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Abstract

Stochastic models that allow site substitutions, insertions and deletions provide a useful
framework for a statistical approach to DNA sequence evolution. Such a model, and recursions
to calculate the probability of evolving two sequences, have been known for almost a decade.
In this paper we show how the pairwise recursions can be generalised to a 3-sequence tree, and
more generally to a r-sequence star-shaped tree.

1 INTRODUCTION

Proteins and DNA sequences evolve predominantly by substitutions, insertions and deletions of
single amino acids/nucleotides or strings of these elements. During the last two decades, the
analysis of the substitution process has improved considerably, and has increasingly been based
on stochastic models. The process of insertions and deletions has not received the same attention
and is presently being analysed by optimisation techniques (parsimony or optimising a similarity
score). A pioneering paper by Thorne, Kishino and Felsenstein [1] proposed a well defined model
for insertion and deletions that allowed a proper statistical analysis for two sequences. Such an
analysis can be used to provide maximum likelihood (pairwise) sequence alignments, or to estimate
the evolutionary distance between two sequences. A useful tool for applications is a recursion
for calculating the joint probability of sequences, and such a recursion was described for pairs of
sequences in [1]. However this approach has until now not been generalised to allow analysis of three
or more sequences related by a tree (other authors who have tried alternative approaches include
[2], [3], [4], [5], [6]). Here we present a recursion that leads to a polynomial-time algorithm for
calculating the probability of three sequences that evolve on a tree (and more generally r sequences
that evolve on a star-shaped tree) according to the Thorne-Kishino-Felsenstein process.

1We thank the New Zealand Marsden Fund (UOC-MIS-003), the Danish Research Council (S.N.F.), and the
University of Canterbury Erskine Fund for supporting this research, and two anonymous referees for helpful comments.
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1.1 Preliminaries

Definition Let A be a fixed alphabet of letters. A sequence A is a finite string of letters over A of
length l(A) ≥ 0. We let ∅ denote the empty sequence of length 0, and if A = a1, . . . , an−m, . . . , an

where m ≥ 0, n ≥ 1, we let Aj = aj , and let A[m] denote the sequence a1, . . . , an−m, and A(m)
denote the sequence an−m, . . . , an. Thus, A(0) is the last term of A, while A[1] is the sequence up
to, but excluding, the last term. By convention, A[l(A)] = ∅.

Suppose T is a (phylogenetic) tree, with root vertex v, and r ≥ 3 leaf vertices. To each leaf
vertex i is associated a given sequence Ai. In this paper we will assume the sequences evolve accord-
ing to the Thorne-Kishino-Felsenstein (1991) reversible Markov model of insertions, deletions and
substitutions, [1], [7] denoted more briefly as the T KF -model. Briefly, this model used three classes
of variables. Firstly, to each nucleotide was associated a reversible substitution process (identical
to the usual site substitution models that did not allow insertions or deletions). Secondly, to each
nucleotide is associated a deletion stochastic variable, Di that is exponentially distributed with
parameter µ. If this Di fires, the i–th nucleotide is removed. Thirdly, to the right of every nu-
cleotide an insertion stochastic variable, called a mortal link, Ii, was associated. It is exponentially
distributed with parameter, λ < µ. If Ii fires a nucleotide is chosen from the stationary distribution
of the substitution process and is placed (along with a new mortal link to its right) to the right
of Ii. If the i–th nucleotide dies, Ii dies with it. To the left of the complete sequence there is an
immortal link that can give birth to nucleotides (with associated mortal links), at the same rate
as a mortal link, but cannot die. This prevents the empty sequence from becoming a sink. This
model has been generalised further to allow insertions and deletions of blocks (see [8]) but we do
not consider this extension here.

As a simple illustration of this model, if we denote the immortal link by the symbol • and
a mortal link by the symbol ?, the sequence AGTT is represented as •A?G?T?T?. If the third
mortal link fires, with the resulting selection of (say) nucleotide C from the equilibrium distribution,
and then the second nucleotide (G) dies then we obtain the representation •A?T?C?T? which
corresponds to the sequence ATTC.

Let P(A1, . . . , Ar) denote the joint probability of observing sequences A1, . . . , Ar at the leaves
1, . . . , r respectively, under this model. Here we will deal just with the case r = 3 but the results
may be generalised as we indicate later. We will let ti denote the (scaled) time parameter that
the Markov process operates for on the edge of the tree incident with leaf i. Henceforth we will,
without loss of generality, regard the sequences as evolving from the ancestral sequence X at the
internal vertex of the three-sequence tree. Note that, from [1], l(X) has a geometric distribution,
with

P(l(X) = l) = (1 − λ

µ
)(

λ

µ
)l (1)

1.2 Notation

• For brevity, we will denote the triple A1, A2, A3 by A. Thus, we will write, for example, P(A)
in place of P(A1, A2, A3). For n = (n1, n2, n3), where ni ∈ {0, . . . , l(Ai)} we let A[n] denote
the triple A1[n1], A2[n2], A3[n3].

