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Abstract. A fundamental problem in biological classification is the re-
construction of phylogenetic trees for a set X of species from a collection
of either subtrees or qualitative characters. This task is equivalent to tree
reconstruction from a set of partial X–splits (bipartitions of subsets of
X). In this paper, we define and analyse a “closure” operation for partial
X–splits that was informally proposed by Meacham [5]. In particular, we
establish a sufficient condition for such an operation to reconstruct a tree
when there is essentially only one tree that displays the partial X–splits.
This result exploits a recent combinatorial result from [2].

1 Introduction

Trees that have some vertices labelled by elements from a finite set X are often
used to represent evolutionary relationships, particularly in biology. Two closely
related problems are

(i) determining how to combine such trees that classify overlapping subsets of
X into a parent tree that displays each of the input trees, and

(ii) determining how to reconstruct a parent tree from (partial) qualitative char-
acters (equivalently, partitions of X or subsets of X) so that each character
could have evolved on the parent tree without any reverse or convergent
transitions (this is equivalent to each tree displaying the partition associ-
ated with each character).

For either problem, a parent tree may not exist, and even deciding this turns
out to be an NP-complete problem [3, 6]. However, in certain cases, various effi-
cient “rules” for extending sets of trees or sets of characters can either determine
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that such a tree does not exist, or reconstruct the tree when there is essentially
only one possible parent tree. Conditions for such an approach to succeed using
extension rules on sets of trees were recently established in [1], using a combina-
torial result from [2]. In this paper we take a related, but different, approach by
considering a rule for extending sets of partial binary characters (called partial
X–splits below) that was proposed informally by Meacham [5]. We formalise
an iterative construction using this rule, and show that it always leads to the
same set of partial X–splits, regardless of the possible choices by which the rule
can be applied. Then, using the main combinatorial result from [2], we provide
sufficient conditions for this construction to successfully recover a parent tree
or determine that no such tree exists. Note that although the input to our tree
reconstruction problem consists of partialX–splits, it could easily be modified to
input partitions of subsets of X (in the case of problem (ii)) or trees classifying
overlapping subsets of X (in the case of problem (i)) since all these problems
are essentially equivalent [6].

2 Preliminaries

Throughout this paper, X denotes a finite set. We begin with some definitions.

Partial splits. A partial split of X , or more briefly a partial X–split, is a par-
tition of a subset of X into two disjoint non-empty subsets. If these two subsets
are A and B, we denote the partial split by A|B. Note that no distinction is
made between A|B and B|A. If A ∪B = X we say that A|B is a (full) X–split.
We write aa′|bb′ to denote the partial split A|B if A = {a, a′} and B = {b, b′},
and we call this a quartet X–split. We say that the partial split A′|B′ extends the
partial split A|B precisely if either A ⊆ A′ and B ⊆ B′ or A ⊆ B′ and B ⊆ A′.
A partial X–split A|B is trivial if min{|A|, |B|} = 1.

X–trees. Let T be a tree with vertex set V and edge set E, and suppose we
have a map φ : X → V with the property that, for all v ∈ V with degree at most
two, v ∈ φ(X). Then the ordered pair (T ;φ), which we frequently denote by T ,
is called an X–tree. Two X–trees (T1;φ1) and (T2;φ2), where T1 = (V1, E1) and
T2 = (V2, E2), are regarded as equivalent if there exists a bijection ψ : V1 → V2

which induces a bijection between E1 and E2 and satisfies φ2 = ψ ◦φ1, in which
case, ψ is unique.

Let T = (T ;φ) be an X–tree and let e be an edge of T . Then corresponding
to e is the X–split φ−1(V1)|φ−1(V2), where V1 and V2 denote the vertex sets of
the two components obtained from T by deleting e. For an X–tree T , let Σ(T )
(resp. Σ∗(T )) denote the collection of non-trivial X–splits (resp. all X–splits)
corresponding to the edges of T .



