
www.elsevier.com/locate/mbs

Mathematical Biosciences 208 (2007) 521–537
Closure operations in phylogenetics
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Abstract

Closure operations are a useful device in both the theory and practice of tree reconstruction in biology
and other areas of classification. These operations take a collection of trees (rooted or unrooted) that clas-
sify overlapping sets of objects at their leaves, and infer further tree-like relationships. In this paper we
investigate closure operations on phylogenetic trees; both rooted and unrooted; as well as on X-splits,
and in a general abstract setting. We derive a number of new results, particularly concerning the complete-
ness (and incompleteness) and complexity of various types of closure rules.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Phylogenetic trees are widely used to represent evolutionary relationships, particularly in biology.
Such trees have labelled leaves, and unlabelled interior vertices, and may be rooted or unrooted. One
technique for building phylogenetic trees – sometimes called the supertree approach – is to combine
trees on overlapping sets of leaves. This has become a widely applied technique in systematic biology,
and a central tool in the challenge to construct a ‘tree of life’ [2].
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The requirement that these trees are compatible, that is, fit together into a parent tree en-
forces further tree-like relations to hold. This allows one to infer new phylogenetic relation-
ships from the input, and one can iterate this procedure, leading to the concept of a
closure operation on a set of trees. Such operations have proved to be particularly useful, both
for theory [4,5,8,12,17] and applications [9,7,13–15,20]. For example, a closure operation may
produce a conflicting pair of trees, thereby showing that the initial set of input trees was
inconsistent with any global tree, something which may not have been apparent to start with.
Alternatively, a closure operation may produce a sufficiently rich set of additional trees, that a
global tree is uniquely specified and easily constructed. Certain types of closure operations are
also polynomial time, allowing for the solution of special cases of problems which in general
are NP-complete [5,19].

For rooted phylogenetic trees, the basic building blocks are ‘rooted triples’ – induced rooted
subtrees on three leaves. For unrooted phylogenetic trees, the building blocks are ‘quartet trees’
– induced subtrees on four leaves. In both cases the closure operations take a set of these small
trees and produce further ones. For unrooted phylogenetic trees we also study a closure operation
on a different type of building block – namely the ‘splits’ of the leaf set into two disjoint subsets.

Our main results can be summarized as follows (precise definitions and statements are given
later):

• For any rooted phylogenetic tree we determine the minimum number of rooted triples whose
closure gives all the induced rooted triples for that tree.

• In contrast to the rooted setting, closure rules for quartet trees do not suffice to detect incom-
patibility. That is, there exists an incompatible set of quartet trees for which every proper subset
of the quartets is both compatible and closed, thereby settling a question raised in the literature.

• Two closure rules (defined more than 20 years ago) on pairs of splits of the leaf sets of trees are
complete amongst pair-wise rules on partitions of subsets of X.

• We describe how some of the arguments presented can be rephrased in a more general setting.

1.1. Basic definitions

We mostly follow the notation of [18]. A rooted phylogenetic X-tree T is a rooted tree, in which
X is the set of leaves, and the interior vertices are unlabelled and have at least two outgoing edges.
In case each interior vertex has exactly two outgoing edges, T is said to be binary. We let �EðT Þ
denote the set of (interior) edges of T that are not incident with a leaf. A binary rooted phyloge-
netic tree on three leaves is called a rooted triple.

The clusters of T are the subsets of X that consist of all the elements of X that are separated
from the root vertex of T by some vertex of T . It is a classical result that a rooted phylogenetic
X-tree is determined up to isomorphism by its set of clusters. We denote the rooted triple with leaf
set {x,y,z} that contains the cluster {x,y} by xyjz or, equivalently, by zjxy.

For two phylogenetic X-trees T ; T 0, if the clusters of T are a subset of the clusters of T 0 we say
that T 0 refines T , written T 6 T 0. Given a subset X 0 of X, and a rooted phylogenetic X-tree, the
induced tree T jX 0 is the rooted phylogenetic X 0-tree that has as its set of clusters
fA \ X 0 : A is a cluster of T ;A \ X 0 6¼ ;g.
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A rooted phylogenetic X-tree T is said to display another rooted phylogenetic X 0-tree T 0 where
X 0 � X if T 0 6 T jX 0. We let rðT Þ denote the set of all rooted triples displayed by T . To illustrate
this idea, Fig. 1 shows a rooted tree that displays the rooted triples 12j3 and 13j6 but not 13j4 nor
15j4.

Given a collection R of rooted triples, let LðRÞ denote the set of leaf labels that appear in at
least one tree and let coðRÞ denote the set of rooted phylogenetic trees on leaf set LðRÞ that dis-
play all the trees in R. We say R is compatible if coðRÞ is non-empty.

Similar definitions apply for unrooted phylogenetic X-trees, however in this section and the
next we deal only with rooted trees.

1.2. Closure of a set of rooted triples

Given a compatible collection R of rooted triples, we write R ‘ abjc if every rooted phyloge-
netic tree that displays R also displays abjc (this is equivalent to requiring that R [ facjbg is
incompatible, and R [ fbcjag is incompatible).

If R is a compatible set of rooted triples, we define the closure of R by
clðRÞ ¼
\

T 2coðRÞ
rðT Þ:
Equivalently, clðRÞ is the set fabjc : R ‘ abjcg. This operation satisfies the usual three properties
of a closure operator, namely: R � clðRÞ; clðclðRÞÞ ¼ clðRÞ and if R1 � R2 are compatible, then
clðR1Þ � clðR2Þ.

If R is incompatible, then one can also define a closure of R as follows. We say that a set of
rooted triples (compatible or not) R� is closed if for every subset R0 � R� such that R0 is compat-

ible, clðR0Þ � R�. In particular the set RðX Þ of all 3
n
3

� �
rooted triples on X is closed, and so given

a set R � RðX Þ we can define the closure of R, denoted ClðRÞ to be the intersection of all closed
sets containing R. This also satisfies the three properties of a closure operator, and when R is
compatible we have ClðRÞ ¼ clðRÞ.

The closure operation provides a neat characterization of compatibility as the following Lem-
ma shows. The result is a slight strengthening of Proposition 9(2) of [4] and is established by the
same argument used in that result.
Fig. 1. A rooted phylogenetic tree T that displays 12j3 and 13j6 but not 13j4 nor 15j4.
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Lemma 1.1. Let R be a set of rooted triples. Then R is incompatible if and only if there exists a set
R0 � R such that for every rooted triple abjc 2 R�R0 either R0 ‘ acjb or R0 ‘ bcja.

