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Abstract
Background: Phylogenomic studies based on multi-locus sequence data sets are usually characterized by partial 
taxon coverage, in which sequences for some loci are missing for some taxa. The impact of missing data has been 
widely studied in phylogenetics, but it has proven difficult to distinguish effects due to error in tree reconstruction from 
effects due to missing data per se. We approach this problem using a explicitly phylogenomic criterion of success, 
decisiveness, which refers to whether the pattern of taxon coverage allows for uniquely defining a single tree for all taxa.

Results: We establish theoretical bounds on the impact of missing data on decisiveness. Results are derived for two 
contexts: a fixed taxon coverage pattern, such as that observed from an already assembled data set, and a randomly 
generated pattern derived from a process of sampling new data, such as might be observed in an ongoing 
comparative genomics sequencing project. Lower bounds on how many loci are needed for decisiveness are derived 
for the former case, and both lower and upper bounds for the latter. When data are not decisive for all trees, we 
estimate the probability of decisiveness and the chances that a given edge in the tree will be distinguishable. 
Theoretical results are illustrated using several empirical examples constructed by mining sequence databases, 
genomic libraries such as ESTs and BACs, and complete genome sequences.

Conclusion: Partial taxon coverage among loci can limit phylogenomic inference by making it impossible to 
distinguish among multiple alternative trees. However, even though lack of decisiveness is typical of many sparse 
phylogenomic data sets, it is often still possible to distinguish a large fraction of edges in the tree.

Background
Ready access to vast sequence databases and new data
emerging from large-scale sequencing efforts is trans-
forming efforts to infer the phylogenetic history of spe-
cies. Efforts to build ever larger subtrees of the "tree of
life" are pushing the field to grapple with highly species-
rich data sets (plants: 2538 taxa [1]; legumes: 2228 taxa
[2]; Asterales: 13,533 taxa [3]; eukaryotes: 73,060 taxa
[4]). At the same time, some recent studies exploiting
complete genome sequences or genomic libraries include
100s - 1000s of loci [5-11]. The former tend to be data
sets with many taxa and few loci; the latter few taxa and
many loci. However, the distinction is blurring as larger
data sets of both kinds have been constructed using semi-
automated assembly pipelines [3,10] and high perfor-
mance phylogenetic inference packages (e.g. [12]).

Although such vast data sets have effectively solved cer-
tain phylogenetic problems, such as the broad outline of
yeast phylogeny [5], in other taxa they have uncovered a
surprisingly high level of incongruence and uncertainty
(reviewed in [13]). Case studies in Drosophila [14], rice
[1,11,15], house mouse [16], and primates [17] document
processes generating incongruence among gene trees in
different parts of the genome that contribute nearly as
much to the signal as the true species history does. Phylo-
genetic methods are struggling to keep pace with inferen-
tial complications arising from these processes, such as
the potential for statistical inconsistency when sequences
are concatenated [18,19]. Indeed, a minor paradigm shift
appears to be occurring toward retaining the individual-
ity of signals associated with small genomic regions
("gene trees") rather than simply concatenating all
sequence data into an overall analysis [20-24]. This
approach comprises so-called "supertree" methods [25] in
the broadest sense of that term. In phylogenomic con-
texts this includes methods that explicitly try to build
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species trees while reconciling gene trees by modeling
processes at the interface between phylogenetics and
population genetics, such as lineage sorting [24,26,27],
recombination [28] and hybridization [29,30].

In addition to biological processes which evidently con-
found phylogenomic inference are complexities that stem
from the origin of the data themselves. One of the hall-
marks of typical phylogenomic data sets is partial taxon
coverage among loci–by which we mean not merely miss-
ing nucleotides within an alignment but loci for which an
entire sequence is missing for some taxa (Sanderson et al.
[31]; also referred to as "taxon occupancy" by Hejnol et al.
[10]). Missing data arise from causes including biases in
sequence databases, the technicalities of sequencing
strategies, and real evolutionary processes of sequence
divergence or gene loss. Whenever sequences from
genomic libraries such as ESTs or BAC-ends provide only
partial coverage of a genome, the mismatch between
regions covered in different species will generate missing
data. Whole genome shotgun sequencing using technolo-
gies that assemble at low coverage values will likewise
entail missing data, especially at broader phylogenetic
scales. Even finished whole genomes can fail to have
homologs in a collection of species for various reasons
ranging from accelerated sequence divergence to gene
loss [32]. It is not unusual for finished genomes to have
numerous genes with no detectable homologs in any
other taxon (e.g., the maize genome has 2000 unique
genes not found in close relatives: [33]).

The consequences of missing data for phylogenetic
inference were first studied in the context of integrating
fossil taxa, in which there are typically large subsets of
missing morphological data, with more complete extant
taxa [34-37]. More recently the impact of missing data on
accuracy of inferred trees has been examined in the more
general context of molecular and phylogenomic data sets
[11,38-41] where missing data arises for a variety of rea-
sons. Collectively this body of work treats missing data at
the scale of individual cells in a taxon by character data
matrix or sequence alignment up to entirely missing
sequences for some taxa in a supermatrix or supertree
setting, which is the phylogenomic context we consider
here. Conclusions about the negative impact of missing
data on accuracy have ranged from optimistic [37,42,43]
to somewhat more cautious [38,41]; it is possibly fair to
say that many empirical studies have argued that the
impact of missing data tends to be unbiased and can be
ameliorated by sufficient overall quantity of data (e.g.,
[10]), and most simulation work agrees (see exceptions:
[35,41]). However, there has been frequent speculation
about the distribution of missing data in the matrix (e.g.
its "evenness", [38]: page 546; [10]: SOM). General con-
clusions have remained elusive both because of lack of
characterization of this distribution and the difficulty of

separating the usual problems of phylogenetic infer-
ence–error and bias caused by the data–from the simple
absence of data.

