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a b s t r a c t

The Yule model and the coalescent model are two neutral stochastic models for generating trees in
phylogenetics and population genetics, respectively. Although these models are quite different, they lead
to identical distributions concerning the probability that pre-specified groups of taxa formmonophyletic
groups (clades) in the tree. We extend earlier work to derive exact formulae for the probability of finding
one or more groups of taxa as clades in a rooted tree, or as ‘clans’ in an unrooted tree. Our findings are
relevant for calculating the statistical significance of observed monophyly and reciprocal monophyly in
phylogenetics.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

When gene trees are estimated from multiple lineages taken
from two or more populations, there is an increased chance
that lineages within each population form monophyletic groups
compared to sampling multiple lineages from a single population.
In asking whether a particular group of lineages came from
a taxonomically distinct population (Cummings et al., 2008;
Rosenberg, 2007), this observation has led to the adoption of a null
hypothesis that a set of lineages belongs to a single population
or taxonomic group. Statistical tests for reciprocal monophyly
between two sister taxa can then be developed to test against this
null hypothesis (Hudson and Coyne, 2002; Rosenberg, 2003). Here,
‘reciprocal monophyly’ is the condition that, as one looks back in
time, lineages coalesce within each of the two taxa, before any
coalecence events take place between the two taxa.

Reciprocal monophyly is central to the genealogical species
concept. According to this concept, two groups come fromdifferent
species if they form distinct monophyletic groups (DeQuieroz,
2007; Hudson and Coyne, 2002). Gene trees from lineages sampled
from one or more populations are typically estimated, and
monophyly (or lack ofmonophyly) of these groups can be observed
from the clades of the gene tree. Statistical tests for whether
observed levels of monophyly provide sufficient evidence to
conclude that a group is taxonomically distinct can be performed,
given a probabilistic model for the clades on a tree (Rosenberg,
2007).

Two neutral models – involving different evolutionary scales
– are useful in this context. The Yule (pure birth, or birth–death)
model describes the speciation (and extinction) of lineages at the
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species level as one moves forward in time, while Kingman’s
coalescent process is a population genetic model which traces the
ancestry of individual lineages back in time (and which thereby
forms a tree). These are twoquite different processes, and they lead
to different branch lengths on trees; remarkably, however, they
generate identical distributions of tree topologies (Aldous, 1995).
Thus, while the coalescent process is a natural model for trees
in single populations, the equivalence of the Yule and coalescent
models for tree topologies means that results for the Yule model
can be exploited in studying probabilities of clades for coalescent
trees in single populations.

Although there has been an emphasis on testing for the taxo-
nomic distinctiveness of one group of lineages, joint probabilities
of clades could be used to examine whether the observed mono-
phyly of several groups is statistically significant using a single test.
Such an omnibus test of the null hypothesis that all groups come
from one population might be more powerful than testing several
groups one at time.

In this note, we derive exact formulae for the joint probabilities
of k clades for a random Yule/coalescent gene tree under the
conditions that the k clades are mutually exclusive (they have no
leaves of the gene tree in common), and are either exhaustive (all
leaves of the gene tree occur in one of the k clades), or form only
a subset of the leaves of the gene tree. These results generalize
results from Rosenberg (2003), which provided an explicit formula
for the probability that twomutually exclusive and exhaustive sets
of leaves formed clades on a Yule/coalescent gene tree.

In addition, we extend the results to unrooted trees by giving
the probabilities of ‘clans’ (sets of leaves that are all on one side of a
splitWilkinson et al., 2007), aswell as the joint probability of k > 1
clans, on Yule/coalescent trees which have been unrooted. This
extension is relevant when only unrooted trees can be estimated,
which is particularly common in microbial evolution (Lapointe
et al., 2010).

http://dx.doi.org/10.1016/j.tpb.2011.03.002
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Fig. 1. (a) This rooted tree has 13 ‘clades’, including the three sets circled
({1, 2}, {1, 2, 3, 4}, {6, 7}). In this tree, {1, 2} and {3, 4} are sister clades, but {1, 2}
and {6, 7} are not. (b) The unrooted tree T−ρ obtained from the tree T in (a) by
suppressing the root vertex ρ. This tree has {3, 4, 5, 6, 7} as a ‘clan’, even though
this set is not a clade of T .

Our arguments throughout rely on just a few generic properties
of neutral phylogenetic processes, such as the Yule and coalescent
models. One of these properties is ‘exchangeability’ which, roughly
speaking, requires that the probability of any rooted phylogenetic
tree on a given leaf set depends just on the tree’s ‘shape’ and not
on how its leaves are labelled. Of course, for trees constructed from
biological data, the posterior probability of different phylogenetic
trees will depend very much on how the leaves are labelled – with
species that share high sequence similarity tending to be clustered
together in the tree. Thus the ‘exchangeability’ property is one that
should be viewed as appropriate for a ‘prior’ distribution on trees
– that is, before one has considered the data. This is particularly
relevant to a statistical test we describe in the final section, which
relies solely on the exchangeability property.