Compatibility. Let A|B be a partial X–split. An X–tree T = (T ;φ) displays
A|B if there is an edge e of T = (V,E) such that, in (V,E − {e}), the sets φ(A)
and φ(B) are subsets of the vertex sets of different components. For example, the
X-tree shown in Figure 1, where X = {1, 2, . . . , 7}, displays each of the partial
X–splits in {{1, 2}|{3, 4}, {2, 3}|{4, 7}, {1, 7}|{4, 5}, {2, 5}|{6, 7}}. A collectionΣ
of partial X–splits is said to be compatible if there exists an X–tree that displays
every X–split in Σ. This is equivalent to requiring that every non-trivial split in
Σ is extended by a split in Σ(T ).
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Fig. 1. An X–tree displaying {1, 2}|{3, 4}, {2, 3}|{4, 7}, {1, 7}|{4, 5}, and {2, 5}|{6, 7}}.

The following result is well known, and follows immediately from results in
[4].

Lemma 1. Let A1|B1 and A2|B2 be partial X–splits. The following statements
are equivalent:

(i) A1|B1 and A2|B2 are compatible.
(ii) At least one of the sets A1 ∩A2, A1 ∩B2, B1 ∩A2, and B1 ∩B2 is empty.

A set Σ of partial X–splits is said to be pairwise compatible if each pair of
splits in Σ is compatible. This condition is not sufficient for Σ to be compatible.
For example, for X = {a, b, c, d, e}, the set {ab|cd, ab|ce, ad|be} of partial X–
splits of X is pairwise compatible, but not compatible. However, if Σ consists
of full X-splits, then Σ is compatible precisely if Σ is pairwise compatible, in
which case there is a unique X–tree T such that Σ∗(T ) = Σ (see [4]).

Irreducible sets of partial X–splits. Let Σ be a set of partial splits of X .
A partial split A|B ∈ Σ is redundant if there exists a different partial split in Σ
that extends A|B. If Σ has no redundant splits, then Σ is said to be irreducible.
Let Σ1 and Σ2 be two irreducible sets of partial splits of X . We write Σ1 � Σ2

if, for each A1|B1 ∈ Σ1, there is an element A2|B2 in Σ2 that extends A1|B1. It
is not difficult to show that � is a partial order on the collection of irreducible
sets of partial X–splits. Note that if we drop the irreducibility condition, then �
may fail to satisfy the antisymmetric property (a � b and b � a implies a = b)
required of a partial order. Observe that an X–tree T displays a set Σ of partial
X–splits precisely if Σ � Σ∗(T ).



We will let P(X) denote the collection of all sets Σ of partial X–splits that
are both pairwise compatible and irreducible. Let us adjoin to P(X) a new
element ω, and let Pω(X) = P(X) ∪ {ω}. If we extend the definition of � by
setting Σ � ω for all Σ ∈ P(X) (so that ω acts as a maximal element), then �
is a partial order on Pω(X).

3 Split Closure

In this section, we define a “split closure” of a set Σ of partial X–splits. Infor-
mally, we construct an irreducible set of partial X–splits from Σ by repeatedly
applying a pairwise replacement rule along the lines suggested by Meacham [5]
(the replacement rule (SC) below corresponds to “Rule 2” in [5]). We then show
that any two split closures of Σ are equal.

The replacement rule we consider for an irreducible set Σ of partial X–splits
is the following:

(SC) If A1|B1 and A2|B2 are elements of Σ that satisfy

∅ /∈ {A1 ∩A2, A1 ∩B2, B1 ∩B2} and B1 ∩A2 = ∅, (1)

replace A1|B1 and A2|B2 in Σ by (A1 ∪A2)|B1 and A2|(B1 ∪B2), and then
remove any redundant partial splits from the newly created set.

If A1|B1 and A2|B2 in the statement of (SC) have the property that A2 ⊆ A1,
B1 ⊆ B2, and (1) applies, then B1 ∩ A2 is empty, and the two newly created
partial splits are (A1 ∪ A2)|B1 and A2|(B1 ∪ B2), which are identical to A1|B1

and A2|B2, respectively. We call such an application of (SC) trivial; in all other
(non-trivial) applications of (SC) at least one of the newly created partial splits
differs from A1|B1 or A2|B2.

We say that Σ ∈ P(X) is closed under (SC) if (SC) applies only trivially to
Σ.

The motivation for (SC) is the following result due to Meacham [5].