In the phylogenomic context of multiple loci, a natural
question is when can phylogenetic information from dif-
ferent loci be combined to produce a good tree with all
taxa present, even when taxa are missing for some loci?
Ideally this question should be abstracted away from the
details of tree reconstruction methods. We derived some
formal results recently for a relatively simple notion of
combinability - "decisiveness" ([44]; note, Goloboff [45]
used this term with a very different definition). A pattern
of taxon coverage is decisive for some tree on all the taxa
in a multi-locus data set if that tree is uniquely defined by
combining the (correctly inferred and perfectly concor-
dant) trees from the separate loci. Our previous paper
[44] focused on a strong sense of decisiveness: decisive-
ness for all trees. In this paper we also consider weaker
notions of decisiveness, derive further results on deci-
siveness in the important context of sampling from
genome-scale data, and examine the utility of the concept
in real phylogenomic data sets. The theory will permit us
to make relatively precise statements about matters such
as the amount and distribution of missing entries, at least
within bounds. The scale of phylogenomic data sets and
the sampling properties of genomic sequencing protocols
is likely to increase the relevance of our mathematical
theory.

Methods
Overview
This section outlines several mathematical results, so we
begin with an intuitive description of its main point. We
assume a phylogenomic data set consists of k loci (how-
ever defined) and n taxa. Loci with data present for fewer
than n taxa have "missing data". Missing data across the
entire data set can thus be characterized by the pattern of
"taxon coverage", the set of sets of taxa present for each
locus or tree (Figure 1). The basic idea of the paper is that
we would like taxon coverage to be "decisive" for the true
tree of all n taxa. This means that, taken together, all the
subtrees of the true tree corresponding to the partial
taxon sets at the different loci should be sufficient to
uniquely define the true tree. Surprisingly, this is not true
for many patterns of partial taxon coverage. This goal is
independent of the sequence data, i.e., whether the loci
agree on one tree or contain sufficient data to infer any
tree. Setting those issues aside lets us isolate the effects of
taxon coverage itself. Without sufficient coverage, even
the best data will fail to recover a tree even if the underly-
ing data themselves are of impeccable quality.

Questions about taxon coverage arise in at least two
contexts. In the first, taxon coverage is given a priori.
This might happen when a data matrix has already been
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assembled from GenBank, or in an examination of a data
set from the literature. In this case, the true tree is
unknown, and the key question is whether the data set is
decisive for all trees, some trees, or no trees. In the sec-
ond context, taxon coverage can be modeled as the out-
come of a sampling process. This might result from a
sequencing strategy, for example, that induces a certain
quantity of missing data, but for which those data are
more or less randomly distributed. Here the pertinent
question is how many loci must be sampled to guarantee
decisiveness for the unknown true tree.

Definitions
We begin by recalling some basic definitions from phylo-
genetic theory. Following Semple and Steel [46], given a
set X of taxa, a phylogenetic X-tree is a (unrooted) tree T
in which the leaves, or terminal taxa, of T consist of the
label set X (taxon names) and all the remaining vertices
(nodes) of T are unlabelled and have at least three inci-
dent edges. T is binary (completely bifurcating) if every
internal vertex has exactly three incident edges. For a
phylogenetic tree T and a subset Y of X, let T|Y denote
the induced phylogenetic tree on leaf set Y (the tree
obtained from the minimal subtree connecting Y by sup-
pressing any vertices of degree two). We will let n = |X|
throughout. A quartet tree is a binary phylogenetic tree
on four leaves. For such a tree with leaves a, b, c, d, we
write ab|cd if the internal edge of the tree separates the
pair a, b from c, d.

A rooted phylogenetic tree is a tree obtained from a phy-
logenetic tree by deleting some leaf and its incident edge
and regarding the other endpoint of that edge as a root
vertex. Rather than defining the notions that follow for
both rooted and unrooted phylogenetic trees separately,

we will define them just for unrooted trees; the analogous
definitions for rooted trees follow immediately by regard-
ing any rooted tree on a set of n taxa as an unrooted phy-
logenetic tree on n+1 taxa, the additional taxon being
some fixed reference outgroup (real or hypothetical).

We now define some key concepts. Let Y be the (label)
set of taxa with nonmissing data for some locus (Yi if
locus i is specified).

• Whenever Y ⊆ X, we say that a binary phylogenetic 
X-tree T displays a binary phylogenetic Y-tree, T' if 
T|Y = T'. More generally, for Y ⊆ X, we say that a phy-
logenetic X-tree T displays a phylogenetic Y-tree, T' if 
T|Y either equals T' or is a resolution of that tree (i.e. 
all the splits of T' are contained in T|Y).
• We say that a collection of phylogenetic trees 
T1,...,Tk defines a phylogenetic X-tree T if X is the 
union of the leaf sets of the trees T1,...,Tk and there 
exists one, and only one phylogenetic X-tree that dis-
plays these trees, and this tree is T. This implies T that 
must be binary.
• An internal edge e of a binary tree T is said to be dis-
tinguished by some other tree if both trees display a 
quartet tree xy|wz but the tree T/e (the tree obtained 
from T by collapsing e) does not display this quartet 
(this means that x, y, w, z comes from each of the four 
subtrees of T incident with e). There is an analogous 
notion of 'distinguished' for rooted trees based on 
rooted triples rather than quartet trees. For example, 
in Figure 2A the internal edge below the clade C, D of 
the original tree (left) is not distinguished by either of 
the two subtrees (middle) shown; however in Figure 
2B all three interior edges of the original tree (left) are 
distinguished by the subtrees (middle).
• For a collection S = {Y1, ..., Yk} of subsets of X, we say 
that S is the pattern of taxon coverage or just taxon 
coverage (Figure 1). Any taxon found in all k subsets is 
called a reference taxon. The taxon coverage density is 

.

• We say that S is decisive for a phylogenetic tree T 
provided T|Y1,...,T|Yk defines (Figure 2).
• We say that S is phylogenetically decisive for all trees 
if it satisfies the following property: If T and T' are 
binary phylogenetic X-trees, with T|Y = T'|Y for all Y 
∈S then T = T'. In other words, for any binary phylo-
genetic X-tree T, the collection of induced subtrees 
{T|Y:Y∈S} defines T.

