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Abstract

Given a tree7” with leaf setX, there are certain ways of arranging the elements of a circular
order so tha” can be embedded in the plane and ‘preserve’ this ordering. We investigate some new
combinatorial properties of these ‘circular orderings.” We then use these properties to establish two
results concerning dissimilarity maps anthat are induced by edge-weighted trees with leafset
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A phylogeneticX-tree 7 is a tree that ha¥X as its set of leaves and whose interior
vertices are of degree at least three. Figure 1 shows a phylogenetic tréé \ith. ., 7} as
its set of leaves. In evolutionary biology, phylogenelitrees are widely used to represent

4

Fig. 1. A phylogenetic tree.
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the ancestral relationships of a sétof present-day species (for further details, see [12,
14)).

A dissimilarity map(on X) is a functions: X x X — R such that, for allx, y € X,

8(x,x) =0 andd(x,y) = &(y, x). In evolutionary biology, such a map might measure
the genetic difference between two sgciFor an arbitrary dissimilarity mapon X,

a classical problem in classification is to determine if there is a phylogeXidtiee7 and

a real-valued weighting of the edges®dfso that, for allx, y € X, the sum of the weights

of the edges of in the path connecting andy is equal toS(x, y). If such a phylogenetic
X-tree and edge weighting exists, wherew is non-negativej is said to be daree metric

The problem of recognizing and characterizing tree metrics has a well-known solution that
dates back more than 30 years (see [3,5,13,17]).

In this paper, we prove two new results on tree metrics. The first result is a novel
description of the total sum of the edge weights of a real-valued edge-weighted
phylogenetic tree. The second result is an explicit convergence result for the ‘minimum
length tree reconstruction method.’ Typically, an arbitrary dissimilarity hap X is not
a tree metric. However, one would still kto construct an edgeeighted phylogenetic
X-tree fromé$. The minimum length tree reconstruction method is one such method.
Both of these results are derived by considering, for a phylogengtiee 7, cyclic
permutations of that provide a ‘circular ordering faf .

The results in our paper are complementary to, though quite different from, the
investigation into ‘circular orderings’ by [7,8]. The latter of these papers establishes an
equivalence between circular orderings for a phylogenktitee and another class of
cyclic permutations ok (called “Yushmanov orderings’), from which algorithms are then
derived. The authors of [7] use circular orderings to develop an approach for reconstructing
phylogeneticX-trees from dissimilarity maps oX based on the ‘travelling salesman’
problem.

The purpose of our paper is twofold. Firstly, to establish some new combinatorial
properties of circular orderings and, secondly, to show how circular orderings can be used
to derive results on tree metrics. The latter is done by using these combinatorial properties
to prove the two tree metric results mentioned in the last paragraph.

Unless stated otherwise, the phylogenetic terminology in this paper follows Semple and
Steel [12]. Also, throughout this papéeX, denotes a finite set. The paper is organized as
follows. The central concept is the notion of a circular ordering for a phylogenetic tree. We
describe this in the next section as well as stating some well-known results on phylogenetic
trees. Section 3 establishes some new combinatorial properties of circular orderings and
phylogenetic trees. These properties are used in Section 4 to prove our two results on tree
metrics.

2. Preliminaries

For a phylogenetic tre&, we denote the set of interior vertices and the set of interior
edges off by V(T) andE(T) respectively. If every interior vertex @f has degree three,
7T is atrivalent phylogenetic tree (in [12], a trivalent phylogenetic tree is called a binary
phylogenetic tree). The following lemma dates back to Schroder [11].
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Lemma2.1.

(i) Atrivalent phylogenetic tree withleaves ha2n — 3 edges and — 2 interior vertices.
(i) For afixed setX of size at least three, the number of trivalent phylogenktitees is

(2n — 4)!

W:].szs)("'x(zn_s),
n—=«2a).

wheren = | X|.

Two phylogeneticX-trees7; and 7z are regarded asquivalentf the identity map on
X induces a graph isomorphism betwegrand7, in which case we writd1 = 7. Thus,
up to equivalence, there are precisely three trivalent phylogenetic trees foKao$size
four.