2. Clades

Throughout this paper,wewill letXn (or,more briefly,X) denote
a set of taxa of size n. Given a rooted phylogenetic X-tree TX (more
briefly T ), with leaf set X = Xn, a clade of T is either an element
of X or a subset of X that corresponds to the set of leaves that are
descended from any internal vertex. For example, in Fig. 1(a), the
sets {3}, {3, 4} and {1, 2, 3, 4} are three clades. Throughout, we use
A, B ⊆ X , etc., to denote clades, and E, F , etc., to denote events.
Any two clades A and B of T satisfy the following compatibility
condition:

A ∩ B ∈ {A, B, ∅}. (1)

This is equivalent to requiring that A = B, one set is a strict subset
of the other, or the two sets are disjoint.

Wewill let c(T )denote the set of clades of T , and say that a clade
is proper if it is a strict subset ofX . Notice that a rootedphylogenetic
X-tree has at most 2n − 1 clades, and it has precisely this number
if and only the tree is binary, that is, if each non-leaf vertex has two
descendant vertices.

3. The Yule–Harding–Kingman process

Consider the probability distribution on binary phylogenetic
X-trees described by a model that grows a tree by selecting a
leaf uniformly at random and ‘splitting’ it into two new leaves,
as illustrated in Fig. 2. Since we are ignoring branch lengths
in this paper and concentrating just on tree topologies, the
resulting probability distribution on rooted binary tree topologies
is the same as that given by any (stationary or non-stationary)
birth–death process on trees in which birth (speciation) and death
(extinction) events apply exchangeably to all the species extant at
any given moment (see Aldous, 1995 for further details). This is
useful, since the rates of speciation and extinction throughout time
a b

c

Fig. 2. From a rooted binary tree on three leaves (a), splitting the right leaf (*)
leads to a ‘balanced’ tree shape (b), while splitting either of the other two leaves
produces an unbalanced tree (c). Thus the balanced tree shape has probability 1/3,
and as there are three distinct ways to label the leaves, each of these rooted binary
phylogenetic trees has probability 1/9 under the YHK process. For a phylogenetic
tree of shape (c), the probability is 1/18.

may be both time dependent and variable according to the number
of taxa present (Rabosky and Lovette, 2008).

The study of such pure-birth trees was initiated in Yule’s
1925 paper (Yule, 1925), and the probability distribution on tree
topologies (without reference to branch lengths) was further
studied by Harding (1971). Moreover, this probability distribution
on trees is precisely the same as that given by a quite different
process, namely Kingman’s coalescent process (Kingman, 1982) in
population genetics, which starts at the leaves and successively
combines pairs of elements, provided that, once again, we ignore
branch lengths (Aldous, 1995).

To emphasize this equivalence between a model in macro-
evolution (speciation and extinction) and micro-evolution (popu-
lation genetics), we will refer to it as the Yule–Harding–Kingman
(YHK) process for generating tree topologies.

We will also refer to a random binary phylogenetic X-tree
produced by any of these stochastically equivalent processes as TX
(or often just T if X is clear), and so P(TX = T ) is the probability
that T is the actual phylogenetic X-tree produced by the process.
The process, viewed as a pure-birth model, is illustrated in Fig. 2.

In this paper, we exploit two important properties of the
process that generates T . First, we recall some notation that will
be used throughout: for any phylogenetic X-tree and any non-
empty subset Y of X , let TX |Y be the phylogenetic tree induced by
restricting the leaf set to Y (as in Semple and Steel (2003)). The two
properties that the YHK process enjoys, and which we will exploit
throughout this paper, are the following.

(EP) If T ′ is obtained from T by permuting its leaves, then

P(T = T ′) = P(T = T ).

(GE) For any proper (and non-empty) subset A of X , and any rooted
binary phylogenetic tree T with leaf set X − A,

P(TX |(X−A) = T | A ∈ c(T )) = P(T(X−A) = T ).

Property (EP) is the exchangeability property (Aldous, 1995), which
requires that the probability of a particular phylogenetic tree
depends just on its shape and not on how its leaves are labeled
(it is called ‘label-invariance’ in Steel and Penny (1993)). Property
(GE) is the group elimination property from Aldous (1995); it states
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that, conditional on A forming a clade in the tree, the tree structure
on the remaining taxa is also described by the YHK process. In turn,
(GE) implies the following sampling consistency property (Aldous,
1995). For any rooted binary tree T with leaf set A ⊆ X , we have

(SC) P(TX |A = T ) = P(TA = T ).