We will use this lemma later in the paper; however we pause to note an application of it now
that is relevant to supertree reconstruction. Given two sets of rooted triples R1;R2, let
½R1;R2� :¼ fabjc 2 R1 : there does not exist R0 � R2 : R0 ‘ acjb or R0 ‘ bcjag:
Proposition 1.2. Let R1 and R2 be two sets of rooted triples (compatible or not) for which R1 � R2.
Then ½R1;R2� is compatible. In particular ½R1;R1� is compatible.

Proof. Suppose ½R1;R2� were incompatible. By Lemma 1.1 there would exist a set
R0 � ½R1;R2� � R1 � R2 and a rooted triple abjc 2 ½R1;R2� �R0 � R2 such that either
R0 ‘ acjb or R0 ‘ bcja. However, this implies that abjc 62 ½R1;R2�, a contradiction. h

For example, for any set R of rooted triples (compatible or not) we could take
R1 ¼ R2 ¼ ClðRÞ, and Proposition 1.2 would ensure that ½ClðRÞ;ClðRÞ� is compatible. This is
relevant for a desired property for supertree methods, described semi-formally in [11] as: ‘the
property of [the output tree] displaying xjyz if it is found in some input tree or implied by some
combination of input trees and no input tree or combination of input trees displays or implies yjxz
or zjxy’.
2. Minimal sets whose closure gives all the information in a tree

For every phylogenetic tree T , the set rðT Þ of all rooted triples displayed by T is closed. How-
ever, in general there exist subsets R of rðT Þ with clðRÞ ¼ rðT Þ. For example, the set
{12j3,12j4,13j5,34j5,56j1} has this property for the tree depicted in Fig. 1. In this section, we will
compute a tight lower bound for the cardinality of such a set R.

Before exploring this further, we first note that this question has an equivalent reformulation.

Definition. A collection of rooted triples identifies a rooted phylogenetic X-tree T if T displays R
and every other tree that displays R is a refinement of T . That is, coðRÞ ¼ fT 0 : T 6 T 0,
LðT Þ ¼ LðT 0Þg. In view of the following Lemma our problem is to determine the smallest number
of rooted triples needed to identify T .

Lemma 2.1. For any subset R of rðT Þ, clðRÞ ¼ rðT Þ iff R identifies T .

Proof. We have clðRÞ ¼
T

T 02coðRÞrðT
0Þ. Thus, clðRÞ ¼ rðT Þ precisely if rðT Þ � rðT 0Þ for all

T 0 2 coðRÞ. But rðT Þ � rðT 0Þ iff T 6 T 0, and so clðRÞ ¼ rðT Þ iff T 6 T 0 for all T 0 2 coðRÞ, pre-
cisely the requirement for R to identify T . h

To proceed further we need to introduce some further definitions. Regarding a rooted
phylogenetic tree T as a directed graph (with arcs oriented away from the root), and given
v 2 V ðT Þ, the descendents of v, denoted desT ðvÞ, is the set of leaves that can be reached
via a directed path in T starting at v. We simply write des(v) when T is clear from
context.
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A rooted triple abjc distinguishes an edge (u,v) in T if and only if a,b,c 2 des(u), a,b 2 des(v), and
c 62 des(v). For example, in Fig. 1 the rooted triple 12j4 distinguishes the interior edge of T that is
not incident with the root.

If R identifies T , then it is clearly necessary that for each internal edge of T , R contains at least
one rooted triple that distinguishes that edge. For a rooted binary phylogenetic tree, this condi-
tion is also sufficient, thus for a binary tree on n leaves, a set of cardinality n � 2 (one rooted triple
for each of the n � 2 internal edges) is enough to identify the tree [19]. As noted in [20], ‘calculat-
ing the number of absolutely independent triples for non-binary trees is more complex, depending
on the degree and level of resolution of the tree.’ We will establish a lower bound on the number
of rooted triples needed to identify a tree, and show that this lower bound can actually be realized
for any tree. First we recall a useful construction in classical phylogenetics.

Given a compatible collectionRof rooted triples, there is a well-known and canonical construction
of a tree denoted AR which displays R due to Aho et al. [1]. There is a polynomial-time procedure
which constructs the clusters of this tree recursively fromR (readers unfamiliar with this construction
may wish to consult [18]). The basis of this algorithm is the following graph, which can be constructed
from any setR of rooted triples (compatible or not) and which we denote as GðRÞ. The set of vertices
of this graph is LðRÞ, the set of leaf labels of the elements ofR. There is an edge between two vertices a
and b, if there is c 2 LðRÞ such that abjc 2 R. This graph, GðRÞ, is called the clustering graph in [18].
The components of this graph form the maximal clusters of the tree AR, and the algorithm for con-
structing the clusters in the remainder of AR proceeds recursively by restricting R to the leaf labels
within each component (for details see [18]). The following result is from [16].

Lemma 2.2. If R identifies T then AR ¼ T .

As well as GðRÞ we will require a further graph in the arguments that follow. Let R be a set of
rooted triples, and let V and U be sets of subsets of LðRÞ. We define an edge-labelled graph
GðR; V ;UÞ as follows. Take the vertices of the graph to be the elements of V. Add an edge between
two vertices v and v 0 if there is a rooted triple abjc 2 R such that a 2 v, b 2 v 0, and c 2 u for some
u 2 U. Label each edge {v,v 0} with the set fu 2 U : 9 abjc 2 R such that a 2 v; b 2 v0; and c 2 ug.
If V ¼ U ¼ ffxg : x 2 LðRÞg, then G(R,V,U) is simply GðRÞ with edge labels as defined in [4].

For a rooted phylogenetic tree T with LðT Þ � LðRÞ and ðu; vÞ 2�EðT Þ, let
GðR; T ; ðu; vÞÞ :¼ GðR; V ;UÞ;
where V ¼ fdesðxÞ : ðv; xÞ 2 EðT Þg and U ¼ fdesðwÞ : ðu;wÞ 2 EðT Þ; w 6¼ vg. Furthermore, for a
vertex w of T such that ðu;wÞ 2�EðT Þ, and w 5 v, we let GwðR; T ; ðu; vÞÞ denote the subgraph
of GðR; T ; ðu; vÞÞ with the same vertex set and only those edges which have w in their label set.
For a subset L0 � LðRÞ, we denote the set of all triples in R that have all leaves in L 0 by RjL0
and for a graph G and a subset V 0 of its vertex set, G[V 0] is the subgraph of G induced by V 0.