An X-split is a partition ofX into two non-empty sets. We denote tResplit whose
blocks areA and B by A|B. Associated with every phylogenetit-tree7 is a particular
collection of X-splits. This collection consists of thoggesplits A| B that are induced by
the components of the graph resulting from the deletion of a single«ofgg. We say that
the X-split A|B corresponds t@ and letX>'(7) denote the set aX-splits that correspond
to the edges off . For example, referring to Fig. 11, 2, 3, 5}|{4, 6, 7} is the split of 7
corresponding t@. As part of a characterization of a certain type of collection of splits,
Buneman [2] proved the following result.

Proposition 2.2. Let 71 and 72 be phylogeneti& -trees. Thern¥ (71) = X' (77) if and only
if 71 =7>.

Let 7 = (x1,x2,...,x,) be a cyclic permutation oK. For all 1<i < j <n, let
Ajj ={xe: i <k < j}andletX°(m) denote the set

2o(m) = {Ay | X — Ay 1<i < j<n—1)

of X-splits. Arranging the elements, x2, ..., x, clockwise in a circle in the plane,
we may view X°(rr) as the set ofX-splits that can be obtained by separating these
elements according to which side of a line segt in the plane they lie on. Consequently,
|X°(m)| = (5)- A collection X of X-splits is said to beircular if ¥ € X°(x) for some
cyclic permutationr of X. In caseX (7) € X°(x) for some phylogenetiX -tree7’, we

say thatr provides acircular orderingfor 7. For example(1, 6,7, 4, 5, 2, 3) is a circular
ordering for the phylogenetic tree shown in Fig. 1, but6, 7, 2, 3,4, 5) is not such an
ordering. Throughout the paper, for a cyclic permutatios= (x1, x2, ..., x,), we will
adopt the convention thaf, ;1 = x1.

3. Circular orderingsand phylogenetic trees

In this section, we establish some properties of circular orderings and phylogenetic
trees. LetZ be a phylogeneti& -tree. For all vertices of 7, let d(v) denote the degree
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of v and, for all distinctx, y € X, let I (7; x, y) denote the set of interior vertices Bfin
the path connecting andy.

Proposition 3.1.

(i) Let7 be a phylogeneti® -tree with at least one interior vertex. Then the number of
distinct circular orderings for7 is

]_[ (dw) —1)!.

veV (T)

Furthermore, for all distinct elements, y € X, the proportion of these circular
orderings for whichy immediately follows: is

[T (@w-1™

vel (T;x,y)
(i) Letnw be a cyclic permutation ok and let|X| = n. Suppose that > 3. Then the
number of trivalent phylogenetiX-trees for whichr is a circular ordering equals the

(Catalan number
1 [(2n—-4
n—1\n-2)

Proof. To prove both parts of (i), it suffices to show that, for all (not necessarily distinct)
elements:, y € X, the number of circular orderings fa@r in which y immediately follows
xis

]_[ (d(v) —1)! ]_[ (dw) -2)!, 1)

veO(T;x,y) vel (T:x,y)

where O (7; x, y) denotes the set of interior vertices Df not in the path connecting
andy. In the casex = y, the set/ (7; x, y) is empty and the conditiony‘immediately
follows x’ is redundant. The proof of (1) is by induction on the number of interior vertices
of 7.

Letx andy be elements oX. If |\°/(T)| = 1, then the number of circular orderings for
T in which y immediately followsx is the number of cyclic permutations &f in which
y immediately followsx. The number of such cyclic permutationgis— 1)! if x =y and
m—2'ifx#£y. It follpws that if |V (7)| =1, then (1) holds.

Now suppose thatv (7)| = k, wherek > 2, and that (1) holds for all ordered pairs of
leaves of all phylogenetic trees with— 1 interior vertices. Let: be an interior vertex of
T that is adjacent to exactly onehatr interior vertex and leX’ denote the subset of
whose elements are precisely the elements afljacent ta:. Now 7 has at least two such
vertices, so, by making an appropriate choiceufoiwve may assume that¢ X’.
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Choose an elementin X’ such that, ify is an element ofX’, z is chosen to be.
Let 7’ be the phylogenetic tree obtained framby deleting the elements of —zand
suppressing. Since7” is a phylogenetic tree and (77)| = |V(T)| — 1, it follows by our
induction assumption that the number of circular orderinggfoin which y immediately
follows x is