These last two definitions are from [44], although we
now adopt the convention of saying "decisive for all trees"
instead of merely "decisive". Notice that a pattern of taxon
coverage that is decisive for a given tree can involve far
fewer loci than any pattern of taxon coverage that is deci-
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Figure 1 A simple taxon coverage pattern. The pattern is shown in 
both set notation and the more conventional notation as a matrix of 
taxa by loci. The taxon coverage density is 0.70.
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sive for all trees; for instance, for every binary phyloge-
netic tree T, there is a set S of just n - 3 quadruples (set of
four taxa) for which S is decisive for T [47] but any set of
quadruples that is decisive for all trees must have size that
is at least cubic in n (this follows from Theorem 1, below).

Notice that there is a subtle but fundamental distinc-
tion between questions about whether an arbitrary col-
lection of input trees, T1,...,Tk, defines a unique tree, T, on
the one hand, and whether a pattern of taxon coverage, S
= {Y1,...,Yk}, together with a tree, T, induces a set of sub-
trees, T|Y1,...,T|Yk, that uniquely defines T. Intuitively, in
the first case the focus is on the subtrees, whereas in the
second the focus is the pattern of taxon coverage. The
term "define" refers to the first context; "decisive" to the
second. What does it mean when taxon coverage is not

decisive for all trees? Then there exists two or more dis-
tinct trees which cannot be differentiated from one
another based only on the subtrees induced by the taxon
coverage pattern, because these trees induce the same set
of subtrees. Of course, these may or may not include the
"true tree" for any given problem in phylogenetic infer-
ence, but surely it is risky to be unable to distinguish
among possibilities in case the true tree is involved.

Context 1: Taxon coverage is fixed a priori
In this context, we assume S is given. Steel and Sanderson
[44] established exact conditions for when a pattern of
taxon coverage, S, is decisive for all (unrooted) trees.
Briefly, for every four-element partition of the label set,
there must be a quadruple of taxa in some set in S such
that each element of the quadruple is found in a different
element of the partition. In general testing this "four-way
partition" condition is computationally expensive, as the
number of four-way partitions is exponential in the size
of the label set. Easier to compute are (i) a necessary con-
dition, which is that for each triple (set of three taxa)
there must be at least one taxon set in S containing that
triple [48], and (ii) a sufficient condition, which requires
that, assuming a reference taxon exists, every quadruple
containing that reference taxon has at least one taxon set
in S containing this quadruple. See Figure 3 for some sim-
ple examples. The necessary condition can be quickly
used to determine when taxon coverage is not decisive for
all trees, and the fraction of triples present may provide
an indication of the impact of low taxon coverage. Below
we give several empirical examples.

It is also possible to derive some lower bounds on the
number of loci required for phylogenetic decisiveness for
all trees. We begin with the simpler case of subtrees
defining a tree. A necessary condition for an arbitrary
collection of subtrees to define a tree is given by [49]: if
T1,...,Tk define a phylogenetic tree with n leaves then:

where ι(Tj) refers to the number of internal edges of Tj.
For example, at least n-3 quartet trees are needed to
define a tree with n leaves. A similar necessary condition
holds for decisiveness for a given tree. Since ι(Tj) is at
most the number of leaves of Tj minus 3 it follows that if S
= {Y1,...,Yk} is phylogenetically decisive for T then:

( ) ,T nj
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Figure 2 Taxon coverage and defining trees. A. For the original tree 
and partial taxon coverage shown on the left, the two induced sub-
trees (middle) do not define the original tree, because other trees 
(right, middle and lower) also display these subtrees. B. In this case, the 
middle two subtrees do define the original tree. Notice that the taxon 
coverage pattern is the same in both cases. This coverage is phyloge-
netically decisive for the original tree in B, but not in A. Thus, it follows 
that this taxon coverage is not phylogenetically decisive for all trees.
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[50], where nj = |Yj |. As noted in this last paper,
Inequality (2) is not tight in the following sense: certain
nine-leaf binary trees cannot be defined by any two six-
leaf subtrees, even though Inequality (2) is satisfied since
(6-3) + (6-3)≥ (9-3).

A consequence of Inequality (2) is that if the sets Y1, ...,
Yk each have size at most m then a lower bound on the
number of loci required for decisiveness for a given tree
is:

Similar bounds can be obtained for phylogenetic deci-
siveness for all trees.

Theorem 1 If a collection S = {Y1, ..., Yk} of subsets of X
is phylogenetically decisive for all trees

then: .

where nj = |Yj|. In particular, if each of the sets in S has
size at most m then:

(See Appendix for proof). This provides a necessary
condition, or lower bound, for phylogenetic decisiveness
for all trees. Roughly speaking, if some fraction of taxa, f
= m/n, is present for each locus, then we need at least (1/
f)3 loci for decisiveness for all trees, while at least (1/f) loci
are required for decisiveness for a given tree.
Partial decisiveness
If we knew T, it would be sufficient to use results on
defining trees to describe the taxon coverage needed to
define T from subtrees. In practice we do not, and to play
it safe, we require sufficient taxon coverage for all T (deci-
siveness for all trees). This may be too strong a require-
ment. Perhaps it is sufficient for taxon coverage to be
decisive for most trees, assuming then that the true tree is
likely among this set of trees. Figure 4 shows an example
in which taxon coverage is not decisive for all trees (easy
to see because not all triples are present), but is decisive
for 6 out of 15 possible rooted trees for 4 taxa. This exam-
ple suggests it would be useful to enumerate or estimate
the fraction of trees for which S is decisive.