Lemma 2.3. If R is a set of rooted triples and ðu; vÞ 2�EðARÞ, then GðR;AR; ðu; vÞÞ is connected.

Proof. By the construction of AR, des(v) is the vertex set of a connected component of GðRjdesðuÞÞ.
We will show that, ignoring edge labels, GðR;AR; ðu; vÞÞ can be obtained from GðRjdesðuÞÞ½desðvÞ�
by simply identifying vertices. Let G* be the graph obtained from GðRjdesðuÞÞ½desðvÞ� by identifying

all vertices that are in the same connected component of GðRjdesðvÞÞ. Clearly, G* and

mathmas
Note
Errata: Also required in the definition of 'distinguishes' is that no v' \in  des(v) exists with a,b \in des(v'). 
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GðR;AR; ðu; vÞÞ have the same vertex set, say B1;B2; . . . ;BdþðvÞ where d+(v) denotes the outdegree

of v in AR. If BiBj is an edge of GðR;AR; ðu; vÞÞ, then there exists a 2 Bi, b 2 Bj, and c 2 des(u)
such that abjc 2 R. Therefore, BiBj is also an edge of G*. Suppose that BiBj is an edge of G*

but is not in the edge set of GðR;AR; ðu; vÞÞ. Then there must be some a 2 Bi, b 2 Bj, and
c 2 des(u) such that abjc 2 R and c 62 des(u) � des(v). Thus c 2 des(v). This contradicts the fact
that a and b are in distinct connected components of GðRjdesðvÞÞ. Therefore, G* and

GðR;AR; ðu; vÞÞ have the same edge set and we conclude that GðR;AR; ðu; vÞÞ is connected. h

Lemma 2.4. If R is a set of rooted triples that identifies AR, then, for every two edges ðu; vÞ 2�EðARÞ
and ðu;wÞ 2 EðARÞ with w 5 v, the graph GwðR;AR; ðu; vÞÞ is connected.

Proof. If d+(u) = 2, then GwðR;AR; ðu; vÞÞ ¼ GðR;AR; ðu; vÞÞ. Thus, by Lemma 2.3,
GwðR;AR; ðu; vÞÞ is connected.

Now consider the case where d+(u) > 2. Suppose GwðR;AR; ðu; vÞÞ is not connected and let
C1, . . . ,Ck be its components with more than one vertex. Note that k = 0 if all vertices are
isolated. Let T be the tree obtained from AR by adding vertices x1,. . .,xk, replacing all edges (v,yi)
for which des(yi) is a vertex of Ci by an edge (xi,yi) and adding an edge (v,xi) for every
i 2 {1,. . .,k}, and replacing the edge (u,w) by (v,w). Suppose that T does not display R. Then there
is a rooted triple abjc 2 R which is displayed by AR but not by T . This implies that c 2 des(w),
a,b 2 des(v), and a and b are contained in vertices of different components of GwðR;AR; ðu; vÞÞ
which is impossible in view of the definition of that graph. Thus, T displays R. This is a
contradiction since T is not a resolution of AR but we assumed that R identifies AR. Therefore,
GwðR;AR; ðu; vÞÞ is connected. h

Theorem 2.5. Given a rooted phylogenetic X-tree T , and a set of rooted triples R with LðRÞ ¼ X , we
have AR ¼ T if and only if the following two conditions hold:

(i) R � rðT Þ and
(ii) 8ðu; vÞ 2�EðT Þ, GðR; T ; ðu; vÞÞ is connected.

Furthermore, R identifies T if and only if in addition to (i) and (ii), the following condition holds.
(iii) 8ðu; vÞ 2�EðT Þ and for each ðu;wÞ 2 EðT Þ with w 5 v, GwðR; T ; ðu; vÞÞ is connected.

Proof. Assume that AR ¼ T . Then R � rðARÞ ¼ rðT Þ, satisfying condition (i). By Lemma 2.3,
condition (ii) is also satisfied. To prove the converse (i.e. conditions (i) and (ii) imply AR ¼ T )
we will use induction on the number of internal edges of T . The result clearly holds for trees with
exactly one internal edge. Let T be a tree with j�EðT Þj > 1. Assume the result holds for any tree
with less than j�EðT Þj leaves.

We assume that AR 6¼ T . Hence, there are edges (u,v) of T and (u 0,v 0) of AR such that
desT ðuÞ ¼ desAR

ðu0Þ and desT ðvÞ 6¼ desAR
ðv0Þ and desT ðvÞ \ desAR

ðv0Þ 6¼ ;. Let T v be the subtree
of T with root v and leaf set des(v). Clearly, we have RjdesðvÞ � rðT vÞ and that
GðRdesðvÞ; T v; ðw1;w2ÞÞ is connected for every edge ðw1;w2Þ 2�EðT vÞ. By induction hypothesis,
we have T v ¼ ARjdesðvÞ

. Hence, for every edge (v,w) of T , des(w) is contained in one connected
component of GðRjdesðvÞÞ and therefore in one component of GðRjdesðuÞÞ. Further, since
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GðR; T ; ðu; vÞÞ is connected, even des(v) is contained in one connected component of GðRjdesðuÞÞ ¼
GðRjdesðu0ÞÞ, thus we have des(v) � des(v 0). Since des(v) 5 des(v 0) there is an edge {x1,x2} in the
connected graph GðRjdesðuÞÞ½desðv0Þ� with x1 2 des(v) and x2 62 des(v). Hence, there is y 2 des(u)
with x1x2jy 2 R but this rooted triple is not displayed by T , a contradiction. This proves that
T ¼ AR, hence the first result of this theorem.

Now we will prove the second result that conditions (i)–(iii) are necessary and sufficient for R to
identify T . If R identifies T then T ¼ AR. Thus, conditions (i) and (ii) follow from the first part of
this theorem and condition (iii) follows from Lemma 2.4.

