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Abstract. Phylogenetic networks are mathematical representations of evolution-
ary history that are able to capture both tree-like evolutionary processes (specia-
tions), and non-tree-like “reticulate” processes such as hybridization or horizontal
gene transfer. The additional complexity that comes with this capacity, however,
makes networks harder to infer from data, and more complicated to work with as
mathematical objects.

In this paper we define a new, large class of phylogenetic networks, that we call
labellable, and show that they are in bijection with the set of “expanding covers” of
finite sets. This correspondence is a generalisation of the encoding of phylogenetic
forests by partitions of finite sets. Labellable networks can be characterised by
a simple combinatorial condition, and we describe the relationship between this
large class and other commonly studied classes. Furthermore, we show that all
phylogenetic networks have a quotient network that is labellable.

1. Introduction

The problem of describing the way that a set of organisms are related through
evolution is usually answered by presenting a phylogenetic tree or network whose
leaves are labelled by the set of species. These are directed acyclic graphs with a
single root that is a common ancestor of the set of species. The internal vertices rep-
resent historical events that include speciaton, in which a vertex has out-degree two
or greater, or some form of reticulation (hybridization or horzontal gene transfer),
in which a vertex has in-degree two or greater. Phylogenetic trees are the special
case of networks for which all internal vertices have in-degree 1, and so the only
event represented by the vertices is speciation.

Manipulating either trees or networks mathematically is important because many
methods for determining a tree or network require searching to find an optimum,
and often they involve choosing random trees or networks. To make this possible,
encodings of such graphs in other mathematical formats is often important compu-
tationally. For instance, a classical encoding of trees is the Newick format, which
records clusters (descendents of internal vertices) in a structured, in-line notation
(used in [7]), and there are encodings using sequences of integers [1, 13]. In networks,
encodings may require additional structure, such as the use of ‘circular’ permutations
for a class of unrooted phylogenetic networks [8].

In this paper we will show that a large class of rooted phylogenetic networks
is encoded by certain covers of finite sets. This specifically generalises encodings
for phylogenetic trees and forests that were given for binary trees by Diaconis and
Holmes in 1998 [4], and for general phylogenetic forests more recently [10].
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2 ANDREW FRANCIS AND MIKE STEEL

This encodable class we call the labellable phylogenetic networks, because they
have the property that their internal vertices can be deterministically labelled via
an algorithm based on an approach developed for trees [6].

There are many classes of phylogenetic network, and new ones are regularly de-
fined. The reason is that inference of networks is a difficult problem, partly because
the space of all networks is too large, and many networks have features that are
unlikely to be inferable from data, or that make them difficult to work with mathe-
matically. The class of labellable networks is a new and large class, as we will show
in Section 6. Its most important property — that its elements are in bijection with
the set of expanding covers (we define this later) — means that these networks can
be studied using an elementary combinatorial (set-theoretic) structure. Surprisingly,
we are able to show that every phylogenetic network has a labellable quotient.

The paper begins with a background section giving formal definitions and recall-
ing some relevant results from earlier work. Section 3 describes an algorithm for
labelling internal vertices of a network, and defines a labellable network as one for
which that algorithm is well-defined. It also provides a structural characterisation
of labellable networks, in Theorem 3.3. The next section (Section 4) gives the con-
nection to covers, and proves that the set of labellable networks is in bijection with
the set of ‘expanding covers’ (Theorem 4.4). This correspondence is made explicit
for non-degenerate networks in Section 5. We then consider in Section 6 the class
of labellable networks and its relationships with other well-known classes, such as
tree-based networks, tree-child networks, orchard networks, and others. We show
that the class of labellable networks contains all orchard networks, and hence all
tree-child and normal networks, but it does not contain, and is not contained in,
the class of tree-based networks. We characterise exactly when a binary tree-based
is also labellable, in Theorem 6.3. Fig. 6 shows the relationship among some of
these classes. Finally, in Section 7, we show that by defining an equivalence relation
on vertices in any phylogenetic network, we can form a quotient network that is
labellable. We call the quotient the derived network, and briefly discuss the rela-
tionship of this quotient to the normalisation map that was recently defined [9]. We
end with a discussion that highlights some questions for further research.