To see that (GE) implies (SC), one sequentially deletes leaves that
are not in A, noting that each leaf is, trivially, a clade in any tree.

4. Clade probabilities under the YHK process

The following result is stated and proved in Rosenberg (2006,
Theorem4.4) (it also appears as Proposition 2 of Blumand Francois,
2005, and in the appendix of Heard, 1992). A further proof of this
result is also possible based on induction on n and using the well-
known property of the YHK model that the number of leaves in
one of the (randomly selected)maximal subtrees of TX is uniformly
distributed between 1 and n − 1.

Lemma 4.1. Let Xn(a) be the number of proper clades of size a in TX ,
where n = |X |. Then

E[Xn(a)] =
2n

a(a + 1)
, 1 ≤ a ≤ n − 1. �

For a subset A of X , let pn(A) be the probability that A is a proper
clade of TX . From the exchangeability property (EP) it is clear that
this probability depends only on a = |A| and n, and sowe canwrite
pn(a) for this probability. From Rosenberg (2003), we have

Lemma 4.2.

pn(a) =


2n

a(a + 1)

n
a

−1
, if 1 ≤ a ≤ n − 1;

0, otherwise.

The proof of this result from Rosenberg (2003) relies on a
combinatorial identity to sum a series. Here, we point out how
Lemma 4.2 follows very directly from Lemma 4.1.

Proof of Lemma 4.2. For 1 ≤ a ≤ n − 1, the exchangeability
property (EP) implies that

pn(A) =

−
k≥0

P(T has k clades of size a) ·
k n
a

 = E[Xn(a)]
n
a

−1
,

where Xn(a) is as defined in Lemma 4.1. This completes the
proof. �

4.1. Pairs of clades

For a pair A, B of disjoint subsets of X , let p̂n(A, B) be the
probability that A and B are sister clades of TX (i.e., A, B and A∪B are
clades of TX ). By exchangeability (EP), this probability depends on
a = |A|, b = |B| and n only, and so we will denote it p̂n(a, b).

Consider first the special case where n = a + b; that is, A
and X − A are sister clades, which is equivalent to saying that
A is a maximal proper clade. From Brown (1994, Eq. 6) (see also
Rosenberg, 2003), the probability of this event is given as follows.

Lemma 4.3. For 1 ≤ a ≤ n, we have

p̂n(a, n − a) =
2

n − 1

n
a

−1
.

We generalize this slightly, as follows.
Lemma 4.4. Let k = a + b ≤ n. Then

p̂n(a, b) =
4a!b!(n − k)!

(n − 1)!k(k2 − 1)
.

Proof.

p̂n(A, B) = P(A ∈ c(TX |A∪B) | A ∪ B ∈ c(TX )) · P(A ∪ B ∈ c(TX )).

Applying Lemma 4.2 to the first term, and property (SC) and
Lemma 4.3 to the second term, we have

p̂n(A, B) =
2

a + b − 1


a + b
a

−1

·
2n

(a + b)(a + b + 1)


n

a + b

−1

,

from which the result follows. �

Now, for any two arbitrary subsets A ⊆ Xn and B ⊆ Xn, let
pn(A, B) be the probability that a YHK tree T on Xn has A and B as
proper clades. As usual, let a = |A| and b = |B|.

Theorem 4.5.

pn(A, B) =


pn(a) if A = B [Case 1];
Rn(a, b), if A ( B [Case 2];
Rn(b, a), if B ( A [Case 3];
p̂n(a, n − a), if A ∩ B = ∅, A ∪ B = Xn [Case 4];
rn(a, b), if A ∩ B = ∅, A ∪ B ( Xn [Case 5];
0, otherwise [Case 6];

where

pn(a), and p̂n(a, n − a)are given by Lemmas 4.2 and 4.3,

Rn(a, b) :=
4n

a(a + 1)(b + 1)

n
b

−1

b
a

−1

,

rn(a, b) :=
4a!b!(n − a − b)!

(n − 1)!
Gn(a, b), and where

Gn(a, b) :=
n

ab(a + 1)(b + 1)

−
a(a + 1) + b(b + 1) + ab

ab(a + 1)(b + 1)(a + b + 1)

+
1

(a + b)((a + b)2 − 1)
.

Proof. Cases 1 and 4 are given by Lemmas 4.2 and 4.3, respectively.
For the second case (A ( B), we have

pn(A, B) = P(A ∈ c(TX ) | B ∈ c(TX )) · P(B ∈ c(TX )).