• For events A,B,C, P(A|B) denotes the conditional probability of A given B, and we will also
write P(A,B|C) (resp. P(A|B,C)) as shorthand for P(A ∩ B|C) (resp. P(A|B ∩ C)).
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• For a letter a ∈ A let π(a) denote the associated equilibrium probability under the T KF
model. Set π(∅) := 1, and for a sequence A, let π(A) :=

∏l(A)
i=1 π(Ai).

• Let N = (N1,N2,N3) where Ni ∈ {0, . . . , l(Ai)} be the random variable that denotes the
total number of descendants of the rightmost link of X in Ai, and let U ⊆ {1, 2, 3} be the
random variable that denotes those indices i for which the rightmost link of X survives in Ai.
Note that, when l(X) = 0, the rightmost link of X is the immortal link. Also, Ni = 0 implies
i 6∈ U (but not conversely, since a mortal link may die after having left behind descendants
that survive in Ai).

We will further economize by writing n and u in place of the events N = n and U = u, respectively.
For example, for l ≥ 0, and n = (n1, n2, n3), where ni ∈ {0, . . . , l(Ai)} and u ⊆ {1, 2, 3}, we will
adopt the convention

P(A,n, u|l) := P(A1, A2, A3,N = n, U = u|l(X) = l)

(the joint probability of observing sequences A1, A2, A3 at the leaves 1, 2, 3 respectively, and that
Ni = ni for i = 1, 2, 3 and U = u, conditional upon the event that l(X) = l). Following [1], let pk(t)
(resp. p′k(t)) denote the probability that after duration t, a mortal link has exactly k descendants,
and one of these is (resp. is not) the original mortal link. Let p′′k(t) denote the probability that
after duration t an immortal link has exactly k descendants (including itself). From [1] and [7] we
have:

pk(t) = e−µt[1 − λβ(t)][λβ(t)]k−1; k > 0

p′k(t) = [1 − e−µt − µβ(t)][1 − λβ(t)][λβ(t)]k−1; k > 0

p′0(t) = µβ(t)

and
p′′k(t) = [1 − λβ(t)][λβ(t)]k−1; k > 0

where

β(t) =
1 − e(λ−µ)t

µ − λe(λ−µ)t
, 0 < λ < µ

First we calculate the probability of three empty sequences.

Lemma 1

P(∅, ∅, ∅) = (1 − λ

µ
)

∏3
i=1(1 − λβ(ti))

1 − λµ2β(t1)β(t2)β(t3)

Proof. We have,
P(∅, ∅, ∅) =

∑

l≥0

P(∅, ∅, ∅|l(X) = l)P(l(X) = l),

and P(∅, ∅, ∅|l(X) = l) =
∏3

i=1 p′′1(ti)(p′0(ti))l. The result now follows from Equation (1), upon
substituting the above formulae for p′′k(t) and p′0(t) and then summing the resulting geometric
series.
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2 THE RECURSION

Our aim is to establish a recursion (Theorem 1) for P(A) in terms of the joint probabilities of initial
segments of the sequences in A. Letting P(A|l) = P(A|l(X) = l), we have

P(A) =
∑

l≥0

P(A|l)P(l(X) = l)

and so, from Equation (1),

P(A) = (1 − λ

µ
)
∑

l≥0

P(A|l)(λ

µ
)l (2)

To evaluate P(A|l) we deal with the two cases l = 0 and l > 0 separately. Firstly, for l = 0,
under the T KF -model,

P(A|l(X) = 0) =
3∏

i=1

π(Ai)p′′l(Ai)(ti) (3)

Now suppose l ≥ 1. By elementary probability,

P(A|l) =
∑

(n,u)∈I(A)

P(A,n, u|l) (4)

where

I(A) := {((n1, n2, n3), u) : 0 ≤ ni ≤ l(Ai), i = 1, 2, 3;u ⊆ {1, 2, 3};ni = 0 ⇒ i 6∈ u}

denotes the subset of those values of (n, u) for which P(A,n, u|l) can take a positive value. Using
the identity P(U, V |W ) = P(U |V,W )P(V |W ) (for any three events U, V,W ) we obtain:

P(A,n, u|l) = P(A|l,n, u) × P(n, u|l) (5)

Now, conditional on the events that l(X) = l, N = n and U = u the sequences A evolve from X
precisely if the first l− 1 nucleotides of X evolve into A[n] while the remaining nucleotide (and the
last mortal link) of X evolves into the remainder of A. Since we have conditioned on (i) exactly
how many descendants the last link of X possesses in each of A1, A2, A3, and (ii) in which of these
sequences the last link of X has survived, we can express P(A|l,n, u) as follows.