2. Background

2.1. Phylogenetic trees and networks. A (rooted) phylogenetic network on n
leaves is a directed acyclic graph (DAG) that has a single root (vertex with in-
degree 0) and n leaves (vertices of out-degree 0 and in-degree 1). Vertices that are
not leaves or the root are called internal. The set of rooted phylogenetic networks
on n leaves is denoted RPNn. In this paper all networks are rooted, so we will drop
the word ‘rooted’.

This is a more general definition than sometimes used, in that it allows internal
vertices to have any non-zero in-degree and any non-zero out-degree. A phylogenetic
tree is a phylogenetic network in which all internal vertices have in-degree 1.

We draw a phylogenetic network with its single root at the top, its leaves at the
bottom, and directed edges drawn with direction running down the page. Vertices
of a phylogenetic network are called tree vertices if they have in-degree 1 (including
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LABELLABLE PHYLOGENETIC NETWORKS 3

leaves), and are called reticulate vertices (or reticulations) if they have in-degree
greater than 1.

We say an internal vertex is degenerate if it either has in-degree and out-degree
both equal to 1, or in-degree and out-degree both strictly greater than 1 (the former
case are degenerate tree vertices, the latter are degenerate reticulations). A network
is called non-degenerate if it contains no degenerate vertices.

A phylogenetic network is binary if the root has out-degree 2, and all internal
vertices have total degree 3 (in-degree 2 and out-degree 1, or vice versa).

2.2. Trees, forests, and labellings. Phylogenetic trees and forests (collections
of trees whose leaves partition the set {1, . . . , n}) have been shown to correspond
to various partitions of finite sets. The basis for this correspondence is a labelling
algorithm that, given a phylogenetic tree with leaves labelled 1, . . . , n, assigns labels
to the internal vertices of the tree in increasing order from n+ 1 [6]. In the case of
binary trees (those whose internal vertices have out-degree 2), there are a total of
2n− 2 labels, and a correspondence with perfect matchings follows by forming pairs
of labels of sibling vertices (sibling vertices are those that share a parent) [4]. In the
case of non-binary trees and phylogenetic forests, the same process of forming sets
of sibling vertices gives a correspondence between the set of phylogenetic forests and
all partitions of finite sets [10] (see Fig. 1).

1 52 3 4

7

6
{{1, 7}, {2, 3, 6}, {4, 5}}

Figure 1. A tree that has been labelled according to the algorithm
in [6], and its corresponding partition whose sets are sets of sibling
vertices. This labelling algorithm is a special case of that given later
for networks, in Algorithm 1.

In the next section we show how this labelling algorithm for trees and forests can
be extended to some, but not all, phylogenetic networks. Those for which it can be
extended we call ‘labellable’ networks.

3. Labellable networks

The labelling algorithm for binary trees given by [6] and [4], and extended to
non-binary trees and forests in [10], takes a tree or forest with leaves labelled by [n],
and progressively labels internal vertices in sequence, until all except the root are
labelled. At each step the algorithm chooses a new vertex to label from those whose
children are all labelled, by choosing the one whose children have the lowest label.
Note, with trees and forests, the sets of children of vertices are disjoint.

In networks, sets of children of internal vertices are not, in general, disjoint, and it
is necessary to define the following partial order to facilitate the labelling algorithm:

A ≺ B if A ⊆ B or min (A \ (A ∩B)) < min (B \ (A ∩B)) .
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4 ANDREW FRANCIS AND MIKE STEEL

Note that this order reduces to the order used for labelling internal vertices in
phylogenetic forests (in Algorithm 1 of [10]).

Algorithm 1 Internal vertex labelling algorithm

Require: n ≥ 1
Require: N ∈ RPNn

m← 0 ▷ The number of internal labelled vertices
I ← set of unlabelled internal vertices in N ▷ Always non-empty (includes the
root)
while |I| > 1 do

A← {v ∈ I | c(v) are all labelled} ▷ Always non-empty (Lemma 3.2)
for v ∈ A do

if c(v) is minimal under ≺ in A then
v ← labelled n+m+ 1
m← m+ 1
I ← I \ {v}

end if
end for

end while

Algorithm 1 begins with a network whose leaves are labelled by [n] = {1, . . . , n}
under the usual total ordering. At each step the algorithm takes a network that has
been partially labelled, and chooses the minimal set of labelled sibling vertices (with
respect to ≺) whose parent is not labelled, and assigns the next available integer to
the parent. The output is a network whose (non-root) interior vertices are labelled
by elements of n+ 1, . . . , n+ (#interior vertices)− 1.

