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a b s t r a c t

We improve the lower bound on the extremal version of the maximum agreement subtree
problem. Namely we prove that two binary trees on the same n leaves have subtrees with
the same ≥ c log log n leaves which are homeomorphic, such that homeomorphism is the
identity on the leaves.

© 2009 Elsevier Ltd. All rights reserved.

A phylogenetic X-tree is a binary tree in which the leaves are labelled bijectively with labels from a set X (usually
{1, 2, . . . , n}) and internal vertices are unlabelled. Two phylogenetic X-trees are considered the same if there is a label-
preserving graph isomorphism between them.
If T is phylogenetic X-tree and Y ⊆ X is a set of labels, then the induced binary subtree T |Y is defined as follows: (a)

take the subtree induced by Y in T , and (b) substitute paths in which all internal vertices have degree 2 by edges. T |Y is a
phylogenetic Y -tree (see Fig. 1).
If |Y | = 4, the induced binary subtree is often identified with an unordered partition of Y into two two-element sets,

obtained by removing the (unique) internal edge of T |Y . This partition is known as a quartet split. It is known that the
( n
4

)
quartet splits of a phylogenetic X-tree with |X | = n determine the phylogenetic tree through a polynomial time algorithm.
This was first observed in 1981 by Colonius and Schultze [1], in the context of stemmatology, and was developed further in
1986 by Bandelt and Dress [2].
An important algorithmic problem, known as the maximum agreement subtree problem, is the following: given two

phylogenetic X-trees, find a common induced binary subtree of the largest possible size.
This problem has a history that spans more than 25 years, from papers in the early 1980s by Gordon [3], and Finden

and Gordon [4], to its implementation in the late 1990s in the widely used phylogenetic software PAUP [5]. Somewhat
surprisingly, this problem can be solved in polynomial time [6] (see also [7,8]).
Here we focus on the extremal version of the problem, where we ask how small a maximum agreement subtree can

possibly be. This is motivated by a recent approach to tree comparison [9] based on the distribution of the maximum
agreement subtree for pairs of randomly selected trees—thus we are interested here in the range of this distribution.
Let mast(n) denote the smallest order (number of leaves) of the maximum agreement subtree of two phylogenetic X-

trees with |X | = n. In 1992, Kubicka, Kubicki, and McMorris [10] showed that c1(log log n)1/2 < mast(n) < c2 log n with
some explicit constants.

∗ Corresponding author. Tel.: +1 803 749 4137.
E-mail addresses:M.Steel@math.canterbury.ac.nz (M. Steel), szekely@math.sc.edu (L.A. Székely).

0893-9659/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2009.06.019



Author's personal copy

M. Steel, L.A. Székely / Applied Mathematics Letters 22 (2009) 1778–1780 1779

Fig. 1. For X = {1, 2, 3, 4, 5, 6} and the two phylogenetic X-trees shown (T and F ), a maximum agreement subtree is the phylogenetic tree G = T |Y = F |Y
shown, where Y = {2, 3, 4, 6}.

The purpose of our note is to remove the square root sign from the lower bound. This is achieved by changing the order
of two combinatorial steps, one resulting in taking the logarithm twice, the other taking a square root. Of course, the square
root sign after the log log is no longer visible.
First wewould like to exhibit a direct connection to Ramsey theory, whichmight explain the large gap between the lower

and upper bounds for mast(n). Let Rk2(n, `) denote the smallest integer m such that for any coloration of the k-element
subsets of any m-element set with colors red and blue, there exists an n-element subset of the m-element set such that
every k-element subset of the n-element set is colored red, or there exists an `-element subset of the m-element set such
that every k-element subset of the `-element set is colored blue (see Chapter 14 in [11]).

Claim. mast[R42(n, 6)] ≥ n.

Proof. We first recall an observation from [2] that for |X | = 6, any two phylogenetic X-trees share a quartet split. Given
T and F arbitrary phylogenetic X-trees with |X | = R42(n, 6), color 4-subsets of X red if they define the same quartet split,
otherwise blue. No six elements of X can have all 4-subsets blue by the previous reference, so there are n elements from X
such that all their 4-subsets are colored red. As the binary tree is determined by its quartet splits, these n elements span a
size n agreement subtree, thereby establishing the claim. �

This approach would give an explicit lower bound for mast(n) in the form of a multiply iterated logarithm, much weaker
than c1(log log n)1/2.
Before proving our result, we quickly show c1(log log n)1/2 < mast(n) following the approach in the 1992 paper by

Kubicka, Kubicki, and McMorris [10]. Recall that a caterpillar is a tree, which has a path such that every leaf has a neighbor
on the path (for example, the tree F in Fig. 1). Let us be given two phylogenetic X-trees T and F with |X | = n. As our trees are
binary, the diameter of T is at least c3 log n. Therefore T must have an induced binary caterpillar subtree with leaf set Y such
that |Y | ≥ c3 log n. Consider the induced binary subtree F |Y , whichmust have diameter≥ c4 log log n. Likewe argued before,
there should be a Z ⊆ Y such that F |Z is a caterpillar and |Z | ≥ c4 log log n. Notice that T |Z = (T |Y )|Z is also a caterpillar.
Recall the Erdős–Szekeres Theorem (Ex. 14.15 in [11]) for sequences: two sequences composed from the same k2 + 1 items
have either a common k + 1-length subsequence, or they have a common k + 1-length subsequence after reversing the
order in one sequence. As caterpillar trees can be understood as sequences of their leaves, two caterpillar trees with the
same k2 + 1 leaves contain size k+ 1 agreement subtrees. Apply this with the largest k such that k2 + 1 ≤ c4 log log n.
Before turning to our main result, we need some definitions. We say that a phylogenetic X-tree T is drawn on the plane if