[T @w-1r J] (@w-2)u )

veO(T";x,y) vel(T7;x,y)

Now X'|(X — X') is an X -split of 7 and so, for every circular ordering far in which
y immediately followsx, the elements ok in this ordering are consecutive. Furthermore,
the only proper subsets & that are blocks of arX-split of 7 are singletons. By our
choice ofu, there are just two (distinct) cases to consider:

(I) eitherx=yorz+#y;or
any z=y

In (1), u is not in the path off connectingx andy while, in (ll), u is in the path of7
connectingy andy. If (1) holds, then, for every circular ordering far’, we can replace

z with any ordering of the elements &f to obtain a circular ordering fdf in which y
immediately followsx. Furthermore, if (Il) holds, then, for every circular ordering for

in which y immediately followsx, we can replace with any ordering of the elements in
X’ with y as the first element to obtain a circular orderingToin which y immediately
follows x. Moreover, all such circular orderings f@r can be obtained in precisely one of
these two ways as the deletionXf— z from any such ordering provides a circular ordering
for 77 in which y immediately followsx. Since any two circular orderings obtained in this
way are distinct an¢iX’| = d(u) — 1, it follows by (2) that the number of circular orderings
for 7" in which y immediately followsx is

bl ]_[ (d(v) —1)! ]_[ (dw) —2)!

ve0 (T ;x,y) vel(T7;x,y)
= [I @w-10 J] (@@w-2)
veO(T;x,y) vel(T;x,y)

and

(IX'] - 1)! ]_[ (d(v) —1)! ]_[ (d(w) —2)!

ve0(T’;x,y) vel(7T7;x,y)

= [I @w-10 J] (@w-2)

veO(T;x,y) vel (T:x,y)

in cases (1) and (I1), respectively. Thus, (1) holds, completing the proof of (i).
To prove (ii), let C(n) denote the set of pair$7,n), where 7 is a trivalent
phylogeneticX-tree ands is a circular ordering forZ. We will count C(n) in two
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Fig. 2. A set of paths (dashed lines) 1d, 6, 7,4, 5, 2, 3).

ways. By Lemma 2.1(ii), the number of choices fbris (2n — 4)!/((n — 2)!2"~?) and,
by Lemma 2.1(i) and Proposition 3.1(i), for ea@h the number of choices fot is
2"=2_ Alternatively, we may countC(n) by noting that the number of distinct cyclic
permutations of is exactly(n — 1)! and, for each such cyclic permutatisnthe number
of phylogeneticX-trees7 for which (7', ) € C(n) is precisely the number we want.
Equating these two counts 6f(n) and then rearranging gives the desired resutt.

An illustration of the system of paths described in the statement of Theorem 3.2 is
shown in Fig. 2, wherél, 6, 7, 4, 5, 2, 3) is the associated cyclic permutation.

Theorem 3.2. Let m = (x1,x2,...,x,) be a cyclic permutation o and let 7 be
a phylogeneticX-tree. For alli € {1, 2, ...,n}, let P; denote the path i¥ from x; to
xi+1- Then

(i) Every pendant edge @f occurs in exactly two of the pathg, P», ..., P,.
(ii) Every interior edge of7 occurs in a positive and even number of the paths
P, Py, ..., P,
(iii) = is a circular ordering for7 if and only if every interior edge &f occurs in exactly
two of the pathsPy, P, ..., P,.

Proof. Part (i) is an immediate consequence of the fact that, for ik element; occurs
in exactly two of the pairgx1, x2), (x2, x3), ..., (x4, X1).

To prove (ii), lete be an interior edge off and let A|B be the X-split of 7
corresponding t@. Without loss of generality, we may assume that A. Then there
is an element; of A such thaty; 1 is an element oB, in which case: is an edge in the
path P;. Furthermore, there is an elementof B such thaty; .1 is an element of4, in
which casee is an edge in the patR;, whereP; # P;. Hencee occurs in at least two of
the pathsPy, Po, ..., P,. Furthermore, by extending this argument, it is easily seen that the
number of such paths is even. This completes the proof of (ii).