Since A ( B, we can apply property (SC) and Lemma 4.2 to deduce

that the first term in this product is 2b
a(a+1)


b
a

−1
, while the second

term is 2n
b(b+1)

 n
b

−1, from which the result follows. Case 3 follows
by an analogous argument. For Case 5, consider the following two
pairs of events:
• E1 : A, B ∈ c(TX ),
• E2 : A ∪ B, B ∈ c(TX ),
• F1 : A ∈ c(TX |(X−B)),
• F2 : B ∈ c(TX ).

We are interested in computing P(E1), since this is pn(A, B), and by
the principle of inclusion and exclusion we have

P(E1) = P(E1 ∪ E2) + P(E1 ∩ E2) − P(E2). (2)

Now, E1 ∪E2 occurs precisely if F1 ∩F2 occurs (since E1 ∪E2 is the
event that B ∈ c(TX ) and either A ∈ c(TX ) or A ∪ B ∈ c(TX )). Thus

P(E1 ∪ E2) = P(F1 | F2) · P(F2).
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Combining this equation with (2), and noting that P(E1 ∩ E2) =

p̂n(A, B) and pn(A, B) = P(E1), we obtain

pn(A, B) = P(E1) = P(F1 | F2) · P(F2) − P(E2) + p̂n(A, B). (3)

Now, by (GE),

P(F1 | F2) = P(A ∈ c(TX−B)) = pn−b(a), (4)

and

P(E2) = P(B ∈ c(TX ) | A ∪ B ∈ c(TX )) · P(A ∪ B ∈ c(TX ))

= pa+b(b) · pn(a + b). (5)

Thus, substituting (4) and (5) and the equality P(F2) = pn(b) into
(3), we obtain

pn(A, B) = pn−b(a) · pn(b) − pa+b(b) · pn(a + b) + p̂n(a, b).

Case 5 now follows from Lemmas 4.2 and 4.4. Case 6 follows from
the compatibility condition (1) for clades. �

We now ask whether the events ‘A is a clade’ and ‘B is a clade’
are positively or negatively correlated under the YHK process. Let
ηA (respectively ηB) be the Bernoulli (0, 1) random variables that
take the value 1 if A (respectively B) is a clade of a YHK tree T on
Xn, and let ρn(A, B) denote the correlation coefficient of ηA and ηB,
which is given by

ρn(A, B) =
pn(A, B) − pn(A)pn(B)

√
pn(A)(1 − pn(A))pn(B)(1 − pn(B))

.

Corollary 4.6. For any two strict subsets A, B of X, the correlation
ρn(A, B) is

• strictly negative, if A, B are not compatible, and undefined if |A| =

1 or |B| = 1, and
• strictly positive, otherwise.

Proof. If A and B are not compatible, then pn(A, B) = 0, but both
pn(A) and pn(B) are greater than zero, and so ρn(A, B) < 0. If
|A| = 1, then pn(A) = 1 and pn(A, B) = pn(B) (regardless of
whether A is a subset of B or is disjoint from B). Thus the numerator
and denominator of ρn(A, B) are both zero. A similar argument
holds if |B| = 1.

In the remaining cases, we consider the ratio pn(A, B)/(pn(A)pn
(B)). For example, in Case 2, we have

pn(A, B)
pn(A) · pn(B)

=
(n − 1) · · · (n − a + 1)
(b − 1) · · · (b − a + 1)

.

This is strictly >1 since n−1
b−1 > 1, . . . , n−a+1

b−a+1 > 1. Similar
arguments apply in the other cases; however, Case 5 requires some
detailed algebraic manipulation. �

Fig. 3 illustrates the correlation coefficient ρn(A, B) for n = 25
in Cases 2, 4 and 5. Notice that the correlation is typically much
smaller in Cases 2 and 5 than in Case 4.

5. Extension to partitions of X

Suppose that the collection of sets A1, A2, . . . , Ak forms a
partition of X , and let ai = |Ai|, for i = 1, . . . , k, so that n =

|X | =
∑k

i=1 ai. For a rooted YHK tree T , let p(a1, . . . , ak) be the
probability that A1, A2, . . . , Ak are clades of T (this probability
depends only on the cardinality of the sets by the exchangeability
property). For example, p(2, 2, 2) = 2/225, and from Lemma 4.3

we have p(a1, a2) =
2

a1+a2−1


a1+a2

a1

−1
. Our aim in this section is

to generalize this to larger values of k. In order to do so, we describe
a new result for the Yulemodel,which requires a further definition.
For a rooted YHK tree T , and a rooted phylogenetic tree Tk
with leaf set {1, . . . , k}, let p(a1, . . . , ak; Tk) be the probability that
A1, A2, . . . , Ak are clades of T and that Tk is the tree obtained
from T by replacing each clade Ai by a single leaf labelled i, for
i = 1, . . . , k. Let I(Tk) denote the set of interior vertices of Tk.