Lemma 2. Let Σ be a set of partial X–splits, and let Σ′ be a set of partial
X–splits obtained from Σ by a single application of (SC). Then an X–tree T
displays Σ if and only if T displays Σ′.

Let Σ be a set of irreducible partial X–splits, and suppose that we construct
a sequence

Σ0, Σ1, . . . , Σi, Σi+1, . . .



of irreducible partial X–splits such that Σ0 = Σ and, for all i ≥ 0, Σi+1 is
obtained from Σi by one non-trivial application of (SC) provided Σi is pairwise
compatible. Since Σi � Σi+1, for all i ≤ 0, it follows that this sequence is
strictly increasing under �. Consequently, since the set of all X–splits is finite,
this sequence must terminate with a set, Σn say, of irreducible partial X–splits
such that either Σn is pairwise compatible and closed under (SC), or Σn is not
pairwise compatible. If the latter holds, we reset Σn to be the element ω.

Definition. We refer to the sequence Σ0, Σ1, . . . , Σn as a split closure sequence
for Σ, and the terminal value Σn as a split closure of Σ. Note that (SC) applies
only trivially to Σn (when Σn 6= ω) and Σn is always an upper bound, under �,
to Σ.

We next provide an explicit bound on the length of any split closure sequence.

Lemma 3. Let Σ be a set of irreducible partial X–splits, and let Σ0, Σ1, . . . , Σn

be a split closure sequence for Σ. Then n ≤ |Σ| × |X | −
∑

A|B∈Σ |A ∪B|.

Proof. It is straightforward to see that we can prove the lemma by making the
additional assumption that Σn 6= ω. For all i ∈ {0, 1, . . . , n − 1}, let λi : Σi →
Σi+1 be a function that maps an element, A′|B′ say, of Σi to an element of Σi+1

that extends A′|B′. Furthermore, for each element, A|B say, of Σ and for all
i ∈ {0, 1, . . . , n− 1}, let Ai+1|Bi+1 = λiλi−1 · · ·λ0(A|B).

Since, for all i, Σi+1 is obtained from Σi by a non-trivial application of (SC)
and Σi � Σi+1, it follows that

∑

A|B∈Σ

(|Ai+1 ∪Bi+1| − |Ai ∪Bi|) ≥ 1,

for all i. Consequently,
∑

A|B∈Σ

(|An ∪Bn| − |A ∪B|) ≥ n.

Therefore, as |An ∪Bn| − |A ∪B| ≤ |X | − |A ∪B| for each element A|B in Σ,

n ≤ |Σ| × |X | −
∑

A|B∈Σ

|A ∪B|

as required. 2

It will immediately follow from Lemma 4 that the split closure of a set Σ of
irreducible partial X–splits is well-defined.

Lemma 4. Let Σ be an irreducible set of partial X–splits. Then any two split
closures of Σ are equal.



Proof. If every split closure of Σ is ω, the lemma is (trivially) true, so we may
assume that there exists a split closure, Σ say, of Σ which is not ω. We prove
the lemma by showing that every other split closure of Σ equals Σ. To this end,
let Σ0, Σ1, . . . , Σn be a split closure sequence for Σ, where Σ0 = Σ. We first
claim that, for all i ∈ {0, 1, . . . , n},

Σi 6= ω and Σi � Σ. (2)

We establish (2) by induction on i. If i = 0, then (2) holds as there exists
a split closure of Σ not equal to ω. Now suppose that (2) holds for i = r,
where r ∈ {0, 1, . . . , n − 1}, and Σr+1 is obtained from Σr by applying (SC)
to the pair A1|B1 and A2|B2. Without loss of generality, we may assume that
B1 ∩ A2 = ∅. By the induction hypothesis, Σr � Σ, and so there is a pair
of partial X–splits A′

1|B′
1 and A′

2|B′
2 in Σ such that Ai ⊆ A′

i and Bi ⊆ B′
i,

for all i ∈ {1, 2}. Since Σ is pairwise compatible, it follows that A′
1|B′

1 and
A′

2|B′
2 satisfy (1). Therefore, as (SC) applies only trivially to Σ, it follows that

A′
2 ⊆ A′

1 and B′
1 ⊆ B′

2. Consequently, A′
1|B′

1 and A′
2|B′

2 extend (A1 ∪ A2)|B1

and A2|(B1 ∪B2), respectively, and so

Σr ∪ {(A1 ∪A2)|B1, A2|(B1 ∪B2)} − {A1|B1, A2|B2} � Σ.