Algorithm 1 is well-defined for a network N as long as a) it is always possible to
find a set of sibling vertices whose parent is unlabelled, and b) each set of labelled
siblings has only one parent. These are essentially existence and uniqueness style
conditions.

Definition 3.1. A labellable network is one for which Algorithm 1 is well-defined.

While we show that a) holds for all phylogenetic networks (Lemma 3.2), it is easy
for b) to fail (see Fig. 2).

1 2

3 4

Figure 2. A network substructure that obstructs being labellable,
since the vertices labelled 3 and 4 share the same set of parents.

Lemma 3.2. Let N be a network with some vertices labelled, including all leaves.
If N has any unlabelled vertices, then it contains at least one such vertex whose
children are all labelled.
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LABELLABLE PHYLOGENETIC NETWORKS 5

Proof. For a vertex v in N , define d(v) to be the length of the longest path from v
to a leaf. This is well-defined, since N is finite and acyclic.

For v an unlabelled vertex in N , if there is an unlabelled vertex v′ on a path from
v to a leaf, then d(v′) < d(v). But d is bounded below by 1, for any unlabelled vertex
(since the leaves themselves are already labelled). Therefore, repeating this process
will eventually find an unlabelled vertex u for which all vertices on paths from u to
a leaf are labelled. In particular, all of its children are labelled, as required. □

Let cN(x) denote the set of children of x in N .

Theorem 3.3. A network N is labellable if and only if cN(x) ̸= cN(y) for all vertices
x ̸= y in N .

That is, N is labellable if and only if cN is one-to-one.

Proof. Lemma 3.2 shows that for any phylogenetic network the labelling algorithm
will always find a set of labelled vertices whose parent is unlabelled. Let U be the set
of such unlabelled vertices that are parents of labelled children. For the algorithm
to be well-defined, it must be possible to use ≺ to place an order on the set U , via
their sets of children.

The forward direction is immediate: if a network is labellable then it cannot have
a pair of distinct vertices with the same set of children, since then those distinct
vertices would not be able to be ordered.

Suppose for the reverse direction that sets of children of each vertex in N are
distinct. Then any pair of unlabelled vertices with labelled children has distinct sets
of children, and these can be ordered by ≺, thus allowing N to be labelled. □

4. Covers and labellable networks

As with trees and forests, the labelling of non-root vertices in a network gives rise
to a set of subsets of integers, namely the sets of sibling vertices (those sharing a
common parent).

There are two differences between this set-up for networks and that in earlier work
on forests. First, singleton sets may represent children of reticulations in networks,
or indeed degree 2 internal vertices, instead of roots of trees. Second, the sets are not
disjoint, because an integer labelling a reticulate vertex will have two sets of siblings.
Consequently, sets of sibling vertices from a labellable network are not a partition
of [m]. Instead, they are a ‘cover’ of [m], where a cover of [m] := {1, · · · ,m} refers
to a set of non-empty subsets of [m] whose union is [m]. Trivially, since a cover is a
set, all of its member sets are distinct. The sets in a cover C have a total order ≺
as defined above. We will denote the number of sets in C by |C|.
We will call the set of sets of sibling vertices from a phylogenetic network N the

cover associated with N . An example is given in Fig. 3. Note, repeat labels in a
cover from a network correspond to reticulations.

Lemma 4.1 below is an analogue of a similar result for forests in the proof of [10,
Theorem 6.5].

Lemma 4.1. If C is a cover of [m] associated with a phylogenetic network on n
leaves, then

n = m− |C|+ 1.
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321 4 5
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8
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Figure 3. A labelled, degenerate phylogenetic network. This net-
work has associated cover {{1}, {3}, {2, 7}, {4, 7}, {5, 8, 9}, {6, 8},
{10, 11}}.

Proof. We can count the number of vertices in the network in two ways. If the
number of sets in C is |C|, then there are |C| non-leaf vertices in N , and consequently
n + |C| vertices overall. On the other hand, all vertices in the network are labelled
by a unique element of [m], except the root. So there are [m] + 1 vertices in N .
Thus, n+ |C| = m+ 1, and so n = m− |C|+ 1 as required. □

If a cover C of [m] comes from a network, it also satisfies the properties in the
following lemma:

Lemma 4.2. If a cover C comes from a labellable network N on n leaves, then:

(1) The elements of {1, · · · , n} are not repeated in C; and
(2) For each i = 1, · · · , |C|, C contains at least i subsets of [n+ i− 1].