P(A|l,n, u) = P(A[n]|l − 1) × w1(A,n, u) (6)

where
w1(A,n, u) = (

∏

i6∈u:ni≥1

π(xi)) × P({(i, xi) : i ∈ u}) ×
∏

1≤i≤3:ni≥2

π(Ai(ni − 2))

and where xi = Ai
l(Ai)−ni+1 and for S ⊆ {1, 2, 3}, P({(i, xi) : i ∈ S}) is the joint probability of

observing the letter xi at leaf i for each leaf i ∈ S.
This last joint probability term can easily be computed from the edge lengths (t1, t2, t3) and

the rate matrix for the underlying site substitution process. Furthermore, since l ≥ 1,

P(n, u|l) =
3∏

i=1

P(Ni = ni, U ∩ {i} = u ∩ {i}) =
3∏

i=1

p|u∩{i}|ni
(ti) (7)
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where p0
k(t) := p′k(t) and p1

k(t) := pk(t). Note that the right hand side of Equation (7) (with l ≥ 1)
is dependent only on n and u, and hence we can denote it as w2(n, u). Let

w(A,n, u) := w1(A,n, u)w2(n, u).

Then, by combining Equations (4), (5), (6) and (7) we have, for l ≥ 1,

P(A|l) =
∑

(n,u)∈I(A)

w(A,n, u)P(A[n]|l − 1) (8)

Combining Equations (2), (3) and (8) we have:

P(A) = (1 − λ

µ
)[

3∏

i=1

π(Ai)p′′l(Ai)(ti) +
∑

(n,u)∈I(A)

w(A,n, u)
∑

l≥1

P(A[n]|l − 1)(
λ

µ
)l] (9)

Rearranging this last equation we have:

P(A) = (1 − λ

µ
)[

3∏

i=1

π(Ai)p′′l(Ai)(ti) +
λ

µ

∑

(n,u)∈I(A)

w(A,n, u)
∑

s≥0

P(A[n]|s)(λ

µ
)s]

and applying Equation (2) to the second term in this last equation gives:

Theorem 1 Under the T KF-model, the probability P(A) of generating the three sequences A =
A1, A2, A3 satisfies the following recurrence equation.

P(A) = (1 − λ

µ
)[

3∏

i=1

π(Ai)p′′l(Ai)(ti)] +
λ

µ

∑

(n,u)∈I(A)

w(A,n, u)P(A[n])

2.1 Example

As a simple example, we can use Theorem 1 to compute P(A) for A = ∅, ∅, ∅. In this case we have:
I(A) = {(0, ∅)} (where 0 = (0, 0, 0)) and so, by Theorem 1,

P(A) = (1 − λ

µ
)

3∏

i=1

p′′0(ti) +
λ

µ
w(A,0, ∅)P(A[0]).

Now, A[0] = A, and for this example, w(A,0, ∅) = w2(0, ∅) =
∏3

i=1 p′0(ti) which, upon substitution
for p′0(ti) and p′′0(ti), leads to the formula for P(A) described by Lemma 1.

2.2 A polynomial-time algorithm

Given three sequences B1, B2, B3, one can recursively use Theorem 1 to compute P(A) for all initial
segments A = A1, A2, A3 of these sequences. Note that we can rewrite Theorem 1 in the following
form:

P(A) = (1 − λ

µ
w(A,0, ∅))−1((1 − λ

µ
)[

3∏

i=1

π(Ai)p′′l(Ai)(ti)] +
λ

µ

∑

(n,u)∈I∗(A)

w(A,n, u)P(A[n]))
(10)

where I∗(A) = I(A)− (0, ∅). The advantage of this representation is that each triple of sequences
appearing on the right hand side of Equation (10) has a combined total length at most one less
than that of the sequences in A. In this way one can recursively compute P(A[k]) for all triples
k = k1, k2, k3 where ki ≤ l(Ai), and thereby construct a polynomial-time algorithm for computing
P(A) of complexity O(l6) where l = max{l(Ai), i = 1, 2, 3}.
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2.3 Extension to star-shaped trees

If r ≥ 4 sequences were related by a star-shaped tree, that is, a tree with only one internal node,
then an analogous recursion to (10) holds. For example, the probability of observing r empty
sequences at the leaves, obtained by a similar reasoning, is

P(∅, ∅, ∅ . . . , ∅) = (1 − λ

µ
)

∏r
i=1(1 − λβ(ti))

1 − λµr−1
∏r

i=1 β(ti)

The other arguments given in the 3-sequence case generalise accordingly.

2.4 Summary

Two challenges are immediate: First, it seems plausible that an O(lr) algorithm is possible for
the r-star-shaped tree (where l = maxi{l(Ai)}). The algorithm in [1] can be formulated as a 2-
sequence analogue to Equation (10) and this would lead to an O(l4) algorithm. However, a modified
approach allows for an O(l2) algorithm, as described in [1]. This trick can most likely also be used
in the cases considered in this paper. Secondly, the presentation of an algorithm for triplewise
sequence calculations may lead to a more useful algorithm performing statistical alignment of many
sequences related by a binary tree. Such an algorithm in itself is bound to be impractically slow.
Nevertheless, the analogous generalisation of the pairwise sequence alignment algorithm to the r
sequence by Sankoff [9] was the subsequent inspiration of many useful approximate and heuristic
methods.
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