Determining when taxon coverage is decisive for only
some trees involves an important open question. When
exactly does a set of subtrees define a tree? The bound
stated earlier does not specify how to tell if some set of n-
3 or more quartet trees defines a tree. The answer is
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Figure 4 Partial taxon coverage. Shown is an example in which tax-
on coverage is not decisive for all trees, but it is decisive for 6 out of 15 
possible rooted trees for 4 taxa. This is illustrated for the equivalent 15 
unrooted trees, by taking advantage of the "trick" that there is an out-
group taxon, OG, that is common to both trees (a "reference taxon"), 
and thus we can regard it as the root. Then we can use known results 
[46] to determine whether the subtrees induced by the taxon cover-
age define the tree (and thus enumerate for which trees the coverage 
pattern is decisive).
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Figure 3 Taxon coverage patterns and decisiveness. A. Trivially de-
cisive for all trees because one locus contains all taxa and thus by itself 
satisfies the required four-way partition property. B. Not decisive for all 
trees. For two loci only two quartets are induced by any tree, and al-
though two are necessary to define a tree, these two do not suffice. We 
also know that all triples must be present as a necessary condition for 
decisiveness for all trees, but the triple {C, D, E} is not present in any col-
umn. C. Decisive for all trees because there is a reference taxon and ev-
ery quadruple of taxa containing the reference pattern is seen among 
the loci, which satisfies a sufficient condition.
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known for rooted [47], but not for unrooted trees. A col-
lection of rooted trees defines a tree if two conditions are
met: each subtree is displayed by the tree, and each inter-
nal edge of the tree is distinguished by an internal edge of
at least one of the input trees ([47]: see definition above).
In contrast to the rooted setting, distinguishing all the
edges of an unrooted tree is only a necessary (but not suf-
ficient) condition for a collection of unrooted trees to
define that tree. To proceed, we therefore restrict atten-
tion to the rooted case, which is equivalent to assuming
there exists in the data set a reference taxon which can
provisionally be used to root the input trees (in an artifi-
cial but useful sense of "rooting").

For rooted trees, the fraction of trees, ΠD, that are deci-
sive for a given pattern of taxon coverage could be deter-
mined by checking these conditions for all possible trees.
For small sets of taxa complete enumeration is feasible.
For larger data sets, the true fraction of trees for which
the taxon coverage is decisive can be estimated from the
fraction in a large random sample of trees (under a uni-
form/equiprobable distribution of trees).

However, the condition of distinguishability of edges
suggests a potentially more sensitive measure of "partial"
decisiveness: the probability of an edge being distin-
guished on a tree for a given pattern of taxon coverage,
Πd. This is the fraction of edges on the tree that are dis-
tinguished by subtrees induced by the taxon coverage
pattern, averaged across all trees, or a random sample of
trees. We examine these measures of partial decisiveness
in empirical examples below.

Context 2: Taxon coverage is the product of a random 
sampling process
In this context the taxon coverage is not fixed but instead
is determined by a random process of sampling. This
might be a reasonable model for data assembled from
partial genomic coverage, for example. The question we
want to address is how many loci must be sampled to
guarantee with some high probability that the taxon cov-
erage will be decisive for some unknown tree T. In this
context we need not require that it be decisive for all
trees, because the results we derive will hold for any tree
T and the true tree will be one of these. This is a subtle
difference compared to the first context of a fixed taxon
coverage pattern, where it made sense to require decisive-
ness simultaneously for most if not all trees. One way to
understand this is to realize that because the sampling
scheme is generating random patterns of taxon coverage,
there is a chance that they are decisive for any particular
true tree, and the probability calculations will be derived
on this assumption. [If there were reason to think that
two or more trees are "correct", and we want to require
the random taxon coverage will define all of them, we

might insist on decisiveness for all trees in this context
too–see Discussion for possible examples.]

Let T be an unknown binary phylogenetic X-tree, and
suppose we independently sample k random subsets
S1,...,Sk of X according to the following process: For each i,
taxon x is included in Si with probability p(x), indepen-
dently of other taxa. We will first consider two cases:

• Uniform coverage (UC): p(x) = p for all taxa x in X;
• Uniform (+1 complete) coverage(UC+1): p(y) = 1 
for one taxon y in X, and p(x) = p for all other taxa x in 
X. This is the case in which a reference taxon is pres-
ent. Later we will discuss possible extensions of this 
model to allow variable taxon coverage probabilities 
across a tree.

Recall that taxon coverage pattern leads to a set of
induced subtrees for each locus, T|S1,...,T|Sk. Previously
we assumed there was no conflict among these induced
trees–they could be reconstructed accurately, but here
we can obtain some results even if these induced trees are
not fully resolved. We use a simple random model for lack
of resolution in the induced trees. It does not explicitly
model the possible sources of this loss of resolution, such
as multiple hits in sequence data, but it provides a tracta-
ble starting point. Assume for some fixed probability q
that each edge in T|Si (for each i) is retained with proba-
bility q or collapsed with probability 1-q, and this is done
independently across the edges of T|Si, and across the dif-

ferent induced trees. Let  denote the resulting
set of partially-resolved induced subtrees of T. Let Ek(T)

be the event that  defines T.
We are interested in computing bounds on the proba-

bility P(Ek(T)) of this event that depend just on p, q and
the total number of taxa n =|X|. It is useful to distinguish
two further cases:

• Rooted: T (and thereby the induced subtrees) are 
rooted trees;
• Unrooted: T (and thereby the induced subtrees) are 
unrooted trees.

Let R(n) denote the set of rooted binary trees on n leaf
taxa, and U(n) the set of unrooted binary trees on n leaf
taxa. Note that by rooting a tree on an arbitrary taxon we
can view U(n+1) as equivalent to R(n). Moreover, in what
follows the UC condition applied to R(n) is essentially
equivalent to the UC+1 condition applied to U(n+1).

Theorem 2 (i). For any rooted tree T in R(n), under UC
(or an unrooted tree T in U(n+1) under UC+1) we have:
P(Ek(T))≥ 1-(n-2) · (1-p3q)k. Consequently, for ε > 0, if

.

Moreover, for any unrooted tree T in U(n+1) under UC,
P(Ek(T)) ≥ 1 - ε holds if the term p3 in the above inequality
is replaced by p4.

′ ′T Tk1, ,…

′ ′T Tk1, ,…

k n

p q
Ek T≥ −
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(ii). Conversely, for any ε > 0, if 

then there exist (exponentially many) choices of T ∈ R(n)
under UC (and trees in U(n+1) under UC or UC+1) for
which P(Ek(T)) < 1 - ε (See Appendix for proof ).