Assume that conditions (i)–(iii) hold. By the first part of this theorem, T ¼ AR. Suppose that R
does not identify T . It was shown in [6], p. 45, that then there are edges ðu; vÞ; ðu;wÞ 2 EðT Þ such that
v 5 w and GðRjdesðvÞ[desðwÞÞ has more than two connected components. We know that for each
connected component C of GðRjdesðvÞ[desðwÞÞ either V(C) � des(v) or V(C) � des(w). Assume without
loss of generality that the vertices of at least two of the connected components of GðRjdesðvÞ[desðwÞÞ are
subsets of des(v). Then the graph GwðR;AR; ðu; vÞÞ can not be connected, in contradiction to the
assumption that (iii) holds. Therefore, R must identify T . h

Notice that the graphs in conditions (ii) and (iii) in Theorem 2.5 depend only on those rooted
triples that distinguish an edge. Therefore, the following corollary is immediate.

Corollary 2.6. If R is a minimal set of rooted triples identifying T then each element of R
distinguishes an internal edge of T .

We are now ready to establish a lower bound on the number of rooted triples needed to identify
a tree. For a rooted phylogenetic tree T , we define
lbðT Þ ¼
X

ðu;vÞ2�EðT Þ

ðdþðvÞ � 1ÞðdþðuÞ � 1Þ:
Theorem 2.7. If R is a set of rooted triples that identifies T , then jRjP lbðT Þ.

Proof. Let R be minimal set of rooted tiples identifying T by Corollary 2.6, each element of R
distinguishes exactly one internal edge of T . For each internal edge (u,v) of T , let p(u,v) be the
set of elements of R that distinguish (u,v). Then fpðu;vÞ : ðu; vÞ 2�EðT Þg is a partition of R and
jRj ¼
X

ðu;vÞ2�EðT Þ

jpðu;vÞj:
We will show that for every internal edge ðu; vÞ 2 T ,
jpðu;vÞjP ðdþðvÞ � 1ÞðdþðuÞ � 1Þ:

By Lemma 2.4, for ðu;wÞ 2�EðT Þ such that w 5 v, the graph Gw ¼ GwðR; T ; ðu; vÞÞ is con-

nected. Hence,
jEðGwÞjP jV ðGwÞj � 1 ¼ dþðvÞ � 1:
Let w1;w2; . . . ;wdþðuÞ�1 be the vertices of T such that ðu;wÞ 2�EðT Þ and w 5 v. Then we have
jpðu;vÞjP
XdþðuÞ�1

i¼1

jEðGwiðR; T ; ðu; vÞÞÞjP ðdþðvÞ � 1ÞðdþðuÞ � 1Þ:
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This establishes the lower bound on jRj. h

Now we will show that the lower bound from Theorem 2.7 can be attained for every tree T .

Theorem 2.8. For every rooted phylogenetic tree T , there is a set R of rooted triples such that R
identifies T and jRj ¼ lbðT Þ.

Proof. We prove the theorem by constructing a set R of rooted triples with the desired property.
For each ðu; vÞ 2�EðT Þ, we choose a set of rooted triples p(u, v) in the following manner. Let
w1;w2; . . . ;wdþðvÞ be the children of v and, for i 2 {1, . . . ,d+(v)}, let xi 2 des(wi). Further, let
y1; . . . ; ydþðuÞ be the children of u with ydþðuÞ ¼ v and, for i 2 {1,. . .,d+(u) � 1}, let zi 2 des(yi).
pðu;vÞj ¼ fxixi þ 1jzj : 1 6 i 6 dþðvÞ � 1 and 1 6 j 6 dþðuÞ � 1g:

Let R ¼

S
ðu;vÞ2�EðT Þpðu;vÞ. By construction, R fulfils conditions (i)–(iii) of Theorem 2.5, thus R iden-

tifies T and jRj ¼ lbðT Þ. h

For the phylogenetic tree depicted in Fig. 1, the construction above yields the minimum iden-
tifying set {12j3,12j4,13j5,34j5,56j1} of rooted triples.
3. The closure operation for unrooted trees

Up to this point we have considered the closure operation on rooted trees. When we move to
unrooted trees, many of the results one might expect to carry over do not. Perhaps most surprising
is that Lemma 1.1 is no longer true in the unrooted setting, thereby settling a question posed in [5].
To explain this result we begin with some terminology.

Following [16], an unrooted phylogenetic X-tree T is a tree with leaf set X and whose interior
vertices are unlabelled and of degree at least 3 (in case all these degrees equal 3 we say that T
is binary).

An unrooted phylogenetic tree T is said to be induced by the tree T 0 if the leaf set of T is a
subset of the leaf set of T 0 and T is obtained from the maximal subgraph of T 0 containing the
leaf set of T by suppressing vertices of degree 2. An unrooted binary phylogenetic tree with four
leaves is called a quartet tree. A phylogenetic tree T displays a set Q of quartet trees if every quar-
tet tree in Q is induced by T and we let co(Q) denote the set of phylogenetic X-trees that display Q
where X is the set of labels appearing at leaves in Q.

The quartet tree with leaf set {a,b,c,d} that contains an inner edge separating a, b from c, d is
denoted by abjcd and {a,b} and {c,d} are called its quartet halfs. A set of quartet trees is said to be
compatible if there is an unrooted phylogenetic tree inducing all of those rooted quartet trees. Fur-
thermore, we say that a set Q of quartet trees is closed if it has the property that Q contains every
quartet tree that is displayed by every tree in co(Q 0) for each compatible non-empty subset Q 0 of
Q. If each subset of Q is closed we call Q strongly closed. For example, for a given unrooted phy-
logenetic tree T having at least two internal edges, the set of all quartets displayed by T is a closed
set but it is not strongly closed.

The following result is a slight re-statement of Proposition 9(2) of [4]. It follows easily from
Lemma 1.1.
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Proposition 3.1. Every closed non-compatible rooted triple set contains a conflict, i.e. two different
rooted triples of the same set of three leaves.

Surprisingly, the analogue of Proposition 3.1 fails for quartet trees; that is, there exists a non-
compatible closed quartet tree set which does not contain a conflict (two different quartet trees of
the same set of four leaves). This resolves a question raised in [4], and disproves a conjecture from
[3]. In fact we can establish a slightly stronger result by replacing ‘closed’ by ‘strongly closed’.

