tabloid s as b and c are in the same
row. Applying κt, they cancel out. Therefore κts = 0. Therefore there are no elements b and c in
the same row of s but in the same column of t. By the Dominance Lemma λ ≥ µ �

Corollary 18. If Sµ ' Sλ, then µ = λ.

Proof. We can include Sµ ↪→ Mµ and Sλ ↪→ Mλ. As there is a nonzero map in both directions,
the theorem implies µ ≥ λ and λ ≥ µ. �

Corollary 19. The only irreducible representations in Mµ are Sλ for λ ≥ µ.

In particular, this implies that we can induct on the poset to find irreducible representations of
Sn inside Mµ: as long as we have already found Sλ for λ ≥ µ via induction (by looking in Mλ,
say) the only other irreducible occurring in Mµ is Sµ.

Remark 20. In fact, there is an explicit formula (Young’s Rule) for the decomposition of Mµ into
irreducibles in terms of the Kostka numbers. For more information, see the section on Kostka
numbers and Young’s Rule [2, Section 2.11].

3. Combinatorics of Specht Modules

Just as the dimension and character of Mλ could be computed combinatorially, there are com-
binatorial methods to compute these for Sλ. Proofs can be found in Chapter 2 and 3 of Sagan’s
book [2]. Many of these are similar to the (easier) statements for Mλ.

Definition 21. A standard Young tableau is a Young Tableau such that every row and every
column is increasing.

Proposition 22. The set {et} where t is a standard Young tableau of shape λ form a basis for Sλ.

For example, there are six standard Young tableau with λ = (3, 1, 1):

1 2 3
4
5

1 2 4
3
5

1 2 5
3
4

1 3 4
2
5

1 3 5
2
4

and
1 4 5
2
3

.

Thus the dimension of Sλ is 6. The hook length formula is an alternate way to calculate the
dimension.

Definition 23. The hook length of a box in a Young tableau is the number of boxes occurring
beneath that box or to the right in the Young diagram, counting the box itself.
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The numbers in this Young diagram illustrate the hook lengths.

5 2 1
2
1

Proposition 24 (Hook Length Formula). The dimension of Sλ is n! divided by the product of the
hook lengths in the Young diagram of shape λ.

For example, we can check again that the dimension of S(3,1,1) is 5!
5·2·2 = 6.

To combinatorially compute the character of Sλ, we either use the Frobenius formula (a gener-
ating function) or a recursive algorithm.

Theorem 25. Let λ = (λ1, . . . , λl) be a partition of n and µ = (µ1, . . . , µm) be the cycle shape of

g ∈ Sn. The character of Sλ evaluated on g is the coefficient of xλ1+l−11 xλ2+l−22 . . . xλll in∏
1≤i≤j≤l

(xi − xj)
m∏
i=1

(
xµi1 + . . .+ xµil

)
.

The alternative method of calculating the character values is called the Murnaghan-Nakayama
Rule [2, Section 4.10].

Definition 26. A rim hook is a connected chain of boxes of a Young diagram for which produce
a valid Young diagram when they are removed.

For example, in the first figure the boxes marked with dots are a rim hook, while in the second
they are not:

• •
•

• • •

Although removing the marked boxes seems to produce a Young diagram of the correct shape,
it has an empty row on top: it is represented by the partition (0, 2, 1). Define the height of a rim
hook to be the number of rows the hook includes, minus 1. So the rim hook above has height1.

According to the Murnaghan-Nakayama rule, to evaluate the character of Sλ on g of cycle shape
µ, consider all possible rim hooks consisting of µ1 boxes of the Young diagram of shape λ. Remove
them, producing several smaller Young diagrams. For each, associate a sign equal to negative one
raised to the height of rim hook. Then recursively follow this procedure to calculate the character
of a S(λ2,...,λr) on a cycle of shape (µ2, . . . , µl). Add the results. Algebraically, this formula is
expressed

χλ(µ) =
∑

ξ:|ξ|=µ1

(−1)height(ξ)χλ\ξ(µ\µ1)

For example, let λ = (3, 1, 1) and µ = (2, 2, 1). Keeping track of the signs,

−−−−→ + 1 −−−−→ − 1y
− 1y

− 1
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Since is the trivial representation of S1, the character is 1. Thus the character of S(3,1,1) on
the cycle (1 2)(3 4) is −2. It is similarly easy to calculate the value on the other conjugacy classes.
Thus it becomes apparent that Sλ is the last character, of dimension 6, in the character table of
S5 that we previously found only via the orthogonality relations. Young tableaux have provided us
with a systematic way to construct irreducible representations of Sn.

4. Understanding Induced Representations of Sn

Although induced representations in general seem hard to deal with, those for the symmetric
group are very easy to analyze using Young tableau. The result is called the branching rule. To
state it, we need to think about how to modify Young diagrams by adding or removing boxes.