Together these conditions give (respectively) upper and
lower bounds on the number of loci needed for decisive-
ness relative to a single (unknown) tree. The precise num-
ber depends on the shape of the tree.
Remarks
When q = 1 the event Ek(T) is equivalent to the event that
S = {S1,...,Sk}is phylogenetically decisive for T, but for q < 1
the event is a stronger condition. Also, Theorem 2 readily
extends to allow the probabilities of taxon coverage to
vary across the tree, albeit at the expense of more compli-
cated formulae. However, there is one simple case where
the same formulae apply: Part (i) holds as stated if, in the
Uniform Coverage conditions, the equality p(x) = p for all
taxa x is weakened to p(x) ≥ p for all x (similarly, part (ii)
holds if we impose an inequality in the reverse direction).

We can also consider models that explicitly reflect how
taxon coverage is often much more thorough within a
clade than across the entire tree, by considering the fol-
lowing clade-specific condition:

• Variable coverage (VC): p(x) ≥ p for all taxa x in 
clade C, and p(x) ≥ p' for any taxon x not in C (where 
p' <p).

Suppose that we have a rooted tree T in R(n), and for
each of its n-2 nontrivial clades, we independently gener-
ate at least r taxon sets, where each taxon is included or
not in each taxon set indepedently with a probability p(x)
that satisfies the VC condition for that clade. Repeat this
independently for all the n-2 clades of T (thus the result-
ing total number k of taxon sets must be at least r(n-2)).
Then the proof of Theorem 2(i) easily modifies to show

that P(Ek(T)) ≥ 1- ε provided that .

Empirical examples
We explore these theoretical results in several data sets
derived from a diversity of phylogenomic data. We assess
whether necessary and sufficient conditions for decisive-
ness for all trees are satisfied using our theoretical results.
We also estimate the partial decisiveness quantities ΠD
and Πd using simulations, because no analytical results
are known. We estimated these quantities for each data
set using 1000 replicate simulated random trees gener-
ated using PAUP*'s equiprobable option [51]. Since the
two measures of partial decisiveness can only be esti-
mated on rooted trees, we estimate these quantities in a
"reference subset" of the original data set. A reference
subset is found by first identifying the taxon with the
most loci present in the taxon coverage pattern, pruning
all loci not present in this taxon from the entire matrix,
and then removing any taxa that have been rendered
data-less by this operation. This generates a data set with
a reference taxon in the sense defined earlier, which can
then be used to artificially "root" the analysis. Finally, we
assess the bounds on data set size implied under random
sampling of loci. In those analyses we assume the
unrooted case without a reference taxon and require an
error probability no greater than 5%.

Data mining examples
Driskell et al. [6] mined GenBank to build a sparse data
set of 251 loci and 69 green plant taxa with a coverage
density of 15% (Table 1). A necessary condition for deci-
siveness for all trees is the presence of all triples: since
only 84% are present, the taxon coverage cannot be deci-
sive for all trees. Indeed for the reference subset the cov-
erage is only decisive for 2% of trees, so the probability of
decisiveness for the true tree is quite low. However, on
average 95% of internal edges across all trees can be dis-
tinguished by the taxon coverage. Thus, the coverage is
likely inadequate to build the complete binary tree, but
there is reason to be optimistic about most of it, at least
from the perspective of missing data.
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Table 1: Taxon coverage and decisiveness parameters for five data sets.

Taxon Source Taxa Loci Coverage density Fraction of triples �D �d

Green plants Driskell et al. 2004 69 (69) 251a (220) 0.15 (0.15) 0.84 (0.84) 0.019 0.95

Pleurodira PhyLoTA b 44 (37) 15 (12) 0.26 (0.33) 0.37 (0.63) 0.000 0.82

Amorpheae PhyLoTA b 64 (64) 3 (3) 0.61 (0.61) 0.84 (0.84) 0.017 0.95

Cactaceae PhyLoTA b 488 (486) 18 (11) 0.14 (0.17) 0.22 (0.23) 0.000 0.61

Metazoa Hejnol et al., 2009 94 (94) 1487 (1351) 0.18 (0.19) 0.96 (0.95) 0.340 0.99

a Three phylogenetically uninformative loci removed from original data set of 254 loci b PhyLoTA database [52]
Values in parentheses correspond to the reference subset of taxa. Fraction of triples is the fraction of all possible triples of taxa that are present 
for at least some locus (column) of the taxon coverage pattern. �D is the probability the taxon coverage is decisive for the reference subset on a 
random binary tree. �d is the average number of edges distinguishable on a random binary tree (see text for further details).

ε
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We also examined three data sets extracted from the
PhyLoTA database [52], a tool for phylogenomic data
mining of GenBank. These were Pleurodira (side-necked
turtles: see Figure 5), Cactaceae (the cacti), and Amor-
pheae (a clade of legumes), all based on data from Gen-
Bank release 168 (Table 1). None of the three were
phylogenetically decisive for all trees, because none
exhibited all possible triples of taxa. The probability of
the taxon coverage pattern being decisive for a random
tree for their reference subsets was quite small, ranging
from 0 to 1.7%. On the positive side, the fraction of edges
that can be distinguished on average for a random tree is
quite high, ranging from 61% to 95%.

However, the structure of the largest matrix, for Cacta-
ceae is sobering. If we were to continue sampling loci
with the same coverage density (14%) in the hopes of con-
structing a data set with high probability of being decisive
for the true tree (Theorem 2, with perfect resolution),
2932 loci would be minimally necessary, and 23,891
would suffice. Of course, these results presuppose some-
thing like a uniform distribution of sampling effort across
taxa, which is more likely to be found in genomic data
sets than database mining studies. Nonetheless, these
bounds are suggestive.

Finally, in this category we turn to several studies with
very large taxon sets, for which we can only apply some of
the simple results in Theorem 1. Goloboff et al. [4]
assembled a supermatrix of 13 loci and 70,060 taxa. The
locus with largest taxon coverage included ~20,000 taxa.
By Theorem 1 the number of loci would have had to
exceed 43 for phylogenetic decisiveness for all trees. Since
most of the loci were sampled for far fewer than this
number of taxa, a more accurate lower bound is probably
higher.