Theorem 5.1. For k > 1, we have
(i)

p(a1, . . . , ak; Tk) =

2k−1
k∏

i=1
ai!

n!

∏
v∈I(Tk)

 1
k∑

i=1
aiIv(Ai) − 1

 ,

where Iv(Ai) is the indicator variable that takes the value 1 if i is
a descendant of v in Tk and 0 otherwise;

(ii)

p(a1, . . . , ak) =

−
Tk

p(a1, . . . , ak; Tk),

where the summation is over all distinct rooted binary phyloge-
netic trees on leaf set {1, . . . , k}.

Proof. Weprove the result by induction on k. For k = 2, Lemma4.3
gives p(a1, a2; T2) = p̂n(a1, a2) =

2
n−1

 n
a

−1, where n = a1 + a2,
which agrees with the expression given in part (i) with k = 2.

Now, suppose that part (i) holdswhenever k is less than or equal
to m ≥ 2; we will show that it also holds when k = m + 1.
Thus, suppose that we have a collection C = {A1, . . . , Am+1}

that partitions X , and also have a rooted binary phylogenetic tree
Tm+1 on leaf set {1, . . . ,m + 1}. Then Tm+1 has a cherry (two
leaves adjacent to the same vertex). Without loss of generality (by
reordering the sets if necessary), we may suppose that these two
leaves arem andm + 1. Consider the collection ofm sets obtained
from C by replacing Am and Am+1 by their union, and let T ′ be the
tree obtained from Tm+1 by deleting the leavesm andm + 1 along
with their incident edges and labelling the exposed vertex by m.
Notice that T ′ is a rooted binary phylogenetic tree that has leaf
set {1, . . . ,m}. By the exchangeability and group elimination (via
sampling consistency) properties, we have, for a′

m := am + am+1,
the following identity:

p(a1, . . . , am+1; Tm+1) = p(a1, . . . , a′

m; T ′) · p̂a′m(am, am+1),

where p̂a′m(am, am+1) is the probability that a YHK tree on leaf set
Am ∪ Am+1 has Am and Am+1 as sister (and thus maximal) clades.
Applying the induction hypothesis for the first term on the right-
hand side of this equation, namely p(a1, . . . , a′

m; T ′), and applying
Lemma 4.3 for the second term, and collecting terms, leads to the
expression in part (i) for k = m + 1, and thereby justifies the
induction step.

Part (ii) follows by observing that each tree T that has
A1, . . . , Ak as clades has one (and only one) associated tree Tk,
and so these trees provide a partition of the event for which the
probability is given by p(a1, . . . , ak). �

As an illustration of Theorem 5.1, we have the following result
for k = 3:

p(a1, a2, a3) =
4a1!a2!a3!
n!(n − 1)


3−

i=1

1
n − ai − 1


,

where n = a1 + a2 + a3.
We note that, as well as being a generalization of Lemma 4.3

to k > 2, Theorem 5.1(i) also generalizes the classic result that
the probability that a YHK tree T has a given tree topology Tk is
2n−1

k!

∏
v∈I(Tk)


1

nv−1


, where nv is the number of leaves of Tk below

v (see Brown, 1994 or Semple and Steel, 2003). This can be seen by
setting a1 = a2 = · · · = an = 1 in Theorem 5.1(i).
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Fig. 3. Graphs of ρn(A, B) for n = 25, in Cases 2, 4 and 5, with a = |A| and b = |B|.
6. Extension to unrooted trees

If we suppress the root ρ of a rooted binary phylogenetic X-tree
T , we obtain an unrooted binary phylogenetic X-tree, which we
will denote as T−ρ (as shown in Fig. 1(b)). Following (Wilkinson
et al., 2007) (see also Lapointe et al., 2010), we say that a subset A
of X is a clan of an unrooted phylogenetic X-tree T ′ if A|(X − A) is a
split of T ′. Note that any clade of the rooted tree T becomes a clan
of T−ρ . However, this latter tree also has additional clans that do
not correspond to a clade of T . The precise relationship is given as
follows.

Lemma 6.1. Given a rooted binary X-tree, T , a set A is a clan of T−ρ

if and only if either A is a clade of T or X − A is a clade of T . �

Now, suppose that the rooted phylogenetic tree T is generated
under the YHK process. Then we obtain an induced probability for
the unrooted tree T−ρ . Note that the same unrooted tree can arise
from different rootings. This probability distribution on unrooted
phylogenetic trees can also be described directly as a Yule-type
process on unrooted trees in which, at each stage, a leaf is selected
uniformly at random and a new leaf (with a random label) is
attached to its incident edge (see, e.g., Steel and Penny, 1993).
Fig. 4 illustrates how different leaf choices in this process lead to
different shapes of unrooted trees.