Therefore, as Σ is pairwise compatible, Σr+1 6= ω and Σr+1 � Σ. This completes
the induction step and thereby establishes (2).

Applying (2) to i = n, we get Σn 6= ω and Σn � Σ. By interchanging
the roles of Σn and Σ in the argument of the last paragraph, we deduce that
Σ � Σn, and hence Σn = Σ. 2

Definition. In view of Lemma 4, we denote the split closure of a set Σ of
irreducible partial X–splits by spcl(Σ).

Note that |spcl(Σ)| ≤ |Σ|. Also, provided we set spcl(ω) = ω, then spcl
satisfies the three properties one expects of a closure operation on the poset
Pω(X). Namely, if a, b ∈ Pω(X) with a � b, then

(i) a � spcl(a),
(ii) spcl(a) � spcl(b), and
(iii) spcl(spcl(a)) = spcl(a).

The next result follows immediately from Lemma 2, however, the converse
of this corollary is not true [6].

Corollary 1. Let Σ be a set of irreducible partial X–splits. If spcl(Σ) = ω, then
Σ is incompatible.



4 Tree Reconstruction Using Split Closure

In this section, we establish a sufficient condition for the split closure of an
irreducible set of partial X–splits to recover all the non-trivial splits of an X–
tree. This result, Corollary 2, depends on a combinatorial theorem from [2]. In
order to apply this theorem, we need to relate partial splits and split closure to
quartet splits and a dyadic closure rule that operates on quartet splits. To this
end, we introduce some further definitions.

Definition. For a partial X–split A|B, let

Q(A|B) = {aa′|bb′ : a, a′ ∈ A; b, b′ ∈ B; a 6= a′; and b 6= b′}

and, for a set Σ of partial X–splits, let

Q(Σ) =
⋃

A|B∈Σ

Q(A|B).

For an X-tree T , we denote Q(Σ(T )) by Q(T ).

Proposition 1 relates partial splits to quartet splits.

Proposition 1. Let Σ be an irreducible set of non-trivial partial X–splits and
let T be an X–tree. Then Σ = Σ(T ) if and only if the following two conditions
hold:

(i) |Σ| ≤ |Σ(T )|; and
(ii) Q(Σ) = Q(T ).

Proof. Evidently, if Σ = Σ(T ), then (i) and (ii) hold. For the converse, we
first show that Σ � Σ(T ). Let T = (T ;φ), and let A|B be an element of
Σ. By (ii), Q(A|B) ⊆ Q(T ). Therefore, for each quartet of elements a, a′, b,
and b′ with a, a′ ∈ A and b, b′ ∈ B, the cardinality, denoted n(a, a′, b, b′), of
{A′|B′ ∈ Σ(T ) : aa′|bb′ ∈ Q(A′|B′)} satisfies n(a, a′, b, b′) ≥ 1. Now suppose
that a, a′, b, and b′ are chosen so that n(a, a′, b, b′) is minimised, and A′|B′ is an
element of Σ(T ) with aa′|bb′ ∈ Q(A′|B′). By considering the placement of the
vertices φ(a), φ(a′), φ(b), and φ(b′) in T , we see that A ⊆ A′ and B ⊆ B′, thus
showing that Σ � Σ(T ).

Now let n(A|B) = min{n(a, a′, b, b′) : a, a′ ∈ A; b, b′ ∈ B}, and let

Σ1 = {A|B ∈ Σ : n(A|B) = 1}.

Using the fact that Σ � Σ(T ), it is easily seen that, for each element, A|B say,
of Σ1, there is a unique element of Σ(T ) that extends A|B. Let µ : Σ1 → Σ(T )



denote the map that associates with each element A|B of Σ1 the unique element
of Σ(T ) that extends A|B. We next show that µ is a bijection.