This analysis, with coverage density of 8%, may be char-
acteristic of taxon rich phylogenetic analyses published
recently in which overall density is low, but a few loci
have high coverage densities. For example, in [2] (2228
taxa of Leguminosae) and [3] (4954 taxa of Asterales) the
locus with best coverage, nuclear ribosomal ITS, actually
covered more than 73% and 84% of the label sets respec-
tively, such that by Theorem 1 the lower bound on the
number of loci is small, less than 3. However, in both
cases, the ITS sequences were aligned by relatively
"heroic" methods, and a more conservative procedure
might have kept many separate taxonomically overlap-
ping ITS alignments instead of one large one. We
reported results from such an analysis (so-called "sparse"
analysis in [2]) that ultimately included 1794 taxa in 72
loci. By Theorem 1 the lower bound for decisiveness for
all trees in this case, assuming n/m = 1794/286, where
286 is the largest cluster (trnL), would have been 247 loci,
far more than we had.

Partial genome sequences from shallow libraries
Hejnol et al. [10] constructed a large, sparse phylog-
enomic matrix of 94 taxa and 1487 loci derived mainly
from ESTs. This is an expanded analysis of the widely
cited phylogenomic study of 70 metazoan taxa [8]. Mean
taxon coverage density is 18% across all loci, with the
maximum density of 83% in one locus and a long tail of
very low coverage loci. The given taxon coverage is not
decisive for all trees, because it only includes 96% of pos-
sible triples (Table 1). Homo sapiens is present in 1351 of
the loci. If we restrict the data to this reference subset, we
can "root" the analysis with Homo as a reference taxon
and test for a sufficient condition for decisiveness for all
trees (a reference taxon plus all triples present: see
above). For these loci there are still 94 taxa and 96% of
possible triples are present. This fraction might have
increased to 1 if the number of taxa in the new matrix
had been less. This data set stands out by having a rela-
tively high probability of decisiveness for random trees
(34%), and a 99% chance of distinguishing a random edge
in a tree. Under random taxon coverage (perfect resolu-
tion), by Theorem 2 the lower and upper bounds on loci
are 1095 and 7148, which spans the actual data set.

Figure 5 An empirical taxon coverage pattern. This example was 
extracted from the PhyLoTA database (therein called the "data avail-
ability matrix"), for sequenced loci for the vertebrate clade Pleurodira 
(side-necked turtles). Only some of the taxa are shown.
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Partial genome sequences from deep genomic libraries
Some genomic libraries are "deep", providing 10s to 100s
of thousands of sequences, but still only partially cover a
genome. Cranston et al. [11] analyzed data from BAC-
end sequences from 10 species of Oryza including the
complete genome of O. sativa and nine deep libraries
averaging ~90,000 sequences per species. Collectively,
these covered 44% of the CDS (coding regions) in O.
sativa, but because of the random nature of library con-
struction, of course, the pattern of overlap varied from
species to species. The data were further filtered to
include only single copy exonic regions with homology to
O. sativa and having taxon coverage of at least four taxa, a
total of 9481 exonic regions.

A posteriori the pattern of taxon coverage is trivially
decisive for all trees because there are 6 loci (out of 9481)
that have complete coverage–which automatically satis-
fies the four-way condition described earlier. An addi-
tional 60 loci are only missing one taxon. However, on
average the taxon coverage among these exons averaged
48.3%. By Theorem 2 this value under random sampling
and full resolution implies lower and upper bounds of 35
and 91 loci for decisiveness. However, if we consider par-
tial resolution and if only one internal branch is present
on average out of the 8 internal branches, the bounds
increase to 292 and 742. Among a subset of loci most rel-
evant for 6 of the species (the AA genome group) fully
one quarter produced completely unresolved trees (the
mean length of aligned exons was only 350 nt), so this is
clearly an issue.

Complete genome sequences
Phylogenomic data sets constructed from complete
genome sequences should suffer least from taxon cover-
age problems. We used Hahn et al.'s [32] analysis of gene
families constructed from the 12 Drosophila complete
genome sequences then available. Data were downloaded
from Hahn's FRB Database http://www.indiana.edu/
~hahnlab/fly/DfamDB/drosophila_frb.html and parsed
to quantify taxon coverage. Loci for which there was at
most a single copy of a gene present were retained. Of
these 13,677 loci, 6979 had some taxa missing. The aver-
age taxon coverage was 66.3%. Note that this number is
somewhat inflated because all loci that had only one
taxon sampled (singletons) were excluded (Hahn et al.
suggested many of these represent annotation errors).
Clearly with 6698 loci having complete taxon coverage,
there is no problem with phylogenetic decisiveness for all
trees. Moreover, at this rate of taxon coverage on average,
by Theorem 2, the number of randomly sampled loci
needed for decisiveness for the true tree is bounded by 12
- 25 loci for 12 taxa, and even if resolution among trees
were dismal (say one branch only out of 9 internal
branches) we would have bounds of 127 and 246 loci.

Thus if one were setting out to build a phylogenomic
matrix with these data, this simple analysis suggests there
are plenty of loci available. Interestingly the fractional
taxon coverage is so high that even were one able to do
this across 1000 species of Drosophila, the number of loci
is still bounded by 26 - 47.

Results and Discussion
Impact of missing data on multi-locus phylogenetic 
inference
Assessing the effect of missing data on phylogenetic
inference has received substantial attention from phylo-
geneticists over many years (reviewed in [53]), but unam-
biguous conclusions have been elusive. For some
amounts and patterns of missing data, simulation and
empirical studies support the conclusion that its impact
can be reduced to tolerable levels [37,38]; for other cases,
significant problems remain [39-41]. Properties of the
data themselves, such as rates of evolution, stationarity,
etc., can have a strong impact on the accuracy of infer-
ence, irrespective of the amount or pattern of missing
data, so attempts to understand the problem at a compre-
hensive level taking all impacts into account have had
poor predictive success.