Proof. The leaves, labelled 1, . . . , n, have in-degree 1, and so each have precisely one
parent, and are each members of precisely one set of siblings. Thus the labels of
leaves are not repeated in C, proving (1).

Claim (2) can be proved by induction on i. If N is labellable then in the first step
there must be at least one set X1 ∈ C that is wholly contained in {1, . . . , n}. The
label n+ 1 is added to the vertex in N whose children are labelled by X1.

Suppose that for each i ≤ k there are at least i subsets of {1, . . . , n + i − 1} in
C. Then at each step of the labelling algorithm up to and including step k, a new
vertex has been labelled whose children are labelled by the set Xi, and in particular
at step k the label n + k has been added to a previously unlabelled vertex in N
whose children are labelled by Xk.

Since N is labellable, after the k’th step there are n + k labelled vertices, and a
set of labelled vertices Y whose parent is unlabelled. This set Y is distinct from
X1, . . . , Xk, since the sibling vertices labelled by those sets all have their parents
labelled, by steps up to step k. Thus we have Xk+1 := Y is a subset of {1, . . . , n +
k− 1, n+ k} and we have k+1 sets in C that are subsets of {1, . . . , n+(k+1)− 1},
as required. □

Definition 4.3. A cover satisfying the conditions in Lemma 4.2 is called an expand-
ing cover.
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LABELLABLE PHYLOGENETIC NETWORKS 7

Theorem 4.4. The set of labellable phylogenetic networks is in bijection with the
set of expanding covers.

Proof. Lemma 4.2 shows that each labellable network gives an expanding cover.

For the reverse direction, if a cover is expanding, then a network can be deter-
ministically constructed from the cover, using the following algorithm.

Algorithm 2 Network from an expanding cover

Require: C, an expanding cover of [m]
1: N ← N0 ▷ N0 is the empty network
2: n← m− |C|+ 1
3: N ← N0 ∪ {n isolated vertices labelled 1, . . . , n}
4: while i ≥ 1 and C ≠ ∅ do
5: Ci ← smallest element of (C,≺) contained in [n+ i− 1]. ▷ Always exists
6: N ← N with new vertex labelled n+ i, and edges (n+ i, j) for all j ∈ Ci

7: C ← C \ Ci

8: end while

Note that in the intermediate stages the graph is not necessarily a phylogenetic
network because it may not be connected, or may have several vertices of in-degree 0.

This algorithm is well-defined because of the properties of expanding covers —
there will always be a set at the first step of the while loop (line 5) to choose — and
it will terminate because C is finite and is reducing in cardinality by 1 with each
iteration of the while loop at line 7. It will output a phylogenetic network because,
with the exception of a single unlabelled vertex, every vertex has a label, and every
labelled vertex is in a set in C and so has a parent. The single unlabelled vertex is
the unique root which has in-degree 0. □

Example 4.5. Consider the cover:

C = {{2}, {5}, {1, 6}, {4, 8}, {3, 6, 9}, {10}, {7, 11}, {8, 12}}
of [12], with |C| = 8. If this corresponds to a network, the network must have
n = 12− 8 + 1 = 5, by Lemma 4.1.

It is expanding, because: it has two subsets of [n] = [5] (the definition of expanding
requires at least one); three subsets of [6] (needs at least two); three subsets of [7]
(needs three); four subsets of [8]; five subsets of [9]; six subsets of [10]; seven subsets
of [11]; and eight subsets of [12].

See Fig. 4 for an illustration of the network constructed from this cover, using
Algorithm 2.

The set giving rise to the vertex label i is determined by its position in an ordering
of the sets in C. This ordering will use ≺ and is defined by the following algorithm:

(1) For i = 1, · · · , |C|, do:
(a) Ci is the minimal set in (C,≺) contained in [n+ i− 1].
(b) Set C = C \ Ci.

(2) Output sequence C1, · · · , C|C|.

Because this is the order that sets in a cover are used to assign new labels to vertices
in the labelling algorithm (Alg. 1), we call it the ‘labelling order’ for a cover.