Theorem 3.2. Let
W :¼ f12j78; 23j58; 15j37; 14j67; 26j48; 34j56g:

Then W is a non-compatible strongly closed set of quartet trees without a conflict.

Proof. The proof is divided into three parts: First we show that W is not compatible, then we
prove that W is closed, and finally we show that W is even strongly closed.

Assume there is a tree T W that displays W. Since T W displays {12j78,23j58,15j37} the tree with
leaf set {1,2,3,5,7,8} that is induced by T W must be either T 1 or T 2, as shown in Fig. 2. Further,
since T W displays {12j78,14j67,26j48} the tree with leaf set {1,2,4,6,7,8} that is induced by T W

has to be either T 3 or T 4 of Fig. 2. However, every tree that induces T 1 and T 3 or T 2 and T 4

displays the quartet tree 35j46 while every tree that induces T 1 and T 4 or T 2 and T 3 displays
45j36. Hence, a tree that induces one of T 1 and T 2 and one of T 3 and T 4 and displays 34j56 can
not exist.

Obviously, W contains at most one quartet tree of every quadruple of {1, . . . , 8}, so W does not
contain a conflict and it remains to show that W is strongly closed. It suffices to prove that W � q
is compatible and strongly closed for every element q 2W. Every quartet tree in W can be
interpreted as a pair of opposite edges of the cube where the vertices are labeled by 1, . . . , 8 (see
Fig. 3). For every two pairs {e1,e2} and {f1, f2} of opposite edges of the cube, there is a graph
isomorphism that maps e1 to f1 and e2 to f2. Hence, it suffices to prove that W � q is compatible
and strongly closed for q = 34j56. This can be done by applying Proposition 5 of [4] which states
that a rooted triple set (respectively, quartet tree set) W is compatible and closed if and only if
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Fig. 2. The example trees used for the proof of Theorem 3.2.
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Fig. 3. The quartet set W represented as pairs of edges of the cube.
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there is a collection C of phylogenetic X-trees such that W is the set of triples (respectively, quartet
trees) displayed by all of the trees in C.

It can easily be checked by hand that
W 0 ¼ f15j26; 15j37; 23j14; 23j58; 48j26; 48j37; 67j14; 67j58; 12j78; 35j46g

is the set of quartet trees displayed by T 5 and T 6 and the subset of those quartet trees of W 0 which
are also displayed by T 7 and T 8 is exactly W � 34j56. Hence, W � 34j56 is closed.

For every quartet half {a,b} of a quartet q1 2W � 34j56, there is no other quartet
q2 2W � 34j56 such that {a,b} is also a quartet half of q2. Moreover, for every quartet
q1 2W � 34j56, there are a quartet half h(q1) of q1, a tree T ðq1Þ 2 fT 5; T 6; T 7; T 8g, and an edge
e(q1) of T ðq1Þ such that e(q1) separates h(q1) from X � h(q1). For a fixed subset W 0 of W � 34j56,
we identify the vertices incident with the edge e(q 0) of T ðq0Þ for every quartet q 0 2W0 and the set
of quartets displayed by all obtained trees is W � 34j56 � q 0. Hence, W � 34j56 and therefore W
are strongly closed. h
4. Completeness of Meacham’s rules for pairwise closure of characters

We turn now to a closure operation for partial X-splits, where the ‘building blocks’ are no long-
er small subtrees but rather splits of the leaf set of the input trees obtained by deleting edges of
those trees. In this section we establish a completeness result for two closure rules described in
1983 by Christopher Meacham [14]. Informally, we show that, not only do these two rules pro-
duce all the ‘information’ that can be obtained from any pair of X-splits, but moreover they pro-
duce all the ‘information’ that can be generated from any pair of partitions of X.

To explain this more formally (and following the notation of [8]), we define a character (on X)
to be a partition of X and a split to be a bipartition of X. A character v is displayed by a phylo-
genetic tree T if there is a set Ev of edges of T such that every part of v is the set of labelled ver-
tices of a component of the graph obtained from T by removing Ev. A set C of characters is
displayed by T if each of its elements is displayed by T and C is compatible if there is an X-tree
that displays C. A partial split is an unordered pair of disjoint non-empty subsets of X and the
partial split {A,B} is also denoted by AjB or BjA. A partial split A 0jB 0 refines AjB if A � A 0

and B � B 0 (or A � B 0 and B � A 0). A partial split v is displayed by an X-tree T if T displays a
split that refines v and a set R of partial splits is displayed by T if every element of R is displayed
by T . Again, R is called compatible if there is an X-tree that displays R. Let C be a compatible set
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of characters and R be a compatible set of partial splits. We say that C (respectively, R) infers a
partial split AjB and we write C ‘ AjB (respectively, R‘AjB) if every phylogenetic tree that displays
C (respectively, R) also displays AjB.

Meacham [14] described two inference rules (referred to below as (M1) and (M2)) for the case
that R contains exactly two partial splits, say R = {A1jB1,A2jB2}. These rules can be stated as
follows:

(M1) If A1 \ A2 5 ; and B1 \ B2 5 ; then
R ‘ A1 \ A2jB1 [ B2 and R ‘ A1 [ A2jB1 \ B2:
(M2) If A1 \ A2 5 ; and B1 \ B2 5 ; and A1 \ B2 5 ; then
R ‘ A2jB1 [ B2 and R ‘ A1 [ A2jB1:
A set C of characters canonically defines a set
RðCÞ :¼ fAjB : A;B 2 v 2 Cg

of partial splits. It has been shown in [19] that all partial splits inferred by C are also inferred by
RðCÞ, that is,
C ‘ AjB if and only if RðCÞ ‘ AjB:
The main result of this section is that every partial split inferred by a compatible set C of two
characters can be obtained by consecutively applying Meacham’s inference rules to RðCÞ. Let h be
a non-empty subset of {1,2} and let R be a compatible set of partial splits. We define spclh(R) to be
the smallest set of partial splits R 0 such that every partial split in R is refined by a partial split in R 0

and every partial split AjB that can be obtained from two partial splits in R 0 by applying a rule
(Mi) for i 2 h is refined by a partial split in R 0. It has been proved in [17] that all split closures
spclh(R) for ;5 h � {1,2} are well defined.