Our results relate the taxon coverage–the amount and
pattern of missing data–to the ability of data to define an
unambiguous phylogenetic tree for all the taxa in the
input, by separating the impact of missing data from tree
reconstruction errors per se. To simplify the problem, we
have defined a notion of phylogenetic decisiveness [44],
which is separate from any notion of correctness of the
individual gene trees based on individual loci.

We infer limits (bounds) on decisiveness. In both the
context of a fixed pattern of taxon coverage and a random
pattern generated by sampling, there are lower bounds to
how many loci must be included for a given fraction of
missing data. For the sampling case it is also possible to
identify upper bounds so that it is clear when sufficient
data are present. For a fixed (i.e., observed) taxon cover-
age pattern, it is possible to characterize whether it is
decisive for some or all possible trees, but computing the
latter is nontrivial.

Our results may help clarify why some arguments in
the literature appear at odds with each other. On the one
hand, Wiens [37] has suggested that it is not the fraction
of missing data that is most important, but the overall
amount of character data present. The most direct sup-
port from this in our results is seen in the random sam-
pling context. According to Theorem 2 (i), for any
fraction of missing data (1 - p), there will be a number of
loci that is sufficient to guarantee decisiveness. Another
suggestive bit of evidence is seen in Table 1: Cactaceae
and Metazoa have about the same fraction of missing
data overall, but because Metazoa have so many more

http://www.indiana.edu/~hahnlab/fly/DfamDB/drosophila_frb.html
http://www.indiana.edu/~hahnlab/fly/DfamDB/drosophila_frb.html
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loci, the fraction of triples seen in that coverage pattern is
much closer to the minimum level necessary for decisive-
ness (96% vs. 22%). A caveat is that the number of loci
required can be quite large if the fraction of missing data
is large or the number of taxa large (when p << 1 and or q
<< 1, the lower bound on number of loci k scales as 1/
(p3q) (expanding the expression  Theorem 2

part (ii) in a Taylor series approximation)).
On the other hand, Hartmann et al. [39] and Lemmon

et al. [41] discuss cases in which missing data are more
problematic. Both studies simulated missing data at the
sequence level occurring in blocks, which in our context
we can think of as "loci". Both attributed errors in phylo-
genetic inference in part to these patterns of taxon cover-
age, often in combination with other factors. Our results
on phylogenetic decisiveness for a fixed pattern of taxon
coverage make it clear that some patterns of taxon cover-
age can be pathologically bad. Once we cannot count on
random taxon coverage to ultimately sample all 4-way
partitions, it is easy to imagine patterns in which certain
important 4-way partitions are never seen and thus ambi-
guity remains a real possibility even as the number of loci
gets arbitrarily large. The obvious case is just to suppose
that we sample many loci but all of them either have {A,
B, C, D} or {A, B, C, F} taxon coverage. This will never be
decisive according to the 4-way partition condition. Some
of Hartmann et al.'s [39] EST-like patterns of missing data
are reminiscent of this case because of blocks of missing
data at the ends in many alignments.

Implications in the context of gene tree discordance
Evidence is mounting that high levels of gene tree discor-
dance is driven in part by real biological processes of lin-
eage sorting, hybridization and recombination
[14,16,17,28]. Our analyses have by design set aside the
latter issue, and by necessity the former, but incongru-
ence is obviously real. Intuitively, since the lower bounds
on the number of loci needed to infer a single tree deci-
sively under random taxon coverage were derived assum-
ing just one tree (see Appendix), we expect it would
require many more loci to simultaneously be able to
recover more than one tree. Interestingly in the Cranston
et al. [11] analysis of rice phylogenomics, 118 out of 236
possible rooted 5-taxon trees were found among the col-
lection of gene trees (some undoubtedly due to error
rather than lineage sorting). If lineage sorting is this ram-
pant in a data set, we would need to know bounds not on
decisiveness for one tree under random sampling but
decisiveness for all trees. In an a posteriori analysis of a
given pattern of coverage (as with rice), we can check
decisiveness for all trees after the fact, and gene tree dis-
cordance provides a strong motivation for requiring this
property.

Implications for next-gen sequencing strategies
Next generation sequence technologies are currently
characterized by assembly of a large number of small
reads. In phylogenomic analyses in which de novo assem-
bly (without a reference genome) with limited coverage
may be unavoidable, partial taxon coverage in the final
data set may be the rule rather than the exception [54].
For example, the 1KP project [55] aims to use a short-
read high-throughput approach to sequence transcrip-
tomes of 1000 green plant species across 1 billion years of
evolutionary history. A combination of partial transcrip-
tome coverage in the final assemblies and lack of homol-
ogy across such deep divergences will certainly limit the
overall taxon coverage densities. Given estimates of this
fraction derived from pilot studies it should be possible to
use Theorem 2 to predict how much of the transcriptome
is needed to anticipate a decisive analysis.

Does conflict hurt or help?
A particular consequence of Inequality (1) is that a binary
phylogenetic tree T for a large number of species cannot
be defined by a small number of poorly resolved trees.
For example, if T has 1000 leaves, then we require a total
of 997 or more internal edges amongst any set of trees
that defines T. Now suppose we use a supertree method
like MRP (Matrix Representation with Parsimony, see
review in [25]) on these input trees. An interesting ques-
tion is whether Inequality (1) might still hold if we replace
the condition that the trees "T1,...,Tk define T" by "T1,...,Tk
have a unique MRP tree T".

This seems plausible since the two notions are equiva-
lent when the input trees T1,...,Tk are compatible, and it
might be supposed that conflict-free data is in some sense
'optimal'. However, it turns out that such a modification
to Inequality (1) fails. For example, there is an incompati-
ble set of six trees for 12 taxa, each with just one internal
edge, that has a unique MRP tree T on those 12 taxa
(results not shown); by contrast if we wished to addition-
ally require the input trees to be compatible, we would
require at least nine trees (each having one internal edge),
not six. In other words, allowing the trees to conflict can
in some cases actually 'help' reduce the amount of data
required to determine a unique supertree by a method
such as MRP.