For a strict non-empty subsetA ofXn, let qn(A) be the probability
that A is a clan of the unrooted YHK tree on leaf set Xn; by the
exchangeability property (EP), this depends only on a = |A| and
n, so we will also write it as qn(a).

Lemma 6.2.

qn(a) = 2n
[

1
a(a + 1)

+
1

b(b + 1)
−

1
(n − 1)n

] n
a

−1
,

where a = |A|, b = n − a.

Proof. By Lemma 6.1, we have

qn(A) = pn(A) + pn(X − A) − pn(A, X − A).

Applying Lemmas 4.2 and 4.3, and noting that pn(A, X − A) =

p̂n(A, X − A), leads to the claimed equation. �

Now, consider two disjoint subsets A and B of X , and let qn(A, B)
be the probability that A and B are both clans of the unrooted YHK
tree on leaf setXn. By exchangeability (EP), this probability depends
only on a = |A|, b = |B|, and n, and sowewill denote it as qn(a, b).
As an example, we have

q6(2, 2) = 7/225.
a b

c

Fig. 4. Only one unrooted binary tree shape is possible with five leaves (a), but
two are possible with six leaves (b, c). If the ‘central’ leaf (*) of tree (a) is split
to form two leaves, then we obtain tree shape (b), while splitting any one of the
remaining four leaves produces tree shape (c). Thus, tree shape (b) has probability
1/5. Since there are 6!/3!23

= 15 distinct ways to label its leaves, each of the
resulting phylogenetic trees has probability 1/75. By contrast, any phylogenetic tree
of shape (c) has probability 4/5 × 1/90 = 2/225.

To see this, observe that, if we take (say) A = {1, 2}, B = {3, 4},
then, referring to Fig. 4, there is just one tree of shape (b) and
two of shape (c) that has both clans A and B. Thus, q6(2, 2) =

1 ×
1
75 + 2 ×

2
225 . We now give an exact analytical formula for

qn(a, b).

Theorem 6.3.
(i) If a + b = n, then

qn(a, b) = qa+b(A)

=
2a!b!

(a + b − 1)!

[
1

a(a + 1)
+

1
b(b + 1)

−
1

(a + b)(a + b − 1)

]
.

(ii) If a + b < n then
qn(a, b) = rn(a, b) + Rn(a, n − b) + Rn(b, n − a)

− p̂n(b, n − b)pn−b(a) − p̂n(a, n − a)pn−a(b),
where the first three quantities are as given in Theorem 4.5
(Cases 2, 3 and 5), while the last two terms are given by
Lemmas 4.2 and 4.3.
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Proof. Part (i) follows from Lemma 6.2, noting that n = a + b. For
part (ii), Lemma 6.1 implies that A and B are clans of T−ρ precisely
if one of the following three events occurs:

(a) A and B are clades of T ;
(b) A and X − B are clades of T , but B is not a clade of T ;
(c) B and X − A are clades of T , but A is not a clade of T .

(Note that X − A and X − B cannot both be clades of T , by the
compatibility condition (1), since (X − A) ∩ (X − B) ≠ ∅ by the
assumption that a + b < n, and since X − A neither contains
nor is contained in X − B.) Moreover, the three events (a), (b),
and (c) are mutually exclusive, by virtue of the assumption that
A and B are disjoint and their union is a strict subset of X . The
probability of Event (a) is rn(a, b), while the probability of Event
(b) is Rn(a, n − b) − p̂n(b, n − b)pn−b(a), since the first term is the
probability that A and X−B are clades of T , and p̂n(b, n−b)pn−b(a)
is the probability that A, X − B, and B are clades of T . Similarly,
Rn(b, n − a) − p̂n(a, n − a)pn−a(b) is the probability of Event (c).
The result now follows by adding the probabilities of these three
mutually exclusive events. �

6.1. Extensions of the clan condition (I)

For a pair A, B of disjoint subsets of X , a weaker condition than
requiring that A and B are both clans of T −ρ is simply to require
that at least one edge of this tree separates A from B. LetQn(A, B) be
the probability of this event for an unrooted YHK tree on the leaf set
Xn. Note that the sampling consistency property (SC) for T implies
an analogous property for T −ρ . Namely, for any subsetW of X (the
leaf set of T ), the unrooted tree obtained from T −ρ by restricting
the leaf set toW has the same distribution as (TW )−ρ . Accordingly,
if we apply this with W = A ∪ B, we obtain the following
result:

Qn(A, B) = qa+b(A), (6)

where qa+b(A) is given by Theorem 6.3(i).