Definition 27. If λ is a Young tableau, an inner corner of λ is a box that can be removed leaving
a valid Young diagram. Denote the diagram formed by removing it by λ−. An outer corner is a
box that can be added to λ that produces a valid Young diagram. Denote the diagram formed by
adding it λ+.

For example, let λ = (5, 4, 4, 2). Inner corners are marked by • and outer corners by ◦:

• ◦
◦

•
• ◦

◦
Note that the outer corners are not actually part of the diagram for λ.

Theorem 28. If λ is a partition of n, then

ResSnSn−1
Sλ =

⊕
λ−

Sλ− and Ind
Sn+1

Sn
Sλ =

⊕
λ+

Sλ
+

where the sums run over all inner and outer corners respectively.

Proof. First, note that dimSλ =
∑

λ− dim(Sλ
−

). This is simply because a basis is given by et for
t a standard tableau, and every standard tableau has n in one of its inner corners. Removing it
forms a standard tableau of shape λ−. Let r1 < r2 < . . . < rk be the rows with inner corners, and
let λi be the diagram obtained by removing the inner corner in row ri. Likewise, if t is a tableau of
shape λ with n in the corner or row ri, then ti is the (standard) tableau obtained by removing n.

We will find a chain of Sn−1 modules

0 = V0 ⊂ V1 ⊂ V2 . . . ⊂ Vk = Sλ

such that Vi/Vi−1 ' Sλ
i

as Sn−1 modules. As every complex representation of finite groups is
semi-simple, all short exact sequences split so this implies the direct sum decomposition.

Take Vi to be the vector space spanned by et, where t is a standard tableau with n appearing

at the end of one of the first i rows. Define θi : Mλ → Mλi by sending a tabloid t to ti if n is in
row ri of t, 0 otherwise. Extend by linearity. This is certainly a Sn−1 homomorphism since n is
fixed by Sn−1. For a standard tableau t, all of the elements appearing in the sum for et have an n
in the same row as t or above it. Thus a little thought shows if n is in row ri we have θi(et) = eti .
Otherwise if n is in a higher row θi(et) = 0. Remembering that {et} for t a standard tableau of

shape λi form a basis for Sλ
i
, we conclude the image of Vi under θi is Sλ

i
. Furthermore, Vi−1 is

included in the kernel of θi by definition. Thus we have a chain of Sn−1 modules

0 ⊂ V1 ∩ ker(θ1) ⊂ V1 ⊂ V2 ∩ ker(θ2) ⊂ V2 . . . ⊂ Sλ.
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However, Vi/(Vi ∩ ker(θi)) ' θiVi = Sλi . Since the dimensions of the Sλi add up precisely to
the dimension of Sλ, we must have that Vi ∩ ker(θi) = Vi−1 and hence that Vi/Vi−1 ' Sλi . This
concludes the proof of the first part of the theorem.

For the second, we use Frobenius reciprocity. Let χλ denote the character of Sλ. Write

Ind
Sn+1

Sn
Sλ =

⊕
λ′

cλ′S
λ′

where λ′ runs over partitions of n+ 1. Then taking an inner product with Sµ, we see that

cµ = (Ind
Sn+1

Sn
χλ, χµ)

= (χλ,Res
Sn+1

Sn
χµ)

= (χλ,
∑
µ−

χµ
−

)

using Frobenius reciprocity and the branching rule for restrictions. But this is 0 unless λ = µ−.

Thus the result is 1 if µ = λ+ and 0 otherwise, so there is one copy of each Sλ
+

in the induced
representation and no other irreducibles. This completes the proof. �

As an example, we induce two representations to S4. First, we will show that the regular
representation of S4 is the representation induced from the trivial character of the trivial subgroup.
This corresponds to the partition (1) of S1. Inducing to S2 we see that

IndS2
S1

(1) = S(1,1) ⊕ S(2).

Inducing again using the branching rule, we see

IndS3
S1

(1) = S(3) ⊕ (S(2,1))2 ⊕ S(1,1,1).

Using the branching rule for a third time, we obtain

IndS4
S1

(1) = S(4) ⊕ (S(3,1))3 ⊕ (S(2,1,1))3 ⊕ (S(2,2))2 ⊕ S(1,1,1,1).

This matches our theoretical knowledge of the regular representation: each irreducible appears with
multiplicity equal to its dimension.

For a more interesting example, let us return to the example of calculating IndS4
S3

1 which was
non-trivial during the lecture on induced representations. The branching rule makes it apparent at
a glance that

IndS4
S3

1 = S(3,1) ⊕ S(4).

In other words, it is the permutation representation, the same answer as before. However, adding
boxes to a Young diagram is much easier than carrying out the construction or computing tensor
products.

−−−−→y
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