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527917doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527917
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 ANDREW FRANCIS AND MIKE STEEL
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N = N13

Figure 4. Construction of a network from the expanding cover
C = {{2}, {5}, {1, 6}, {4, 8}, {3, 6, 9}, {10}, {7, 11}, {8, 12}} described
in Example 4.5. The first step, consisting of 5 isolated vertices, is
omitted. Note that the labels of the reticulate vertices (6 and 8) ap-
pear twice in C.

5. Covers and non-degenerate networks

The constraint on networks that they be non-degenerate requires an associated
constraint on the corresponding set of covers. Non-degeneracy is equivalent to the
condition that each internal vertex has either in-degree 1 or out-degree 1, but not
both.
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Let N be a non-degenerate labellable network with cover C. In terms of C, the
in-degree of vertex i in C is precisely the number of sets in C for which i is an
element, while the out-degree of i is the size of the set in C that gave rise to it. If
N is non-degenerate, there must be corresponding constraints on the cover C.

With the sequence on the sets in C given by the labelling order, we now have the
following two-part ‘order condition’ for each i ≥ 1:

• If |Ci| > 1 then (n+ i) appears at most once in C; and
• If |Ci| = 1 then (n+ i) appears more than once in C.

Theorem 5.1. The set of non-degenerate phylogenetic networks are in bijection
with the set of expanding covers satisfying the order condition.

Proof. For any phylogenetic network we have a unique expanding cover, by Theo-
rem 4.4. If that network is non-degenerate, each vertex of out-degree greater than
one must have in-degree equal to one, and each vertex of out-degree exactly one
must have in-degree strictly greater than one.

If a vertex in a labellable non-degenerate network N has label k, then k = n + i
for some i ≥ 1, since the leaves (labelled 1 to n) all have out-degree 0. This indicates
that the label k was added by the i’th set Ci in the labelling order on the expanding
cover C that corresponds to N .

If the set Ci has cardinality one, then the vertex labelled k has out-degree one,
since its children are the vertices whose labels are in Ci. Since N is non-degenerate,
the in-degree of the vertex labelled k must be strictly greater than one. This implies
that k has more than one parent, and therefore more than one set of siblings. That
is, k appears in more than one sets in C, as required.

On the other hand if Ci has cardinality strictly greater than one, then k has out-
degree |Ci| > 1, and since N is non-degenerate, it must have in-degree one. This
is not possible if k appears more than once in C, so it must appear just once, as
required.

In the reverse direction, each expanding cover corresponds to a unique phyloge-
netic network by Theorem 4.4. If, in addition, the cover satisfies the order condition,
then a) each vertex label that arises from a set Ci of cardinality greater than one
appears just once, and b) each vertex label that arises from a set Ci of cardinality
exactly one appears more than once. These constraints respectively force the vertex
to be in-degree one and out-degree more than one, or in-degree more than one and
out-degree one. In other words, the vertex is non-degenerate, and so the network as
a whole is non-degenerate. □

The order condition feels somewhat unsatisfying because it is not a passive prop-
erty of the cover, but requires an additional order to be placed on it (the labelling
order), and a check to be performed algorithmically. By contrast, the conditions
for expanding covers are a static check for each i = 1, · · · , |C|. However, it is in
fact ‘easy’ to check the order condition holds, for a given cover. The construction
of the order on C is linear in |C|, and the check of the order condition itself seems
to be quadratic in |C|: the check is done for each i, and for each check, membership
is tested for each set in C. In other words, the whole process is at worst cubic in
complexity.
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10 ANDREW FRANCIS AND MIKE STEEL

Example 5.2. Recall the cover used in Ex. 4.5 was

C = {{2}, {5}, {1, 6}, {4, 8}, {3, 6, 9}, {10}, {7, 11}, {8, 12}}.
The labelling order on C is as used in the networks construction in Fig. 4 (by design),
namely ({2}, {1, 6}, {5}, {4, 8}, {3, 6, 9}, {10}, {7, 11}, {8, 12}). That is, C1 = {2},
C2 = {1, 6}, and so on, and with n = 5. To check the order condition here, we need
to look at sets of size 1 and those of size > 1. The three of size 1 are C1 = {2},
C3 = {5}, and C6 = {10}. The order condition would therefore require 6 = n + 1,
8 = n + 3, and 11 = n + 6 to appear more than once in C. This is satisfied for 6
and 8, but not 11. This is seen in the resulting network by 11 labelling a degenerate
vertex of in-degree and out-degree 1.