We next prove (iii). Suppose that every interior edg&obccurs in exactly two of the
pathsPi, Po, ..., P,. The proof of the sufficient part of (iii) is by induction on the size
of X. Evidently, if n < 3, thenx is a circular ordering fofZ. Now assume that > 4
and that this direction holds for all phylogenetic trees with 1 leaves. Let7’ be the
phylogenetic tree obtained frof by deletingx, and suppressing any resulting degree-two
vertex. Then, as every interior edge®dfoccurs in exactly two of the pathy, Po, ..., P,,

every interior edge of7” occurs in exactly two of the pathBy, P, ..., P,—2, P, _,,
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where P/ _, is the path in7" from x,_1 to x1. Therefore, by our induction assumption,
7’ = (x1,x2,...,x,—1) iS a circular ordering fof’ and soX' (7)) C X°(x').

Now consider7 . Let o be an element of (7). We complete the sufficient direction
of (ii) by showing thats is an element of° (). If o = {x,}|(X — x,,), theno € X°(x).
Thus, assume that # {x,}|(X — x,,). Then there is an interior edgeof 7 corresponding
to o and an element € X — {x1, x,_1, x,} that is in the same block af asx,. Let o’
denote the(X — x,)-split obtained fromr by removingx, from the appropriate block.
Clearly,o’ is an element o (7”) and, in particular, an element af° (). It now follows
thato € X°() unlessx,_1 andx; are both in the block o& not containingx,,. But
then, asz € {x2, x3, ..., x,—2}, at least four of the path®y, P», ..., P, containe. This
contradicts the initial assumption that every interior edgé afccurs in exactly two of the

pathsPi, Po, ..., P,. Hencer is a circular ordering fof7 .
For the converse of (iii), suppose thatis a circular ordering fof7", but there is an
interior edgee of 7 that occurs in at least four of the pat®s, P, ..., P,. Let Q1,

0>, and Q3 denote the first three such paths. keandb denote the initial and terminal
vertices ofQ1, respectively, and let andd denote the initial and terminal vertices @8,
respectively. Thea, b, ¢, andd are all distinct, an@ induces anX-split of 7 in whicha
andc are in one block, anél andd are in the other block. Since is a circular ordering
for 7, it follows thata andc (as well ash andd) are adjacent in the cyclic permutation
w|{a, b, c,d}. However,z |{a, b, c,d} = (a, b, c,d); a contradiction. This completes the
proof of (iii) and the theorem. O

Let S be a non-empty subset &f. For a phylogenetic-tree 7, let 7|S denote the
phylogeneticS-tree for which

S(TIS)=]{ANS|BNS: A|Be £(T)andANS, BNS#0).

Furthermore, for a cyclic permutationof X, let 7|S denote the cyclic permutation &f
obtained by restricting to S.

The straightforward proof of the next lemma is omitted. For a phylogenetidtree
denote the set of circular orderings fbrby o(7)

Lemma 3.3.If 7 is a phylogenetic(-tree andS is a non-empty subset &f, then
o(718) 2 {x|S: w e o(T)}.

Although not needed for this paper, we note that the converse of Lemma 3.3 also holds,
in particular, @7'|S) = {7 |S: = € o(7)}. However, the proof is less straightforward.
Proposition 3.4 allows us to use subsetsxobf size four to analyse circular orderings
of phylogeneticX -trees.

Theorem 3.4. Let m = (x1,x2,...,x,) be a cyclic permutation o and let 7 be
a phylogeneticX -tree. Thenr is a circular ordering for7 if and only if, for all subsets
of X of size four;r|S is a circular ordering for7|S.
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Proof. If 7 is a circular ordering fo, then, by Lemma 3.37|S is a circular ordering for
TIS.

Now suppose that is not a circular ordering fo7 . Then7 must contain at least one
interior edge. For all € {1, 2, ..., n}, let P; denote the path il from x; to x;41. Since
7 is not a circular ordering fof, it follows by Theorem 3.2(ii) and (iii) that there is an
interior edgee of 7 that occurs in (at least) three of these paths. Qet Q», and O3
denote the first three such paths. ketndb denote the initial and terminal vertices 0,
respectively, and let andd denote the initial and terminal vertices 0f;, respectively.
As a, b, ¢, andd are distinct,7|{a, b, c,d} = (a, b, c,d) and{a, c}|{b,d} is a split of
T{a,b,c,d}. But(a,b,c,d) is not a circular ordering fof |{a, b, ¢, d}. This completes
the proof of Theorem 3.4. 0

For phylogeneticX-trees7 and7’, we write7 < 7" precisely if X (7) € X (7). Itis
easily verified thak induces a partial order on the set of phylogen&titrees.