Theorem 4.1. Let v1 = {A1, . . . ,Ak} and v2 = {B1, . . . ,Bl} be two compatible characters on X.
Suppose that every X-tree that displays both v1 and v2, also displays the partial X-split AjB. Then
there exists a partial X-split A 0jB 0 that refines AjB such that A 0jB 0 2 spcl1,2(R({v1,v2})).

Proof. An outline of the proof is as follows: First we define a graph from v1 and v2 that enables us
to construct many different X-trees which all display v1 and v2. We will use those trees to show
that every partial split inferred by v1 and v2 must belong to one of two disjoint special classes
of partial splits. We conclude the proof by showing that all partial splits in one class can be
obtained from R({v1,v2}) by repeatedly applying (M1) while all partial splits in the other class
can be obtained by repeatedly applying (M2).

Let GI be the partition intersection graph of v1 and v2, i.e. the graph with vertex set
{A1, . . . ,Ak,B1, . . . ,Bl} where two vertices are connected by an edge if and only if they have a non-
empty intersection. Since v1 and v2 are compatible characters it follows from [10] that the graph GI

does not contain a cycle. Let GS be the graph obtained from GI by subdividing every edge AiBj by
a new vertex Ai \ Bj. We denote the vertex set of GI by VI and the set of vertices of GS which are
not contained in VI by VS. We define /: X! V(GS) to be the mapping that maps every element of
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X that is contained in an element of VS to that vertex and every element x 2 X that is not
contained in any element of VS to the vertex in VI that contains x. By definition, the pair (T;/) is
an X-tree that displays v1 and v2 for every tree T that is obtained from GS by adding edges and
then removing unlabelled leaves and suppressing unlabelled vertices of degree 2.

We will now prove that there are connected components CA and CB of GS such that /
(A) � V(CA) and /(B) � V(CB) hold. We assume that there are a1,a2 2 A such that /(a1) and /
(a2) are contained in different components of GS and that b 2 B. Then we can construct an X-tree
from GS which contains edges /(ai)/(b) for every i 2 {1,2} for which /(ai) and /(b) are contained
in different components of GS. However, that tree can not display AjB since the path from a1 to a2

contains b.
We have to distinguish whether the components CA and CB are equal. We start with the case

CA = CB :¼ C. We claim that there is a vertex v 2 V(C) \ VI such that there are different
components Cv

A and Cv
B of C � v with /ðAÞ � V ðCv

AÞ and /ðBÞ � V ðCv
BÞ. Since every X-tree

obtained from GS by adding edges and then removing unlabelled leaves and suppressing
unlabelled vertices of degree 2 displays AjB there must be a cut edge in C separating /(A) from /
(B). Without loss of generality we can assume that such an edge connects the vertices Ai and
Ai \ Bj for some i 2 {1, . . . ,k} and j 2 {1, . . . , l}. We define G0S to be the graph obtained from GS

by identifying the vertices Ai,Ai \ Bj,Bj where the new vertex is called Ai [ Bj and /0 : X! V ðG0SÞ
to be the mapping with / 0(x) = /(x) if /(x) 62 {Ai,Ai \ Bj,Bj} and / 0(x) = Ai [ Bj, else. Then
every X-tree (T 0,/ 0) where T 0 is obtained from G0S by adding edges and then removing unlabelled
leaves and suppressing unlabelled vertices of degree 2 displays v1 and v2, thus it also displays AjB.
Hence there is a cut edge of G0S between Ai [ Bj and a vertex u 2 V S \ V ðG0SÞ that separates / 0(A)
from / 0(B). Let v 2 {Ai,Bj} be the vertex that is in GS adjacent to u and let w be the other vertex in
{Ai,Bj}. Then one of the sets /(A),/(B) is contained in the component C1 of C � v that contains u
and the other one is contained in the component C2 of C � v that contains w. This proves the
claim. Further, the partial split

S
y2V ðC1Þ\V I

yj
S

z2V ðC2Þ\V I
z refines AjB.

Now we consider the case CA 5 CB. We claim that there is a vertex u 2 VS with /(A) = u or /
(B) = u. We assume the contrary. We define PA to be the set of all vertices v of V(CA) \ VI for
which there are a1,a2 2 A such that the path from /(a1) to /(a2) (possibly of length 0) contains v.
We define PB correspondingly. By assumption, PA and PB are non-empty. If there is i 2 {1,2}
such that PA [ PB � vi, then jPAj = jPBj = 1 holds since every path in GS connecting two different
elements of v1 contains an element of v2 and vice versa. Therefore, PA [ PB � v1 implies that there
are i,j 2 {1, . . .,k} with i 5 j and A � Ai, B � Aj, but then AijAj 2 R(v1) refines AjB. Correspond-
ingly, PA [ PB � v2 implies that there are i,j 2 {1, . . . , l} with i 5 j and BijBj 2 R(v2) refines AjB.
Hence, we can assume that there are u 2 PA and v 2 PB such that each of v1 and v2 contains
exactly one of the vertices u and v. Let G 0 be the graph obtained from GS by identifying u and v
where the new vertex is called w, and let /0 : X! V ðG0SÞ be the mapping with / 0(x) = /(x) if /
(x) 62 {u,v} and / 0(x) = w, else. Then every X-tree (T 0,/ 0) where T 0 is obtained from G0S by adding
edges and then removing unlabelled leaves and suppressing unlabelled vertices of degree 2 displays
v1 and v2 but not AjB, a contradiction. This proves the claim. Let i 2 {1, . . . ,k} and j 2 {1, . . . , l}
such that u = Ai \ Bj and let C 0 2 {CA,CB} such that C 0 does not contain u. Then the partial split
Ai \ Bjj

S
z2V ðC0Þ\V I

z refines AjB.
We have shown that AjB is either refined by a partial split

S
y2V ðC1Þyj

S
z2V ðC2Þz such that C1 and

C2 are two different components of C � v where v is a vertex of a component C of GI, or AjB is
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refined by a partial split Ai \ Bjj
S

z2V ðC0Þz where AiBj is an edge of GI and C 0 is a component of GI

that does not contain AiBj. The last step to prove the theorem is to show that every partial X-split
of either of those two kinds is refined by a partial split in spcl1,2(R({v1,v2})).