The sets of size > 1 are C2, C4, C5, C7, C8, and all of n+i for i = 2, 4, 5, 7, 8 appear
at most once in C, and so don’t give degenerate vertices. Note that the last of these,
13 = 5+8, does not appear at all, as the vertex added by that set is the last, which
is the unlabelled root.

6. Labellable networks and other familiar classes

The property of being labellable defines a class of networks, and so it is natural
to ask whether it is in fact one of the known classes, and if not, how it relates to
the many well-studied classes of phylogenetic network. For overviews of the many
known classes, we refer the reader to [16, Chapter 10] or [15].

Most of the well-studied classes are defined without permitting degenerate vertices
(for instance orchard networks have been defined in the non-binary case [17], but
not with degenerate vertices), so many results in this section are restricted to the
non-degenerate case, whether binary or not.

Of the many classes previously defined, most are contained in the class of tree-
based networks [11] — which are networks that have a spanning tree whose leaves are
those of the network — so we first ask whether all labellable networks are tree-based.

It turns out that not all tree-based networks are labellable, because the property
of being labellable excludes substructures such as that in Fig. 2, which are allowable
in tree-based networks, as the following result makes clear.

Corollary 6.1 (Corollary to Theorem 3.3). If N is a nondegenerate tree-based
network, then N is labelleable if and only if cN(x) ̸= cN(y) for all tree vertices
x ̸= y in N .

Proof. By Theorem 3.3, it suffices to show that for any non-degenerate tree-based
network N the equality cN(x) = cN(y) cannot hold if one or both of x, y is reticulate.
First suppose that x and y are both reticulate vertices. Then by the nondegenerate
condition x and y each have exactly one (identical) child z, and again by the non-
degenerate condition z is a reticulate vertex. However this stack of reticulations
cannot exist in a tree-based network (by the antichain-to-leaf property described
in [11]). Alternatively, suppose that x is a reticulate vertex and y is a tree vertex.
Then (again by the non-degenerate condition) x has a single child, while y has at
least two children and so cN(x) ̸= cN(y). □

Remark 6.2. A further corollary of this last result is that if N is semiresolved (i.e.
every tree vertex has outdegree 2) and tree-based, then N is labellable if and only

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.09.527917doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.09.527917
http://creativecommons.org/licenses/by-nc-nd/4.0/
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if N is stable (this follows from Theorem 1 of [12], where the notion of ‘stable’ is
defined).

In the case of binary tree-based networks, a tighter characterisation of those that
are labellable is possible, as follows.

Theorem 6.3. A binary tree-based network is labellable if and only if it has the
property that pN(x) ̸= pN(y) for each pair of reticulate vertices x, y.

Proof. Let N be a binary tree-based network.

Suppose that pN(x) = pN(y) for a pair of reticulate vertices. Since N is binary,
x, y each have the same two parents (say u, v) and so (again since N is binary),
cN(u) = cN(v). Hence, by Theorem 3.3, N is not labellable.

Conversely, suppose that N is not labellable. Then Theorem 3.3 implies that there
exist vertices u, v with cN(u) = cN(v). Since N is binary this implies that either a)
cN(u) = cN(v) = {x, y} for a pair of reticulate vertices x, y, and so pN(x) = pN(y),
or alternatively b) cN(u) = cN(v) = {x}. But this second case can’t occur in a
binary tree-based network, since it implies that u, v, x are three reticulations with
arcs (u, x) and (v, x), which is impossible in a binary tree-based network. Thus
pN(x) = pN(y) for a pair of reticulate vertices. □

While not all tree-based networks are labellable, it is also true that not all la-
bellable networks are tree-based. The substructure of a network shown at the right
of Fig. 5 can be labelled, but is an obstacle to tree-based (it is a ‘zig-zag path’, as
described in [20]).

21 3

7 9 8

10

4 65 53 4

1 2

Figure 5. Left: A labellable network that is not orchard. It can
be seen to be not orchard because it does not have any cherries or
reticulated cherries. Right: A substructure called a zig-zag path [20]
that prevents a network from being tree-based, but is nevertheless
labellable.