Corollary 3.5. Let7 and7’ be phylogeneti&’-trees. Then

() 7 <T'ifandonlyifo(7") C o(7T).
(i) o(T)=o0(7T")ifandonly if7T = 7.

Proof. By [12, Theorem 6.3.5]7 < 7" if and only if, for all subsetss of X size four,
T18 <7'|S. Also, itis readily checked that for all subsestef X of size four,7|S < 77|S

if and only if o(7”|S) € o(7|S). Combining these two characterizations, we deduce that
T < T if and only if o(7”7|S) € o(7|S) for all subsetsS of X of size four. Now, by
Theorem 3.4, we have(@’|S) C o(7|S) for all subsetsS of X of size four if and only if
o(7") C o(7). Part (i) of the corollary now follows. Part (ii) is an immediate consequence
of (i) and Proposition 2.2. O

4. Application totree metrics

In this section, we apply circular orderings to the study of tree metrics. We show how
the theory developed in the last section provides a convenient tool for establishing two new
results concerning tree metrics, neither of which explicitly mentions circular orderings.

Let 7 be a phylogeneticX-tree and suppose that the edgesZohave real-valued
weights assigned by a functian: E(7) — R. For allx, y € X, let P(7; x, y) denote the
set of edges of in the path connecting verticesandy. Define the mag (7., : X x X —

R by setting, for allx, y € X,

> w, sy,
d(T;w)(xv y) = ecP(T:x,y)
0, otherwise.
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Let

(T, w) = Z we).
ecE(T)

We calll(7, w) thetotal edge weight of .
The proof of Lemma 4.1 is a direct conseque of Theorem 3.2. Part (i) of this lemma
is a classical and well-known result, for example, see [6,8,16].

Lemma 4.1. Let 7 be a phylogenetick-tree and letr = (x1, x2,...,x,) be a cyclic
permutation ofX. Letw : E(7) — R be an edge weighting af and letd = d (7).

(i) If 7 is a circular ordering for7Z , then

1 n
(T,w)= > Zd(xi, Xi+1)-
i=1

(i) Suppose thab is strictly positive on all edges @ and let
Wmin = min{w(e): ec E(T)}.

Thens is a circular ordering forZ if and only if

1 n
UT,w) >3 ;d(x,», Xi+1) — Wmin.
=

Recently, Pauplin [10] described an elegant representation of the total edge weight of
any trivalent phylogenetic treg with real-valued edge weighting as a linear function of
thed 7., (x, y) values. The first of our two results extends this representation to arbitrary
phylogenetic trees, using an approach that explains the slightly mysterious coefficients
appearing in the representation given in [10]. Essentially, our proof reveals that, for all
distinctx, y € X, the coefficient o7, (x, y) is the proportion of circular orderings for
7 in which y immediately followsx.

LetA: X x X — R>0 be the dissimilarity map oi defined, for allx, y € X, in terms
of the degrees of the interior verticesbfas follows:

[T @o-17" ifx#y,
Ax,y)= vel(T;x,y)
0, if x=1y.

Theorem 4.2. Let 7 be a phylogeneti& -tree,w : E(7) — R be an edge weighting df,
andd =dt.,,. Then

IT,wy= Y rx,»d(x, ).

{x.y}eXx
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Proof. By Lemma 4.1,

1 1¢
(T, w) = o, > |:§Zd(xi,xi+1)].