Let C be a component of GI, and let T be a subtree of C that contains a vertex v of degree 2. Let
T1 and T2 be the two components of C � v. We claim that the partial split

S
y2V ðT 1Þyj

S
z2V ðT 2Þz can

be derived from R({v1,v2}) by applying the second split closure rule. The claim is true if
jV(T1)j = jV(T2)j = 1 since then the vertex in C1 and the vertex in C2 are contained in the same
character. Assume that the claim is wrong and that m: = jV(T1)j + jV(T2)j is minimal with that
property. Further, we assume jV(T1)j > 1. Let w be the vertex of T1 that is in C adjacent to v, and
let x 5 w be a leaf of T1. The minimality of m implies that the partial split

S
y2V ðT 1Þ�xyj

S
z2V ðT 2Þz

can be derived from R({v1,v2}) by applying the second split closure rule. Let T01 be the component
of T1 � w that contains x. Since w has degree 2 in the subtree of C with vertex set V ðT 01Þ [ fv;wg
and jV ðT 01Þj þ 1 < m the partial split vj

S
y2V ðT 01Þ

y can be derived from R({v1,v2}) by applying the
second split closure rule. Applying the second split closure rule to

S
y2V ðT 1Þ�xyj

S
z2V ðT 2Þz and

vj
S

y2V ðT 01Þ
y infers

S
y2V 1

yj
S

z2V 2
z, contradicting the assumption.

Let AiBj be an edge of GI and let C 0 be a connected component of GI that does not contain AiBj.
If C 0 contains only one vertex x, then one of the partial splits Aijx and Bjjx is contained in
R({v1,v2}) and refines Ai \ Bjjx. Hence, we can assume that there is at least one edge uv in C 0. We
claim that the partial X-split Ai \ Bjj

S
z2V ðC0Þz can be derived from R({v1,v2}) by applying the first

split closure rule. We assume that the claim is wrong and that U is a subtree of C 0 containing uv
such that the partial split Ai \ Bjj¨z 2 V(U)z can not be derived from R({v1,v2}) by applying the
first split closure rule and jV(U)j is minimal under all subtrees with that property. If jV(U)j = 2,
then we can assume that u 2 v1 and applying the first split closure rule to Aiju 2 R({v1}) and
Bjjv 2 R({v2}) infers Ai \ Bjju [ v. Let jV(U)jP 3 and let w 62 {u,v} be a leaf of U. By the
minimality of jV(U)j, the partial split Ai \ Bjj¨z 2 V(U)�wz can be derived from R({v1,v2}) by
applying the first split closure rule. Without loss of generality we can assume w 2 v1, thus
Aijw 2 R({v1}). The first split closure rule applied to Ai \ Bjj¨z 2 V(U)�wz and Ai \ Bjjw infers
Ai \ Bjj¨z 2 V(U)z, in contradiction to the assumption. h

We remark that Theorem 4.1 also holds for partial partitions, i.e. v1 and v2 are partitions of
subsets X1 and X2 of X and refining, displaying, and compatibility are defined as for partial splits.
In that case we can assume X ¼ ð

Sk
i¼1AiÞ [ ð

Sl
j¼1BjÞ and leave the proof unchanged. Further, the

constructive proof of Theorem 4.1 provides the following result.

Corollary 4.2. The set spcl1,2(R({v1,v2})) can be computed in polynomial time; moreover
spcl1,2(R({v1,v2})) = spcl1(R ({v1,v2})) [ spcl2(R({v1,v2})).
5. Closure operations in a general setting

Some of the concepts we have discussed concerning compatibility, inference rules and closure
operations in the phylogenetic setting can extended to a more general setting, which may be useful
for other applications (for example in problems concerning the reconstruction of linear order-
ings). We describe this viewpoint in this section.
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Let Y be a (finite or infinite) set, let r > 1 be a positive natural number. We say that a subset W
of Y · {1, . . . , r} contains no conflict if it has the property:
ðy; iÞ; ðy; jÞ 2 W) i ¼ j:
Suppose that J is a collection of subsets of Y · {1, . . . , r} such that, for every J 2 J , each element
y 2 Y occurs in exactly one element of J (thus J contains no conflict). We say that a subset W of
Y · {1, . . . , r} is J -compatible if there exists a set J 2 J so that W � J.

Example 5.1. To illustrate these ideas in a setting outside of phylogenetics (but more relevant to
gene ordering on chromosomes) and with r = 2 let Y = {(i, j): i, j 2 {1, . . . ,n}, i < j} and for a
bijection f:{1, . . . ,n}! {1, . . . ,n} let
W ðf Þ :¼ fðði; jÞ; sÞ 2 Y� f1; 2g : f ðiÞ < f ðjÞ () s ¼ 1g:

Let J be the union of the sets W(f) over all bijections f. Thus a subset W � Y · {1,2} is J -com-
patible precisely if the pairwise orderings provided by W is consistent with a linear ordering of
{1, . . . ,n}.

Given a J -compatible set W define the closure of W (relative to J ) to be the collection of pairs
(y,i) 2 Y · {1, . . . , r} for which, for all j 2 {1, . . . , r} � {i} the set W [ {(y, j)} is not J -compatible
(this implies, in particular, that W [ {(y, i)} is J -compatible). We say that a subset W of
Y · {1, . . . , r} is closed if the closure of every J -compatible subset of W is contained in W. Finally,
given a subset W of Y · {1, . . . , r} we define the (generalized) closure of W (relative to J ) denoted
ClJ ðW Þ to be the intersection of all closed subsets of Y · {1, . . . , r} that contain W (this is well-
defined since Y · {1, . . . , r} is closed).

Note that when W is J -compatible, we have clJ ðW Þ ¼ ClJ ðW Þ, so ClJ is an extension of clJ .
Also, ClJ satisfies the three properties one would expect of a closure operation, namely:
W � ClJ ðW Þ; V � W) ClJ ðV Þ � ClJ ðW Þ and ClJ ðClJ ðW ÞÞ ¼ ClJ ðW Þ:

Note that if Y is finite, then we can generate ClJ ðW Þ as follows. Construct a sequence
W(1),W(2), . . . ,where, W(1) = W and for each k P 1, W(k+1) is the union of clJ ðAÞ over all subsets
A of W(k) that are J -compatible. Then it is easily checked that ClJ ðW Þ ¼ [s

k¼1W ðkÞ for the first
number s for which W(s+1) = W(s).