it is drawn as a plane graph. The circumference of a phylogenetic tree drawn on the plane is the cyclic permutation of X , the leaf
set, as wewalk around T clockwise. This concept has been a useful combinatorial tool elsewhere (see, for example, [12]) and
we illustrate it here in Fig. 1 by noting that the circumference of this drawing of T is the cyclic permutation (1, 4, 3, 6, 5, 2).
Note that for Y ⊆ X , the induced (by Y ) binary subtree of T has a natural drawing following steps (a) and (b) by deleting

edges and vertices from the plane drawing, and then removing the vertex designation of vertices of degree 2, but keeping
the curve representing the path for representing the new edge. For this natural drawing of T |Y , the circumference is the
circumference of the drawing of T restricted to Y . For the tree T in Fig. 1 and the subset Y = {2, 3, 4, 6}, the circumference
of the induced drawing of T |Y is the cyclic permutation (2, 4, 3, 6) (the same as the circumference of the given drawing of
G), while the circumference of the induced drawing of F |Y is the cyclic permutation (2, 3, 4, 6).

Theorem 1. For a constant c > 0, we have

mast(n) > c log log n.

Proof. Take two arbitrary phylogenetic X-trees, T and F , with |X | = n and draw them in the plane. Cut the resulting
circumferences anywhere to obtain two (linear) permutations of X . By the Erdős–Szekeres Theorem, there is subset U ⊆ X
such that the two permutations put U either into the same linear order, or into the opposite linear order, and |U| ≥ c5n1/2.
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Like in the proof explained before the theorem, T |U has diameter ≥ c3 log |U| ≥ c6 log n. Therefore T |U has an induced
binary subtree which is a caterpillar with leaf set V such that |V | ≥ c6 log n. Consider now the induced binary subtree F |V .
The diameter of F |V is at least c3 log |V | ≥ c7 log log n, and therefore there should be a Z ⊆ V such that F |Z = (F |V )|Z is a
caterpillar and |Z | ≥ c7 log log n. Both T |Z and F |Z are caterpillars. By the choice of U , these two caterpillars have the same
or mirror image circumferences. In the second case, starting this proof with the mirror image of the drawing of F , we can
make sure that the caterpillars T |Z and F |Z have identical circumferences. Taking the longest path from T |Z (resp. F |Z ), this
path partitions the |Z | − 2 non-endpoint leaves of T |Z (resp. F |Z ) into two classes corresponding to the two sides. We have
two 2-partitions of |Z | − 4 or more elements into twoclasses - it is easy to see that some partition classes must have at least
(|Z | − 4)/4 elements in common, sayW . Now T |W = (T |Z )|W and F |W = (F |Z )|W are the common induced binary subtrees
of T and F , and |W | ≥ c8 log log n. �

Remark. It would be interesting to see whether Theorem 1 can be tightened. In particular, it is conceivable that the much
stronger bound c ′ log(n) < mast(n) holds, which would be best possible, up to the constant factor. Also, with slightly more
care Theorem 1 can be expressed in a more explicit form: mast(n) > 1

4 log2 log2(n− 1).

Acknowledgements

The first author was supported in part by the New Zealand Marsden Fund and the Allan Wilson Centre for Molecular
Ecology and Evolution. The second authorwas supported in part by the NIHNIGMS contract 1 R01 GM078991-01, by the NSF
DMS contract 0701111, by a Marie Curie Fellowship HUBI MTKD-CT-2006-042794, and by the 2007 Phylogeny programme
of the Isaac Newton Institute, Cambridge, where this work started.

References

[1] H. Colonius, H.H. Schulze, Tree structures for proximity data, British Journal of Mathematical and Statistical Psychology 34 (1981) 167–180.
[2] H.-J. Bandelt, A.W.M. Dress, Reconstructing the shape of a tree from observed dissimilarity data, Advances in Applied Mathematics 7 (1986) 309–343.
[3] A.D. Gordon, Consensus supertrees: The synthesis of rooted trees containing overlapping sets of labelled leaves, Journal of Classification 3 (1986)
335–348.

[4] C.R. Finden, A.D. Gordon, Obtaining common pruned trees, Journal of Classification 2 (1985) 255–116.
[5] D.L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, Sinauer Associates, Sunderland, Massachusetts, 2003.
[6] M. Steel, T. Warnow, Kaikoura tree theorems: Computing the maximum agreement subtree, Information Processing Letters 48 (1993) 77–82.
[7] W. Goddard, E. Kubicka, G. Kubicki, F.R. McMorris, The agreement metric for labeled binary trees, Mathematical Biosciences 123 (1994) 215–226.
[8] E. Kubicka, G. Kubicki, F.R. McMorris, An algorithm to find agreement subtrees, Journal of Classification 12 (1995) 91–99.
[9] D.M. de Vienne, et al., A congruence test for testing topological similarity between trees, Bioinformatics 23 (2007) 3119–3124.
[10] E. Kubicka, G. Kubicki, F.R. McMorris, On agreement subtrees of two binary trees, Congressus Numerantium 88 (1992) 217–224.
[11] L. Lovász, Combinatorial Problems and Exercises, 2nd ed., North-Holland, 1993.
[12] C. Semple, M. Steel, Cyclic permutations and evolutionary trees, Advances in Applied Mathematics 32 (4) (2004) 669–680.


