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FOUR CHARACTERS SUFFICE TO CONVEXLY DEFINE A
PHYLOGENETIC TREE∗
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Abstract. It was recently shown that just five characters (functions on a finite set X) suffice
to convexly define a trivalent tree with leaf set X. Here we show that four characters suffice which,
since three characters are not enough in general, is the best possible.
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1. Introduction. The field of phylogenetics compares observable characteristics
of (biological) species in order to reconstruct and analyze their evolutionary history.
Generally this history is represented by a tree, with leaves labeled by the species. If
each of the comparisons between the species involve just two possible character states
(for example, “wings” vs. “no-wings”) and each state has evolved only once, then there
is a direct equivalence between such data and leaf-labeled trees. This equivalence was
described by Peter Buneman in his classic paper [4] from 1971. More recently there
has been considerable interest, from both computer scientists and mathematicians,
in extending these results to data in which there may be many character states—so-
called “multistate characters” [1], [7], [8], [10]. Recent whole genome data has given
rise to extensive data sets of multistate characters, often with a large number of states
(such as those obtained by comparing gene order between species).

This leads to the natural question of how many multistate characters are required
to completely determine an underlying evolutionary tree, under the assumption that
each state has evolved just once. In a surprising result, the authors of [10] recently
showed that just five such characters suffice, regardless of the number of species (we
describe this result more precisely in section 5). Their result applied a graph-theoretic
argument involving chordal graphs to a specific edge-coloring of trees based on the
cyclic group of order 5. However, the tantalizing question of whether this five char-
acter result could be improved to four characters was left as a posed problem [10,
Problem 6.2], as the methods used in that paper did not seem to readily apply.

In this paper we employ a different approach, and show that four characters are
indeed sufficient, a result that is optimal since three characters are not sufficient to
completely define all trees [10]. We reproduce the tree topology in [10] that illustrates
four as lower bound for Figure 1. In particular, we describe an edge-coloring of a tree
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Fig. 1. The figure depicts an evolutionary tree on the set X = {a, b, . . . , l} that cannot be
convexly defined by three characters (see [10] for more details).

using four colors, which induces characters in the same way as the edge coloration
using five colors in [10]. To establish that the induced characters can be used to com-
pletely reconstruct the tree, we consider a set of small subtrees (each with four leaves)
that are generated by the edge-coloring, and show that these subtrees determine the
tree. This then allows us to establish that the characters induced by the edge-coloring
determine the underlying tree.

The structure of this paper is as follows. In section 2, we introduce some termi-
nology for trees and describe a closure operation on subtrees. Next, in section 3, we
describe an edge-coloring of trees that produces subtrees on which this closure oper-
ation is applied. In section 4, we establish our main technical tool (Theorem 4.1),
and in section 5, we use this result to show that four characters suffice to completely
reconstruct a tree (Theorem 5.2).

2. Quartet trees and semidyadic closure. Throughout the paper, X denotes
a nonempty finite set and n = |X|. A phylogenetic tree (on X) is a tree T that has
X as its set of labeled leaves and interior vertices that are unlabeled and of degree at
least three. If each interior vertex has degree exactly three, we say that T is trivalent.
Two phylogenetic trees for X are isomorphic if the identity map on X induces a graph
isomorphism on the underlying tree.

A (qualitative or discrete) character on X is a function χ from X into a set C of
character states. Suppose that T is a phylogenetic tree on X, and let χ : X → C be
a character on X. For each state α in χ(X), let Tα denote the minimal subtree of T
containing the leaves that are assigned state α by χ. We say that χ is convex on T
if the subtrees in {Tα

∣
∣ α ∈ χ(X)} are pairwise disjoint (see Figure 2). A collection

of characters C on X is compatible if there is a phylogenetic tree T such that each
character in C is convex on T . If, in addition, T is the only phylogenetic tree on X
with this property, we say that C convexly defines T . The biological relevance of these
concepts is explained further in [10] and [11].