6.2. Extensions of the clan condition (II)

We now describe a second extension. Suppose that A1, A2, . . . ,

Ak partition X , and, as usual, let ai = |Ai|. For an unrooted YHK tree
T , let q(a1, . . . , ak) be the probability that A1, A2, . . . , Ak are clans
of T , and let q′(a1, . . . , ak) be the probability that A1, A2, . . . , Ak
are convex onT (that is, theminimal subtree connecting the leaves
in Ai is vertex disjoint from the minimal subtree connecting the
leaves in Aj for all pairs i, j; see Semple and Steel (2003) for further
details and the biological significance of convexity).

We have calculated q when k = 2 above (and q′
= q in this

case). We turn now to the next case of interest, k = 3, where, for
example, we have

q(2, 2, 2) = 1/75, and q′(2, 2, 2) = 1/15.

The following result provides an exact formula for these two
quantities for arbitrary (a1, a2, a3).

Theorem 6.4. Let n = a1 + a2 + a3. Then

(i) q(a1, a2, a3) =
4a1!a2!a3!

(n−1)!

∑3
i=1

1
(n−ai)((n−ai)2−1)


.

(ii) q′(a1, a2, a3) = qn(a1, a2) + qn(a1, a3) + qn(a2, a3) − 2q(a1,
a2, a3), where qn(ai, aj) is given in Theorem 6.3(ii), and
q(a1, a2, a3) is from part (ii).
Proof. For part (i), the event that A1, A2, and A3 (which partition
X) are clans of T −ρ is the union of three disjoint events Ejk over
the three choices of {j, k} ∈ {{1, 2}, {1, 3}, {2, 3}}, where Ejk is the
event that the union of two of the sets – say Aj and Ak – must be
a clade of T , and that this clade has maximal clades Aj and Ak. The
exchangeability and group elimination conditions then give

q(a1, a2, a3) = P(E12) + P(E13) + P(E23)

=

3−
i=1

pn(n − ai) · p̂aj+ak(aj, ak),

where {ai, aj, ak} = {1, 2, 3} in the term on the right-hand side of
this last equation. By Lemmas 4.2 and 4.3, this gives

q(a1, a2, a3)

=

3−
i=1

2n
(n − ai)(n − ai + 1)

(n − ai)!ai!
n!

·
2

(n − ai − 1)
aj!ak!

(n − ai)!
,

which simplifies to the expression given in (ii).
For part (ii), the event that A1, A2, and A3 are convex on T −ρ is

the union of three (non-disjoint!) events E ′

jk over the three choices
of {j, k} ∈ {{1, 2}, {1, 3}, {2, 3}}, where E ′

jk is the event that two of
the sets – sayAj andAk – are clans ofT −ρ . Note that the intersection
of any two (or three) of these three events is simply the event that
all three sets are clans of T , which was dealt with in part (i). Thus,
by the principle of inclusion and exclusion, we have

q′(a1, a2, a3) = P(E ′

12) + P(E ′

13) + P(E ′

23) − 2q(a1, a2, a3),

and the result in part (iii) now follows. �

Deriving explicit formulae for q(a1, . . . , ak) and q′(a1, . . . , ak)
for k > 3 is, in principle, possible, but the formulae quickly become
complex.

6.3. Extensions of the clan condition (III)

A third extension is to consider the probability Qn(A1, A2) that
two sets A1 and A2 are clans of a YHK tree on n leaves when these
two sets are not disjoint. For this setting, we have the following
result.

Proposition 6.5. Suppose that A1 and A2 are non-disjoint subsets of
X, and that ai = |Ai|.

(i) If A1 ⊂ A2, then

Qn(A1, A2) = qn(a1, n − a2),

where qn(∗, ∗) is given by Theorem 6.3. Similarly, if A2 ⊂ A1,
then Qn(A1, A2) = qn(n − a1, a2).

(ii) Otherwise, if neither set A1, A2 is a subset of the other, then

Qn(A1, A2) =


qn(a1 − a12, a2 − a12), if A1 ∪ A2 = X,
0, otherwise,

where a12 = |A1 ∩ A2|.