X1,..0,Xn)€0(7) i=1

However, we may rewrite the right-hand side of this last equation as

1 1

= d

5o Z n(x, y)d(x,y),
(x,y): x,yeX

where ny(x, y) is the number of circular orderings faf in which y immediately

follows x. By Proposition 3.1(iyz7(x, y)/|0(7)| = A(x, y) for all distinctx, y € X. Thus,

1
UT.wy=3 >, Mx.yd.y)
(x,y): x,yeX

and the result now follows. O

We now turn to our second application, which concerns the reconstruction of
a phylogenetic tree from a dissimilarity mdp This is a central problem in molecular
systematics (see, for example, [14]). In cadsés a tree metric, say = d(7.y), it is
straightforward to recove¥ from § by standard methods. However, dissimilarity maps
derived from data are generally some pdration of—but not exactly equal to—a tree
metric. An important theoretical question, that is central to the statistical analysis of tree
reconstruction methods, is how ‘close’ a dissimilarity ndapeeds to be to a tree metric
d(T..) in order to ensure that a particular tree reconstruction method will re@ofrem s.
For certain tree reconstruction methods, it is relatively easy to answer this question; see,
for example, [4,9]. But for other methods, such as the popular ‘neighbour-joining’ method,
the solution appears to require some intricate arguments. We next apply some of our results
on circular orderings to investigate this question for one of the earliest methods proposed
for reconstructing phylogenetic trees from dissimilarity maps.

For a dissimilarity map on X and a phylogeneti&-tree 7, we say that a positive
edge weightingw: E(7) — R0 of 7 is admissiblefor § if d(7.,,(x,y) > 8(x, y) for
all x,y € X. Furthermore, given a dissimilarity mapon X the minimum length tree
reconstruction methotketurns a phylogenetig-tree that minimizes the total edge weight
[(T, w) over all admissible edge weightingsfor § of all phylogeneticX-trees7 .

Theorem 4.3 shows that if a dissimilarity mé&s ‘close enough’ to one that is induced
by a trivalent phylogenetic tre&, then the minimum length tree reconstruction method
applied tos will return 7. Although the minimum length tree reconstruction method
dates back 25 years (see [15]) and is one of the original techniques for reconstructing
phylogenetic trees from dissimilarity maps, Theorem 4.3 is the first explicit convergence
result for this method. For two dissimiliarity mapsndé’ on X, thel,,-metric is defined
as

8 —8'lloo = max{|8(x, y) —&8"(x, y)|: x,y € X}.
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Theorem 4.3. Let § be a dissimilarity map orX and let7 be a trivalent phylogenetic
X-tree. Letw be a positive, real-valued edge weightinglotind sed = d(7.,. If

ld = 8lloo < —wmin,
n

wheren = | X| and wmin = Min{w(e): e € I%(T)}, then the minimum length tree recon-
struction method applied tdreturns7 .

Proof. Clearly, the theorem holds | < 3, so assume thak| > 4. Then7 has at least
one interior edge. Let = (1/n)wmin, and letw1: E(7) — R be an edge weighting af
that agrees witlwy on E(T) and, foralle € E(T)— E(T) we haveawi(e) = w(e)+(1/2)e.
Letdy =d(7.u,)- Thendi(x, y) > é(x, y) forall x, y € X and sow; is an admissible edge
weighting of 7 for 8. Furthermore,

1
(T, w) =T, w)+ Ewmin« (3

Now suppose thaf”’ is a phylogeneticX-tree that is different t& . Since7 is trivalent,
T & T’ and so, by Corollary 3.5(i), there exists a cyclic permutation xo, . .., x,) in
o(7") — o(7). Letw’ be an admissible edge weighting df for § and letd" = d(7. ).
Then, by Lemma 4.1(i),

n

NI =

[d(xi, xiy1) —€].  (4)
i=1

1e 1e
=52 d (i xiyn) > 5 ) 8. xi4) >
i=1 i=1

Moreover, sincéx1, x2, ..., x,) is nota circular ordering far , it follows by Lemma 4.1(ii)
that

1 n
5 2_di, xig1) = (T, w) + win. (5)
i=1
Combining (3), (4), and (5), we deduce that
(T, w') > 1(T, wy)

and so the minimum length tree reconstruction method applied toes indeed
return7. 0O

4.1. Concluding remarks
The two results we have described here illustrate how circular orderings can be

a convenient vehicle for deriving results on tree metrics. A remaining question is whether
Theorem 4.3 can be improved. In particular, the condition
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1
ld = 8lloo <~ wmin, (6)

involvesn on the right-hand side, while the dogous conditions for some other tree
reconstruction methods do not involuwe(see [1,4,9]). It would be interesting to know
whether (6) can be improved to remove (or weaken) this dependence on
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