We call a trivalent phylogenetic tree on a 4-set a quartet tree. If T is a quartet
tree on the set {i, j, k, l} and removal of the interior edge e of T results in the sets
{i, j} and {k, l} labeling the different components of T \{e}, then we denote T by
ij|kl. Now, given a phylogenetic tree T on X and a subset Y of X, let T |Y denote
the minimal subtree of T that connects the leaves in Y , in which any resulting degree
2 vertices are suppressed. In particular, T |Y is a trivalent phylogenetic tree on Y
and we say that T displays T |Y . Given a collection Q of quartet trees, we say that a
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Fig. 2. For X = {a, b, c, d, e, f, g} and C = {α, β, γ}, the character χ : X → C with χ−1(α) =
{a, b, e}, χ−1(β) = {c, d} and χ−1(γ) = {f, g} is convex on the phylogenetic tree depicted in the
figure.

phylogenetic tree T displays Q precisely if T displays each quartet tree in Q. For a
trivalent phylogenetic tree T on X, let Q(T ) = {T |Y : Y ⊆ X, |Y | = 4} be the set of
all

(
n
4

)
quartet trees displayed by T .

For Q a set of quartet trees, let scl2(Q) be the semidyadic closure of Q, that is,
the minimal set of quartet trees that contains Q and for which we have

ab|cd, ac|de ∈ scl2(Q) ⇒ ab|ce, ab|de, bc|de ∈ scl2(Q).

The following lemma summarizes some straightforward properties of the semi-
dyadic closure that are part of the folklore (see [2], [5], [6], and [12]).

Lemma 2.1. For any set Q of quartet trees and any subsets A,B ⊆ Q,
(i) A ⊆ scl2(A),
(ii) A ⊆ B ⇒ scl2(A) ⊆ scl2(B),
(iii) scl2(scl2(A)) = scl2(A),
(iv) scl2(A ∪B) = scl2(scl2(A) ∪B).
(v) If Q = Q(T ) for some trivalent phylogenetic tree T , then scl2(Q) = Q.
We recall one further useful property of the semidyadic closure that will be of

use later. Suppose i, j is a cherry (a pair of leaves that are adjacent to a common
vertex) of a trivalent phylogenetic T and select leaves u, v as shown in Figure 3(a).
Let T ′ = T |(X − {j}) be the tree as shown in Figure 3(b). Then T is the only
phylogenetic tree that displays both T ′ and ij|uv and so, by [3, Lemma 3], we have
the following result.

Lemma 2.2. For a trivalent phylogenetic tree T ′ and quartet tree ij|uv as de-
scribed,

scl2(Q(T ′) ∪ {ij|uv}) = Q(T ).

For a set Q of quartet trees let co(Q) be the set of phylogenetic trees on X (up
to isomorphism) that display Q. We close this section with a lemma that summarizes
an easily established property of co(Q).

Lemma 2.3. If Q is a set of quartet trees and scl2(Q) = Q(T ) for some trivalent
phylogenetic tree T , then co(Q) = {T }.

3. Quartet trees from handy edge-colorings. An edge-coloring of a graph
is an assignment of colors to the edges of the graph so that two adjacent edges are
assigned different colors. We begin this section by giving a method for edge-coloring
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Fig. 3.

a trivalent phylogentic tree T on X with four colors R,R′, L, L′. This edge-coloring
is similar to the edge-coloring in [10] based on five colors.

Choose any leaf r of T and regard T as a rooted directed tree with r as its root
and all edges directed away from r. Color the edge containing r by R. Given any
vertex v of T with degree 3 that is at the end of an even (respectively, odd) length
edge path starting at r and ending at v, arbitrarily color the two edges coming out of
v by L and R (respectively, L′ and R′). This gives an edge-coloring of T by the colors
R,R′, L, L′, and we call any edge-coloring produced in this way a handy edge-coloring
of T .

Now, given a handy edge-coloring of T , we describe how to associate a quartet
tree with leaves in X to each interior edge of T (see Figure 4). Assume e = (u, v) is
an interior edge of T colored by R (we will consider the cases where e is colored by
L,R′, or L′ below). The edge coming into u is colored by either (i) R′ or (ii) L′. In
case (i), we associate the quartet tree ab|cd to edge e as follows: a is the last vertex
in the directed path that starts at v and has first edge colored R′ and all subsequent
edges colored alternately by L and L′; b is the last vertex of the directed path that
starts at v and has edges colored alternately by L′ and L; c is the last vertex of the
directed path that starts at u and has edges colored alternately by L and L′; d is the
last vertex of the undirected path that starts at u and has first edge colored R′ and all
subsequent edges colored alternately by L′ and L. In case (ii), a, b, c are all obtained
in the same way and d is the last vertex of the undirected path that starts at u, has
first two edges colored L′ and R′, respectively, and has all subsequent edges colored
alternately by L and L′.