Let C′|D′ be an element of Σ(T ), and choose elements c, c′ ∈ C′ and d, d′ ∈
D′ so that n(c, c′, d, d′) = 1. Then, by (ii), there is an element C|D of Σ1 such
that cc′|dd′ ∈ Q(C|D) and, moreover, µ(C|D) = C′|D′. Thus the map µ is
surjective and so |Σ1| ≥ |Σ(T )|. It now follows from (i) that Σ1 = Σ, and so µ
is indeed a bijection. Hence |Σ| = |Σ(T )|. Since Σ1 = Σ, we can complete the
proof by showing that, for each A|B ∈ Σ1, µ(A|B) = A|B.

Suppose, to the contrary, that µ(A|B) = A′|B′, where A′|B′ extends A|B
but is not equal to A|B, for some A|B ∈ Σ1. Then there is an element x in
(A′ ∪B′)− (A∪B). Without loss of generality, we may assume x ∈ A′. Then we
can choose elements a1 ∈ A′ and b1, b2 ∈ B′ so that n(x, a1, b1, b2) = 1. By (ii),
there is an element C|D of Σ1 such that xa1|b1b2 ∈ Q(C|D). Since x 6∈ A ∪ B,
C|D is not equal to A|B. Therefore, as µ is a bijection, µ(C|D) 6= A′|B′, and so
xa1|b1b2 6∈ Q(µ(C|D)). This contradiction completes the proof of Proposition 1.
2

Following [1], the semi-dyadic closure of a collection Q of quartet X–splits,
denoted scl2(Q), is the minimal set of quartet X–splits that contains Q and is
closed under the following rule:

(SDC) If ab|cd and ac|de are elements of scl2(Q), then ab|ce, ab|de, and bc|de are
elements of scl2(Q).

The next proposition relates split closure to semi-dyadic closure.

Proposition 2. If Σ is a set of compatible irreducible partial X–splits, then
scl2(Q(Σ)) ⊆ Q(spcl(Σ)).

Proof. We can obtain scl2(Q(Σ)) by constructing a sequence Q0,Q1, . . . ,Qm of
collections of quartet X–splits such that Q0 = Q(Σ), Qm = scl2(Q(Σ)), and,
for all i ∈ {0, 1, . . . ,m − 1}, Qi+1 = Qi ∪ scl2({qi, q′i}), where qi, q′i ∈ Qi but
scl2({qi, q′i}) 6⊆ Qi. We prove the proposition by showing that one can construct a
sequence Σ0, Σ1, . . . , Σm of sets of irreducible partial X–splits such that Σ0 = Σ
and, for all j ∈ {0, 1, . . . ,m},

Σj � spcl(Σ) and Qj ⊆ Q(Σj). (3)

For then, taking j = m, establishes the proposition.

The proof of the latter construction is by induction on j. Clearly, the result
holds if j = 0 as Σ0 = Σ. Now let r be an element of {0, 1, . . . ,m − 1}, and



suppose that Σj has been defined for all j ≤ r and (3) holds for j = r. Then
qr, q

′
r ∈ Q(Σr). If scl2({qr, q′r}) ⊆ Q(Σr), then set Σr+1 = Σr. On the other

hand, suppose that scl2({qr, q′r}) 6⊆ Q(Σr). Since Qr ⊆ Q(Σr), there are two
distinct elements A|B and A′|B′ in Σr that extend qr and q′r, respectively. As Σ
is compatible, spcl(Σ) is compatible, so Σr is pairwise compatible. It now follows
that we can apply (SC) to A|B and A′|B′. Set Σr+1 to be the resulting set of
irreducible partial X–splits. In both cases, Σr+1 � spcl(Σ) and, moreover, one
can easily check that scl2({qr, q′r}) ⊆ Q(Σr+1). Hence (3) holds for j = r + 1,
and so we can indeed construct such a sequence. 2

Definition. A set Σ of non-trivial partial X–splits weakly defines an X–tree T
if there is a unique X–tree T ′ that displays Σ∪{{x}|X−{x} : x ∈ X}, in which
case Σ∗(T ) = Σ(T ′).