Relation to phylogenetic "groves"
Decisiveness for all trees is a strong condition. It is some-
times possible to glean information about a tree that
includes all taxa even when the taxon coverage pattern is
not decisive for any such tree. A weaker sense of decisive-
ness is embodied in the notion of a "grove" of phyloge-
netic trees ([56]; reviewed in a less mathematical
exposition in [57]). Figure 6 illustrates a taxon coverage
pattern that is not decisive for any tree. However, for

1

1 3− −log( )p q
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some tree(s) it exhibits the property that the collection of
trees that display the subtrees induced by the taxon cov-
erage pattern agree on parts of the tree. In the example it
is only the position of one taxon that is variable among
the trees consistent with the induced subtrees. The
induced subtrees in this case are said to form a grove,
because the trees discovered have information in them
that is not contained in any of the induced subtrees alone.

Future work
Several problems are suggested by this work and its appli-
cation to empirical studies. First, many real taxon cover-
age patterns are sparse enough that they are not decisive
for all trees. It would be useful to know what data should
be obtained to convert an indecisive to a decisive data set,
or to convert one that is decisive with low probability to
one that is decisive with high probability. In both cases
there are natural optimality problems that could be stated
that would try to minimize the cost in additional
sequencing. Second, along the lines of phylogenetic
groves, when a taxon coverage pattern is not decisive for
the entire label set, it might well be decisive for a large
subset of it. What is the size of the largest label set for
which a given pattern of taxon coverage is decisive? In
some sense this conveys the "effective tree size" which a
taxon coverage pattern can address.

Conclusions
We have characterized the impact of partial taxon cover-
age in multilocus phylogenomic data sets in the context
of both fixed and random patterns of coverage. For fixed

coverage patterns we have determined lower bounds on
the number of loci needed for a coverage pattern to be
phylogenetically decisive for all trees–that is to allow
reconstruction of a unique tree on all taxa irrespective of
what the tree is. Most real data sets having reasonably
large numbers of taxa are not decisive for all trees, but in
these cases we developed methods for assessing the frac-
tion of trees for which they are decisive and the fraction
of edges in those trees that can be distinguished. In gen-
eral, the first measure is still low, but the second can be
quite high. For random taxon coverage patterns, such as
might be seen in data sets derived from EST or BAC
libraries, upper and lower bounds on the number of loci
needed for decisive tree inference were obtained. Some
real data sets required relatively few loci for decisiveness,
particularly those with few taxa and modest levels of
missing data, whereas other data sets required tens of
thousands of loci when the number of taxa and fraction
of missing data was high. Clearly, the pattern of taxon
coverage is a factor in large scale phylogenetic inference,
regardless of the details of the sequence data themselves
or tree reconstruction method.

Appendix: Proofs
Proof of Theorem 1. If S is phylogenetically decisive for all
trees then:

In other words, all three-taxon subsets of must be pres-
ent as a subset of some element Y of S (this is Lemma
6.2.1 of [48]). Thus:

from which the results stated now follow.
Proof of Theorem 2: Part (i). First suppose that T is in

R(n). For each internal edge e of T let Ae be the event that

e is distinguished by at least one of the trees 
(for the definition of 'distinguished' see [46]). Let Be,ibe
the event that edge e is distinguished by T|Si. By Theorem
3 of [47]T|S1,...,T|Sk defines T precisely if each internal
edge of T is distinguished by at least one of these induced
trees. Consequently:
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Figure 6 Decisiveness and phylogenetic groves. Pattern of taxon 
coverage shown is not decisive for any tree but is a phylogenetic grove 
sensu Ané et al. [56]. There are five binary trees like the tree in the lower 
right, which differ only in the placement of taxon C (two of these are 
indicated by alternative placements of dashed lines). Although taxon 
coverage is not decisive for any of the five trees, there is no ambiguity 
about the relationships of the five trees if taxon C is ignored. Example 
modified from [56,57].

�� ��

	� ��

�� ��

�� 	�

�� ��

	� ��

�� ��

	� ��

�� ��

�� ��

��

��

	�



Sanderson et al. BMC Evolutionary Biology 2010, 10:155
http://www.biomedcentral.com/1471-2148/10/155

Page 12 of 13
where Eint(T) is the set of internal edges of T, and

By the Bonferroni inequality:

where overline denotes the complementary event. Now,

by (5), we have:  and for fixed e, the events

 are independent events of equal proba-
bility; consequently:

Now, if n1, n2, n3 denotes the number of leaves (in X) in
the three subtrees of T that are incident with e but which
do not contain the root of T then:

where the inequality arises because n1, n2, n3 ≥ 1. Apply-

ing this inequality to (7) we obtain: 
and so, by (6):

since a tree in R(n) has precisely n - 2 internal edges, as
required. The resulting bound involving k now follows by
routine algebra.

Turning to the case of an unrooted tree T ∈ U(n + 1), if
condition UC+1 holds then we can directly apply the
result for rooted trees under UC. However if the weaker
condition UC holds for T ∈ U(n + 1) then we use the
result (from [47]) that T is defined by any set of quartet
trees that distinguishes every edge of T provided that
each quartet contains a fixed leaf. We can then repeat the
above argument but at the penalty of increasing the expo-
nent on p from 3 to 4.

Proof of Part (ii): Let m = Nn/3Q, and let T1 be any tree in
R(m). Identify each leaf of T1 with the root of a separate 3-

leaf binary tree to obtain a tree in T2 in R(3m). Consider
the set E' of the m newly-created internal edges of this
tree. If n > 3m then form an arbitrary rooted tree from the
remaining n - 3m leaves, adjoin its root, and the root of T2

to a new root to obtain a tree T ∈ R(n) (if n = 3m, we sim-
ply take T = T1). Now each edge e ∈ E' has just one leaf in
the three subtrees that are incident with the edge and that
do not contain the root of T. Thus, for each of these m
internal edges we have:

and so, by (5), and the independence of Be, j for different
j, we have:

Now, although for a general tree the events Ae are not
independent, for this particular tree, and for this set E' of
m internal edges, these events are independent. Conse-
quently, by (4),

from which part (ii) follows upon applying the inequal-

ity:  This completes the proof.
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