In case the edge e = (u, v) is labeled by R′, the quartet tree ab|cd is obtained
in a similar way by following the four distinct paths whose first vertices are either u
or v and whose last edges are alternately colored using only the colors L and L′. In
case the edge e = (u, v) is labeled by either L or L′, a similar procedure is followed
in which colors L and R and L′ and R′ are interchanged so that, in particular, the
quartet tree ab|cd is obtained by following the four distinct paths whose first vertices
are either u or v and whose last edges are alternately colored using only the colors R
and R′.

We denote the collection of n − 3 quartet trees obtained in this way by Q0(T ).
Note that in all cases the paths obtained are colored always by at most three colors.
Whenever we picture a phylogenetic tree with a handy edge-coloring, we always regard
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Fig. 4. The figure depicts the two cases for associating a quartet tree ab|cd to an interior edge
e of T , here in bold, that is labeled by R.

edges below a particular vertex to be colored with R or R′ when they are on the right
or L or L′ when they are on the left.

4. Q0(T ) determines Q(T ) via semidyadic closure. Suppose that T is a
trivalent phylogenetic tree on X with a handy edge-coloring. In the next section we
describe (at most) four characters that convexly define T and come from the handy
edge-coloring of T . The proof that these four characters convexly define T is based
on the following result.

Theorem 4.1. Suppose that T is a trivalent phylogenetic tree on X. Then

scl2(Q0(T )) = Q(T ).

Proof. We use induction on n. It is easily checked that the result holds when
n = 4, since in this case Q0(T ) = Q(T ) = {T }.

Suppose the theorem holds for any trivalent phylogenetic tree on X with strictly
less than n ≥ 5 leaves. Suppose also that T is a trivalent phylogenetic tree on X with
n leaves. Select a cherry i, j whose central vertex is at maximal edge distance from
the reference leaf. If we now consider the handy edge-coloring of T , then there are
four cases (plus their mirror images) for the local tree structure around the cherry
i, j, as depicted in Figure 5.

Note that in case (b) we could have instead selected the cherry k, l and this
produces (the mirror image of) case (a) so we can “transform” case (b) into (a). It thus
suffices to consider only cases (a), (c), and (d). For these cases, let T ′ = T |(X−{j}).
Note that the edge-coloring of T induces a valid handy edge-coloring of T ′, where the
color assigned to the edge containing i is the same as that assigned to the edge in T
adjacent to the cherry i, j.

First consider cases (a) and (c). It is straightforward to check using the definition
of a handy edge-coloring that the only interior edge of T yielding a quartet tree in
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Q0(T ) that contains j is the interior edge that is adjacent to the cherry i, j. Moreover,
every interior edge of T ′ corresponds to an interior edge of T and each of these
edges gives rise to the same quartet tree in Q0(T ′) as it does in Q0(T ). From these
observations it easily follows that

Q0(T ′) = Q0(T ) − {ij|kx}(1)

for some x ∈ X (and with x 	= l in case (a)).
Now, by the induction hypothesis applied to T ′,

scl2(Q0(T ′)) = Q(T ′)

and by Lemma 2.1 (iv) and Lemma 2.2,

scl2(Q0(T ′) ∪ {ij|kx}) = Q(T ).

Thus, by (1),

scl2(Q0(T )) = Q(T ),

and so the induction step is established for cases (a) and (c).
Thus it suffices to consider now just case (d). The edge e coming into the cherry

i, j induces the quartet tree ij|ku ∈ Q0(T ) and the edge e′ incident to e but not
containing k induces the quartet tree jk|uv ∈ Q0(T ), for some pair of leaves u, v ∈ X
(see Figure 6).

Thus,

scl2({ij|ku, jk|uv}) ⊆ scl2(Q0(T )).
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But ik|uv ∈ scl2({ij|ku, jk|uv}) and so

ik|uv ∈ scl2(Q0(T )).(2)

Now, it is straightforward to check using the definition of a handy edge-coloring
that the only interior edges of T yielding quartet trees in Q0(T ) that contain j are
the edges e and e′. Moreover, every interior edge of T ′ corresponds to an interior
edge of T and each of these gives rise to the same quartet tree in Q0(T ′) as it does
in Q0(T ) except e′, which gives rise to ik|uv in Q0(T ′). From these observations it
easily follows that

Q0(T ′) = (Q0(T ) − {ij|ku, jk|uv}) ∪ {ik|uv}.(3)

Combining (2), (3), and Lemma 2.1 (parts (i), (ii), and (iii)) we have

scl2(Q0(T ′) ∪ {ik|uv}) ⊆ scl2(Q0(T )).(4)

On the other hand, if we apply Lemma 2.2, the induction hypothesis for T ′, and
Lemma 2.1 (iv), we obtain (respectively) the following three equalities:

Q(T ) = scl2(Q(T ′) ∪ {ik|uv})
= scl2(scl2(Q0(T ′)) ∪ {ik|uv})
= scl2(Q0(T ′) ∪ {ik|uv}).