In summary, the classes of labellable and tree-based networks are not nested
within each other.

In the remainder of this section we show that some other large classes that sit
inside the tree-based networks — the orchard networks and tree-sibling networks
— are also labellable. Thus, they sit in the intersection of the tree-based and
labellable classes (see Fig. 6). Furthermore, other prominent classes of network are
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12 ANDREW FRANCIS AND MIKE STEEL

contained inside the intersection of orchard and tree-sibling. These include tree-child
networks [14], and normal networks, which are tree-child (as also shown in Fig. 6).

Orchard networks are non-degenerate, rooted phylogenetic networks, that have
the defining property that they can be reduced to a single point by a series of cherry
and reticulated cherry reductions. These reductions replace a cherry or reticulated
cherry with a simpler structure, reducing the network progressively. See [5] for the
original definition and [17] for the extension to the non-binary case, and in particular
a result we use in the proof below.

Theorem 6.4. Orchard networks are labellable.

Proof. Suppose that N is an orchard network, but is not labellable (we will derive
a contradiction). Since every orchard network (binary or non-binary) is tree-based
(by Corollary 4.5 of [18]), Corollary 6.1 implies that N has a pair of tree vertices
u, v with cN(u) = cN(v) (and since u, v are tree vertices this shared set has size at
least 2).

By Theorem 2 of [17] a non-degenerate network N is orchard if and only if some
binary resolution of N (or N itself, if N is binary) admits an HGT-consistent la-
belling. However the vertices u, v with their shared set of children of size k ≥ 2
provides an obstruction to any resolution that allows a HGT-consistent labelling.
Thus, N fails to be an orchard network, a contradiction. □

Corollary 6.5. If N is an orchard network then it does not contain any two vertices
that have the same set of children.

Proof. Since N is orchard it is labellable, by Theorem 6.4, and the result follows
from the characterisation in Theorem 3.3. □

Note, there are labellable networks that are not orchard, such as that in Fig. 5.

Theorem 6.4 also implies that tree-child networks [3] are labellable (since they are
a subset of the orchard networks), but this can also be proved directly by looking
at sets of children of vertices, as follows.

Recall that a vertex v in a network is visible if there is a leaf i ∈ [n] for which
every path in N from the root to leaf i passes through v.

Lemma 6.6. In any phylogenetic network, N , if cN(u) = cN(v) then neither u nor
v are visible vertices.

Proof. Suppose cN(u) = cN(v) and u is visible. Then there is a leaf i ∈ [n] for which
every path P from ρ to i passes through u. Since P must also pass through one
of the children of u (say x), let P ′ be any path from ρ to v, and extends this path
by adding edge (v, x) followed by the path used by P from x to i. This extended
path is then a path from ρ to i that avoids u, contradicting the assumption that u
is visible. □

Note that a network N is tree-child if and only if every vertex is visible, and so
an immediate consequence of Lemma 6.6 is that tree-child networks are labellable.

A phylogenetic network is tree-sibling if every vertex has a sibling that is a tree
vertex [2]. In other words, every set of children (of a vertex in the network) has
at least one tree vertex. Since a tree vertex is the child of exactly one parent, it
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is impossible for two sets of children to have the same parents, in a tree-sibling
network. Thus, as an immediate corollary to Theorem 3.3, tree-sibling networks are
also labellable.

Corollary 6.7 (Corollary to Theorem 3.3). Tree-sibling networks are labellable.

Thus, the classes of orchard and tree-sibling networks are labellable, and other
prominent classes the tree-child networks and normal networks [19] are both or-
chard and tree-sibling, and so sit in their intersection (and in particular, are also
labellable). The above findings are summarized in Fig. 6.

Tree basedLabellable Tree siblingOrchard Tree childNormal

Figure 6. Relationships between labellable networks and some other
classes. This figure applies for non-degenerate networks (non-binary
permitted).

7. Derived networks

In this section we return to the wider generality of allowing degenerate networks,
and we show that every phylogenetic network has a quotient that is labellable.

Take any network N = (V,A) with leaf set [n] and define a relation ∼ on V by
x ∼ y if and only if cN(x) = cN(y). Then ∼ is an equivalence relation, and so N
determines an associated network N ′ = (V ′, A′) where V ′ are the equivalence classes
of V under ∼, and (u, v) ∈ A′ if and only if there exists x ∈ u, y ∈ v, with (x, y) ∈ A.
Note that N ′ has leaf set [n], and a single root.