The main question that we consider in this section (motivated by earlier results in this paper) is
the following: how is the condition ‘W is J –compatible’ related to the condition ‘ClJ ðW Þ has no
conflict’? The next lemma shows that the former condition implies the latter. We will then con-
sider the reverse implication.

Lemma 5.2. If W is J -compatible then ClJ ðW Þ contains no conflict.

Proof. First note that if J 2 J then J is J -compatible, and the closure of J is J; in particular J is
closed. Now if W is J -compatible, then, by definition there exists a set J 2 J with W � J. Since J
is closed, the (generalized) closure of W is a subset of J. Finally, since J 2 J and elements of J
contain no conflict, ClJ ðW Þ contains no conflict. h

We now describe two examples to show that the converse to Lemma 5.2 does not hold.

Example 5.3. The first example shows how this abstract framework is related to the quartet set from
Theorem 3.2. We define Y = {{i, j,k, l} � {1, . . . ,n}:j{i, j,k, l}j = 4} and, for y = {i, j,k, l} 2 Y with
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i < j < k < l, we define (y, 1), (y, 2), (y, 3) to represent the quartet ijjkl, ikjjl, iljjk, respectively. Further,
we define J to be the set of all quartet sets of binary phylogenetic trees on {1, . . . ,n}. With these
definitions, ClJ ðW Þ is the set of all closed quartet sets and the quartet set W from Theorem 3.2 has the
property that W is notJ -compatible yet ClJ ðW Þð¼ W Þ so that W is closed and contains no conflict.

Example 5.4. The phenomenon described in Example 5.3 – whereby a set that is closed with
respect to J and contains no conflict can fail to be J -compatible – can be demonstrated by a
more contrived example, though one for which the verification is much easier. Let Y be defined
as in Example 5.3. We define a quartet tree abjcd to be a crossing for a cyclic ordering if the lines
from a to b and from c to d cross each other in a cycle realizing that cyclic ordering. Let J contain
the sets of all crossings for some cyclic ordering. W represents an arbitrary subset of quartet trees,
and W is J -compatible precisely if there is a cyclic ordering of {1, . . . ,n} such that every element
of W is a crossing. Let n = 5 and W = {12j34,12j35,12j45}.

Proposition 5.5. The set W defined in Example 5.4 is J -compatible, yet W is closed and contains no
conflict.

Proof. For a quartet tree abjcd and a cyclic ordering of {1, . . . ,n}, the straight lines from a to b
and from c to d cross each other if one of the two paths from a to b contains c and the other one
contains d. Hence, if the straight line from 1 to 2 crosses the lines from 3 to 4 and from 3 to 5 then
there must be a path from 1 to 2 containing 4 and 5 implying that the line from 4 to 5 does not
cross the line from 1 to 2. This proves W is not J -compatible. On the other hand, for both cyclic
orderings 13245 and 13254, the quartet trees 12j34 and 12j35 are crossings, but different quartet
trees are crossings for each of the remaining quadruples {1,2,4,5}, {1,3,4,5}, and {2,3,4,5}.
Therefore, the set {12j34,12j35} is closed, and, by symmetry, the other subsets of W are closed,
too. h

We will shortly provide a partial converse to Lemma 5.2. First we present a lemma that is re-
quired for its proof.

Lemma 5.6. Suppose that W is J -compatible and y 2 Y satisfies
W \ fðy; iÞ : i ¼ 1; . . . ; rg ¼ ;:
Then, there exists i 2 {1, . . . , r} such that W [ {(y, i)} is J -compatible.

Proof. Since W is J -compatible there exists a set J 2 J with W � J. Since J 2 J there exists for y
one value iy 2 {1, . . . , r} for which (y, iy) 2 J. Then W [ {(y, iy)} is a subset of J, and hence
W [ {(y, iy)} is J -compatible. h

For y 2 Y and W � Y · {1, . . . , r}, let
SW ðyÞ :¼ fi 2 f1; . . . ; rg : W [ fðy; iÞg is J -compatibleg:
Proposition 5.7. If #SW(y) 2 {0,1,r} for every subset W of Y · {1, . . . , r} that contains no conflict,
and every y 2 Y, then
W is J -compatible() ClJ ðW Þ has no conflict ð1Þ
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Proof. The ) direction follows from Lemma 5.2. Conversely, suppose that W is not J -compat-
ible. Let W1 be a maximal J -compatible subset of W (note that this might be W1 = ;). There
exists some element (y,i) 2W �W1. Then, ðy; iÞ 2 W � ClJ ðW Þ. Since (y,i) 62 2W1, it follows
from Lemma 5.6 that there is j 2 {1, . . . , r} with W1 [ {(y,j)} J -compatible, implying
#SW 1

ðyÞ > 0. Yet by the maximality assumption on W1 we have W1 [ {(y,i)} is not J -compatible,
implying #SW 1

ðyÞ < r. Consequently, we have SW 1
ðyÞ ¼ fjg and, therefore, ðy; jÞ 2 clJ ðW 1Þ �

ClJ ðW Þ. Thus we see that ClJ ðW Þ contains both (y,i) and (y,j) and so ClJ ðW Þ contains a
conflict. h

We illustrate an application of Proposition 5.7 by deriving Proposition 3.1.
Let Y denote the set of subsets of {1, . . . ,n} of size 3 and, for y = {i, j,k} 2 Y with i < j < k, let

(y, 1), (y, 2), (y, 3) represent the rooted triple with leaf set y that groups together i and j, i and k,
and j and k, respectively. Let J contain the sets of all induced rooted triples of some parent tree.
W represents an arbitrary subset of rooted triples, and W is J -compatible precisely if W is com-
patible in the phylogenetic sense. Given a compatible and closed rooted triple set W and an ele-
ment y 2 Y such that (y, i) 62W for i 2 {1,2,3}, it can easily be checked that W [ (y, i) is J -
compatible for every i 2 {1,2,3} (for details see [4], Proposition 9(1)). Hence, Proposition 5.7 im-
plies that every closed non-compatible rooted triple set contains a conflict. This result was also
proved in [3] and [4].

Note that Proposition 5.7 has the following consequence for settings such as Example 5.1.

Corollary 5.8. If r = 2, then W is J -compatible if and only if ClJ ðW Þ contains no conflict.
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