Let T = (T ;φ) be an X–tree, and let v be a vertex of T . Suppose that there
is a set of non-trivial partial X–splits that weakly defines T . Then it is easily
seen that each of the following hold in T :

(i) If v is a pendant vertex, then |φ−1(v)| = 2.
(ii) If v is a degree-two vertex, then |φ−1(v)| = 1.
(iii) If v is neither a pendant vertex nor a degree-two vertex, then v is a degree-

three vertex and φ−1(v) = ∅.

Conversely, if T satisfies all of (i)–(iii), then Σ(T ) weakly defines T . As an
example, the set {{1, 2}|{3, 4}, {2, 3}|{4, 7}, {1, 7}|{4, 5}, {2, 5}|{6, 7}} of partial
X–splits weakly defines the X–tree in Figure 1.

Two characterisations for when a minimum-sized set of quartet X–splits
weakly defines an X–tree are given in [2]. Theorem 1 gives a third such charac-
terisation. Before stating this theorem, we note that it immediately follows from
[6, Proposition 6] that |X | − 3 is the minimum number of quartet X–splits that
can weakly define an X–tree T . Observe that |X | − 3 = |Σ(T )|.

Theorem 1. Let ΣQ be a set of |X |−3 quartet X–splits, and let T be an X–tree.
Then the following statements are equivalent:

(i) ΣQ weakly defines T .
(ii) spcl(ΣQ) = Σ(T ).

Proof. If spcl(ΣQ) = Σ(T ), then one can easily check using Lemma 2 that ΣQ

weakly defines T . For the converse, suppose that ΣQ weakly defines T . Then,
by [2, Theorem 3.11] (also see [1]), scl2(ΣQ) = Q(T ). Since ΣQ is compati-
ble and irreducible, we can apply Proposition 2 to ΣQ and get scl2(Q(ΣQ)) ⊆



Q(spcl(ΣQ)). As Q(ΣQ) = ΣQ, it follows that Q(T ) ⊆ Q(spcl(ΣQ)). Now
spcl(ΣQ) is compatible, so Q(T ) = Q(spcl(ΣQ)). Moreover, |spcl(ΣQ)| ≤ |ΣQ| =
|Σ(T )|, and so, by Proposition 1, spcl(ΣQ) = Σ(T ) as required. 2

An immediate consequence of Theorem 1 is Corollary 2.

Corollary 2. Let ΣQ be a set of quartet X–splits, and suppose that there exists a
subset of ΣQ of size |X |−3 that weakly defines an X–tree T . If ΣQ is compatible,
then spcl(ΣQ) = Σ(T ); otherwise spcl(ΣQ) = ω.

Suppose that ΣQ and T satisfy the assumptions of their namesake in the
statement of Corollary 2. The potential utility of Corollary 2 lies in the fact
that T can be reconstructed from Σ(T ) and, in turn, Σ(T ) = spcl(ΣQ) can be
reconstructed from ΣQ; moreover, both tasks can be carried out in polynomial
time. Thus we obtain an alternative polynomial-time algorithm for the special
case of this tree reconstruction problem to that described in [1]. Furthermore, if
|ΣQ| = O(n), then, by Lemma 3, every split closure sequence for ΣQ has length
at most O(n2), and so the algorithm described here should be reasonably fast.
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[2] Böcker, S., Dress, A. W. M., and Steel, M.: Patching up X–trees. Annals of
Combinatorics 3 (1999) 1-12.

[3] Bodlaender, H. L., Fellows, M. R., and Warnow, T. J.: Two strikes against per-
fect phylogeny. In Proceedings of the International Colloquium on Automata,
Languages and Programming, Vol. 623 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin (1993) 273–283.

[4] Buneman, P.: The recovery of trees from measures of dissimilarity. In F. R. Hod-
son, D. G. Kendall, and P. Tautu (eds.): Mathematics in the Archaeological and
Historical Sciences, Edinburgh University Press (1971) 387–395.

[5] Meacham, C. A.: Theoretical and computational considerations of the compati-
bility of qualitative taxonomic characters. In J. Felsenstein (ed.): Numerical Tax-
onomy, NATO ASI Series Vol. G1, Springer-Verlag (1983) 304–314.

[6] Steel, M.: The complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classification 9(1) (1992) 91–116.