Combining these equalities with (4) gives

Q(T ) ⊆ scl2(Q0(T )).

However, this implies Q(T ) = scl2(Q0(T )) in view of Q0(T ) ⊆ Q(T ) and using
Lemma 2.1 (parts (ii) and (v)). This establishes the induction step and thereby
completes the proof of Theorem 4.1.

5. Handy edge-colorings convexly define trees. We now relate characters
and quartet trees. Given a character χ : X → C on X, we denote by π(χ) the
partition {χ−1(α) : α ∈ C} of X. Suppose that T is a phylogenetic tree on X and
that C is a set of characters on X. We say that T displays C if each character in C
is convex on T . Note that T displays C precisely if for each χ ∈ C there exists some
set E of edges of T such that, for all distinct A,B ∈ π(χ), A and B are subsets of
different connected components of T \E .
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For any collection C of characters on X, let

Q(C) = {ij|kl : there exists some χ ∈ C and some

A,B ∈ π(χ) such that i, j ∈ A and k, l ∈ B}.

Lemma 5.1. Let C be a collection of characters on X, and suppose that T is
a trivalent phylogenetic tree that displays C. If there exists some Q1 ⊆ Q(C) with
scl2(Q1) = Q(T ), then C convexly defines T .

Proof. Note that Lemma 2.1 (ii) gives scl2(Q1) ⊆ scl2(Q(C)). Thus,

Q(T ) ⊆ scl2(Q(C)).(5)

On the other hand, since each character in C is convex on T , we have Q(C) ⊆ Q(T )
and so

scl2(Q(C)) ⊆ Q(T ),(6)

by Lemma 2.1 (parts (ii), (iii), and (v)). Combining (5) and (6) gives scl2(Q(C)) =
Q(T ), and so, by Lemma 2.3 we have co(Q(C)) = {T }. But from [12, Proposition
2(1)], if co(Q(C)) = {T }, then C convexly defines T . This completes the proof.

We now specialize to a set of (at most four) characters that are induced by any
handy edge-coloring of a trivalent phylogenetic tree T on X and show that these
characters convexly define T .

Suppose that we are given a handy edge-coloring of T . To each color F ∈
{L,L′, R,R′} that is assigned to at least one edge of T , we associate a character
on X in the following way. Denote by ∼F the equivalence relation on X defined by
x ∼F y (x, y ∈ X) if the path in T from x to y does not contain an edge that is
assigned color F . Let πF denote the partition of X that arises from the equivalence
classes of ∼F and let χF denote the character on X for which π(χF ) = πF . We denote
by C(T ) the (at most) four characters induced by this edge-coloring.

The main result from [10] is that, for any trivalent phylogenetic tree T on X, there
exists a set C of at most five characters on X, such that T is the only phylogenetic
tree on X that displays C. The following theorem shows that, by taking C = C(T ),
we can improve the result by replacing “five” with “four.”

Theorem 5.2. Suppose that T is a trivalent phylogenetic tree on X. Then the
(at most) four characters in C(T ) convexly define T .

Proof. First note that each character in C(T ) is convex on T . Note also that since
Q0(T ) is the set of quartet trees corresponding to the handy edge-coloring of T , we
have

Q0(T ) ⊆ Q(C(T )).

Also, by Theorem 4.1, scl2(Q0(T )) = Q(T ). Thus, since T displays C(T ) we may
apply Lemma 5.1 to deduce that C(T ) convexly defines T .

Note that the proof of this result shows how to construct T from C(T ) in poly-
nomial time using the semidyadic closure operation. Alternatively, since |Q0(T )| =
|X| − 3 the “split-closure” approach described by Semple and Steel [9] would also
apply. It can also be shown that C(T ) “strongly” defines T in the sense of [10].

Acknowledgment. The authors thank Charles Semple for some helpful com-
ments on an earlier version of this manuscript.
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