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Abstract

It is now accepted that a tumour must induce the growth of new blood vessels, a
process called angiogenesis, in order to grow beyond a diameter of approximately
2 mm. Knowledge of angiogenesis has increased massively over the last 30 years, en-
abling mathematical models of the process to be constructed and analysed. Initially,
modelling was done at the continuum (i.e. cell density) level but, more recently, the
appreciation that angiogenesis is an inherently discrete process has led to increasing

research using individual cell-based models.

In this thesis, tumour angiogenesis is modelled at the individual cell level, using tech-
niques based on the theory of reinforced random walks, and cell-based simulations
are carried out. The purpose of this work is to develop the modelling techniques,
to improve understanding of angiogenesis and to highlight potential strategies for

therapeutic intervention.

Chapters 1 and 2 contain an introduction to the relevant biological and mathemat-
ical literature respectively. In chapter 3, the theory of reinforced random walks
is introduced. A result regarding the large time behaviour of one of the key gov-
erning equations is proved and a generalisation of the basic random walk model is

presented, allowing a wider range of biological scenarios to be modelled.

In chapter 4, the basic model for cell movement is developed in close conjunction
with experimental data. Chemokinesis, chemotaxis, haptotaxis are included and
their relative contributions to cell movement discussed. In chapter 5, a model of
tumour angiogenesis is formulated and used to simulate the growth of capillary
networks. The model is also used to assess the potential of anti-angiogenic strategies.
Chapter 6 develops a new model that includes the role of the angiopoietins, a recently
discovered family of growth factors which have emerged as critical regulators of
angiogenesis. In chapter 7, a model that frees the cells from geometric constraints
(a non-lattice model) is developed, and critically compared to existing lattice-based

models.

The material in chapters 4 and 5 has been accepted for publication [126, 127].
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Notation

Z, R and C respectively denote the sets of integer, real and complex numbers. For
N € Z, RN denotes the N-dimensional set {(z1,...,zn):2; €R,i=1,...,N}.

For a,b € R, [a,b) C Ris used to denote the interval of the real line, {x € R : a < z < b}.
The only possible ambiguity is (a, b), which is also used to denote a member of R?,

but the intended meaning will always be made clear from the context.

For two sets, A and B, A x B denotes the set of pairs of elements of A and B,
{(a,b) :a € A,b € B}. For m € R, A=™ denotes the set {a € A:a>m}. f: A—

B denotes a function with domain A and range B.

For Q@ c RY, the boundary of € is denoted by 0, the set of z € RY satisfying: (i)
dz1,x2,... € Q such that lim, ..z, = x; (ii) Ve > 0,3y ¢ Q such that |z —y| < e.

For n € Z and A C C, C"(A) is used to denote the set of n times continuously
differentiable functions, f : A — C. Unless stated otherwise, the symbol ’ denotes

differentiation of a function f : A — C with respect to its argument.

The gradient operator is denoted by V = (8%7 8%7 %); the divergence of a vector
field, F : R®> — R3, is denoted by V.F; the Laplacian operator is denoted by
Vi=V.V.

ForneZ, J,: C— C and I, : C — C respectively represent the Bessel function

and the modified Bessel function of the first kind and n'® order.

1 i
For N € Z>9, IV denotes the N x N identity matrix, defined by IZ.[;V} = { O’ Z ” ‘] }

 LF]
fori,j=1,...,N.



p.q%

0 : R — R denotes the Dirac delta function, defined by d () = 0 for z # 0 and
% 8 (x) f(z)dx = f(0) for any function f € C°(R). H : R — R denotes the

[e.e]

Heaviside step function, defined by H' = ¢ and H (z) = 1 for z > 0.

P () € [0,1] is the standard probability measure function and P (A|B) denotes the
conditional probability of A occurring given that B has occurred. E (X) and Var (X)

respectively denote the expected value and the variance of the random variable, X.