Proof. First, observe that, if A1 ⊂ A2, then A1 and A2 are clans of
an unrooted phylogenetic X-tree T if and only if A1 and X − A2
are clans of T . Noting that these are disjoint sets, the first part
of Proposition 6.5 follows from Theorem 6.3. For the second case,
where neither set A1 nor A2 is a subset of the other, first observe
that in order for A1 and A2 to be clans of the same unrooted
phylogenetic X-tree T a necessary condition is that A1 ∪ A2 = X .
Moreover, under this condition, A1 and A2 are clans of T if and
only if A1 − A1 ∩ A2 and A2 − A1 ∩ A2 are clans of T ; as these
are disjoint sets, the second part of Proposition 6.5 follows from
Theorem 6.3. �
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7. Discussion

The arguments we have used in our analysis have primarily re-
lied on repeated application of the properties of exchangeability
(EP) and group elimination (GE) (or its corollary, sampling consis-
tency (SC)) for the YHK model, together with Lemmas 4.2 and 4.3.
However, other natural models for trees can also satisfy some of
these properties. Indeed, the distribution that assigns each rooted
binary phylogenetic tree on Xn the same probability (sometimes
known as the proportional to distinguishable arrangementsmodel,
or the PDA model) satisfies both exchangeability and group elim-
ination (Aldous, 1995). This suggests that by finding and applying
the corresponding results to Lemmas4.2 and4.3 for the PDAmodel,
one could develop a parallel line of results for the PDA model to
most of the analysis we have provided in this paper for the YHK
model.

Unfortunately, only one other model, apart from PDA and YHK,
is known to satisfy both exchangeability and group elimination,
and this model is not of biological interest, as it only generates
pectinate (comb-like) tree shapes. Aldous (1995) has conjectured
that these are the only three distributions on rooted binary
phylogenetic trees that satisfy both exchangeability and group
elimination. Nonetheless, it may be of interest to explore
models that satisfy weakened assumptions—for example, the
exchangeability property (EP) and (SC), or just exchangeability by
itself.

Even with exchangeability alone, one can devise meaningful
statistical significance tests. For example, suppose that N taxa
include one or more particular (disjoint) subsets (different ‘types’
of taxa) A1, A2, . . . , Ak, where k ≥ 1. Consider any model for
generating a rooted binary tree that satisfies the exchangeability
property (EP), and let pn be the probability that a tree on this set of
taxa as leaves, generated under this model, has at least one clade
of size at least n consisting of just one type (i.e., all leaves in the
clade are a subset of one of the sets A1, . . . , Ak). Then we have the
following result, the proof of which is given in the Appendix.

Proposition 7.1. For any probability distribution on rooted binary
trees satisfying the exchangeability property (EP) , we have

pn ≤

k−
i=1

ai−
m=n

 ai
m


N−1
m−1

 ,

where ai = |Ai|.
As a simple example, suppose that we have N = 40 taxa, including
two disjoint groups, each containing six taxa. For a tree generated
under any model that satisfies the exchangeability property, the
probability that this treewould contain a clade of size four or larger
consisting entirely of taxa from one of the two groups is, at most,

2 ·




6
4




39
3

 +


6
5




39
4

 +


6
6




39
5


 < 0.005.

We end with a caution. In applying Proposition 7.1 as a part
of significance test using a given phylogenetic tree, it is important
that the groups A1, A2, . . . are specified a priori, and not identified
based on the data used to construct the given tree (or, indeed, the
tree itself).
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Appendix. Proof of Proposition 7.1

Let Xm,i be the number of clades of size m in the randomly
generated tree that has the property that the taxa are all of type
Ai, and let X :=

∑k
i=1

∑ai
m=n Xm,i. Then pn = P(X > 0). Since X is a

non-negative integer random variable, we have

P(X > 0) ≤ E[X]. (7)

By linearity of expectation, we have

E[X] =

k−
i=1

ai−
m=n

E[Xm,i]. (8)

Moreover,

E[Xm,i] =

−
t

E[Xm,i|t]P(t), (9)

where the summation is over all binary tree shapes on the given
leaf set of size N , E[Xm,i|t] is the conditional expectation of Xm,i
given that t is the tree shape generated by the random speciation
process, and P(t) is the probability of generating tree shape t . For
any given the tree shape t ,

E[Xm,i|t] =

−
v:nv=m

E[Iv,i|t], (10)

where the summation is over all the interior vertices of t for which
the number of leaves below v (nv) is m, and where Iv,i is the
binary random variable that takes the value 1 precisely if all the
leaves below v are of type Ai, and Iv,i = 0 otherwise. Now, by
exchangeability, we have the following identity for any vertex v
of t with nv = m:

E[Iv,i|t] = P(Iv,i = 1|t) =

 ai
m


N
m

 . (11)

Now any tree shape on N leaves has, at most, N/m vertices v for
which nv = m, and so we obtain, from (10) and (11), E[Xm,i|t] ≤

N
m ·

( ai
m )
N
m

 =
( ai
m )

N−1
m−1

 . Since this inequality holds for all tree shapes

t , Eq. (9) implies that E[Xm,i] ≤
( ai
m )

N−1
m−1

 . The expression for pn now

follows from Eqs. (7) and (8). �
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