In general, the network N ′ may still have distinct vertices u, v for which cN ′(u) ̸=
cN ′(v), in which case N ′ is not be labellable. Nevertheless, we can repeat the above
process to construct a sequenceN,N ′, N ′′ · · · which stabilises after a finite number of
steps at a network D(N) that has no distinct vertices u, v with cD(N)(u) = cD(N)(v),
and thus D(N) is labellable. Note that the number of steps required to reach this
labellable network is finite since replacing an equivalence class (of vertices) of size
at least one by a single vertex reduces the number of vertices in the network.

This provides a canonical (and idempotent) map from all networks to the class of
labellable networks. An example of this map is given in Fig. 7.
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a

p1 p2
b

2 31

N

c1 c2

a

[p]

b

2 31

(i) D(N)

c1 c2

2 31

(ii) N (D(N))

a

b

2 31

(iii)

c1 c2

2 31

(iv) N (N)

Figure 7. An unlabellable network N on the left, with the results
of normalising, and taking the derived network. The pendant triangle
represents an arbitrary tree. (i) shows its derived network D(N),
where [p] denotes the ∼ equivalence class {p1, p2}, and (ii) shows
the normalisation of that derived network, N (D(N)). The bottom
row shows the normalisation process described in [9]. (iii) shows the
visible vertices and related edges (the first step of the normalisation
process), and (iv) shows the complete normalised network N (N) with
degree 2 vertices suppressed. Note that N (N) ̸= N (D(N)) for this
example.

7.1. Connection to normalisation. The above contains an echo of the normali-
sation map in [9], in that it is a map from the class of all phylogenetic networks to
a specific class, in this case the labellable networks.

Recall we write D(N) for the derived network of any network N , and let us write
N (N) for its normalisation (as defined in [9]).

Note that normal networks are already labellable, so

D(N (N)) = N (N).

On the other hand, the normalisation of a network and of its labellable (derived)
version need not be the same. That is, it is possible that

N (D(N)) ̸= N (N).
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Thus we obtain two normalisations of the same network, one going via a labellization
process. An example to illustrate this inequality is shown in Fig. 7.

8. Discussion

We have described a combinatorial correspondence for phylogenetic networks that
maps to sets of covers of a finite set. Covers of finite sets that grow in a constrained
way (the expanding covers) correspond to the large class of labellable phylogenetic
networks. Those expanding covers that can be ordered in a particular way corre-
spond to non-degenerate networks. The new class of labellable phylogenetic net-
works contains the class of orchard networks, but neither contains, nor is contained
in, the class of tree-based networks. Because the class of labellable networks con-
tains the orchard networks, it also contains the class of tree-child networks, and the
class of normal networks.

There are a number of interesting further questions that remain to investigate.

For instance, we can describe when a binary tree-based network is labellable, based
on the structure (Theorem 6.3). But are there conditions on the covers that force
the network to be orchard, or tree-child, or normal?

It would also be interesting to more deeply understand the link between covers
from degenerate and non-degenerate networks. A degenerate network can be made
non-degenerate in a simple manner: we suppress any degree-two vertices, and blow
up vertices of in-degree and out-degree more than 1 by replacing each such vertex by
two vertices connected by an edge (so that a vertex of in-degree d1 and out-degree d2
is replaced by one vertex of in-degree d1 and out-degree one, connected to another
of in-degree 1 and out-degree d2). What does removing the degeneracy mean for a
cover, and what do these two degeneracy-removing actions involve at a cover level?

The connection between degeneracy-removal and covers extends to other actions
on networks. Is it possible to describe actions such as nearest-neighbour-interchange
(NNI) or subtree-prune-and-regraft (SPR) in terms of changes to the cover? And
indeed this can be asked in the context of familiar families of network: can the cover
of a network be manipulated to make it orchard, tree-child, or normal?

Finally, there may be connections to algebraic structures to explore. In the case of
trees and forests, which correspond to partitions of finite sets, there is a correspond-
ing set of partition diagrams that can be acted on by elements of the symmetric
group or Brauer monoid [10]. What, if any, are the corresponding algebraic struc-
tures that correspond to covers, and can these be used to move around network
space?
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