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Abstract

Given a treeT with leaf setX, there are certain ways of arranging the elements ofX in a circular
order so thatT can be embedded in the plane and ‘preserve’ this ordering. We investigate som
combinatorial properties of these ‘circular orderings.’ We then use these properties to establ
results concerning dissimilarity maps onX that are induced by edge-weighted trees with leaf seX.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A phylogeneticX-tree T is a tree that hasX as its set of leaves and whose inter
vertices are of degree at least three. Figure 1 shows a phylogenetic tree with{1,2, . . . ,7} as
its set of leaves. In evolutionary biology, phylogeneticX-trees are widely used to represe

Fig. 1. A phylogenetic tree.
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the ancestral relationships of a setX of present-day species (for further details, see
14]).

A dissimilarity map(on X) is a functionδ :X × X → R such that, for allx, y ∈ X,
δ(x, x) = 0 andδ(x, y) = δ(y, x). In evolutionary biology, such a map might meas
the genetic difference between two species. For an arbitrary dissimilarity mapδ on X,
a classical problem in classification is to determine if there is a phylogeneticX-treeT and
a real-valued weighting of the edges ofT so that, for allx, y ∈ X, the sum of the weight
of the edges ofT in the path connectingx andy is equal toδ(x, y). If such a phylogenetic
X-tree and edge weightingw exists, wherew is non-negative,δ is said to be atree metric.
The problem of recognizing and characterizing tree metrics has a well-known solutio
dates back more than 30 years (see [3,5,13,17]).

In this paper, we prove two new results on tree metrics. The first result is a
description of the total sum of the edge weights of a real-valued edge-wei
phylogenetic tree. The second result is an explicit convergence result for the ‘min
length tree reconstruction method.’ Typically, an arbitrary dissimilarity mapδ on X is not
a tree metric. However, one would still like to construct an edge-weighted phylogeneti
X-tree from δ. The minimum length tree reconstruction method is one such me
Both of these results are derived by considering, for a phylogeneticX-tree T , cyclic
permutations ofX that provide a ‘circular ordering forT .’

The results in our paper are complementary to, though quite different from
investigation into ‘circular orderings’ by [7,8]. The latter of these papers establish
equivalence between circular orderings for a phylogeneticX-tree and another class
cyclic permutations ofX (called ‘Yushmanov orderings’), from which algorithms are th
derived. The authors of [7] use circular orderings to develop an approach for reconstr
phylogeneticX-trees from dissimilarity maps onX based on the ‘travelling salesma
problem.

The purpose of our paper is twofold. Firstly, to establish some new combina
properties of circular orderings and, secondly, to show how circular orderings can b
to derive results on tree metrics. The latter is done by using these combinatorial pro
to prove the two tree metric results mentioned in the last paragraph.

Unless stated otherwise, the phylogenetic terminology in this paper follows Semp
Steel [12]. Also, throughout this paper,X denotes a finite set. The paper is organized
follows. The central concept is the notion of a circular ordering for a phylogenetic tre
describe this in the next section as well as stating some well-known results on phylog
trees. Section 3 establishes some new combinatorial properties of circular orderin
phylogenetic trees. These properties are used in Section 4 to prove our two results
metrics.

2. Preliminaries

For a phylogenetic treeT , we denote the set of interior vertices and the set of inte
edges ofT by V̊ (T ) andE̊(T ), respectively. If every interior vertex ofT has degree three
T is a trivalent phylogenetic tree (in [12], a trivalent phylogenetic tree is called a bin
phylogenetic tree). The following lemma dates back to Schröder [11].
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Lemma 2.1.

(i) A trivalent phylogenetic tree withn leaves has2n−3 edges andn−2 interior vertices.
(ii) For a fixed setX of size at least three, the number of trivalent phylogeneticX-trees is

(2n − 4)!
(n − 2)!2n−2 = 1× 3× 5× · · · × (2n − 5),

wheren = |X|.

Two phylogeneticX-treesT1 andT2 are regarded asequivalentif the identity map on
X induces a graph isomorphism betweenT1 andT2, in which case we writeT1 ∼= T2. Thus,
up to equivalence, there are precisely three trivalent phylogenetic trees for a setX of size
four.

An X-split is a partition ofX into two non-empty sets. We denote theX-split whose
blocks areA andB by A|B. Associated with every phylogeneticX-treeT is a particular
collection ofX-splits. This collection consists of thoseX-splitsA|B that are induced by
the components of the graph resulting from the deletion of a single edgee of T . We say that
theX-split A|B corresponds toe and letΣ(T ) denote the set ofX-splits that correspon
to the edges ofT . For example, referring to Fig. 1,{1,2,3,5}|{4,6,7} is the split ofT
corresponding toe. As part of a characterization of a certain type of collection of sp
Buneman [2] proved the following result.

Proposition 2.2. LetT1 andT2 be phylogeneticX-trees. ThenΣ(T1) = Σ(T2) if and only
if T1 ∼= T2.

Let π = (x1, x2, . . . , xn) be a cyclic permutation ofX. For all 1� i � j � n, let
Aij = {xk: i � k � j } and letΣ◦(π) denote the set

Σ◦(π) = {Aij | X − Aij : 1� i � j � n − 1}
of X-splits. Arranging the elementsx1, x2, . . . , xn clockwise in a circle in the plane
we may viewΣ◦(π) as the set ofX-splits that can be obtained by separating th
elements according to which side of a line segment in the plane they lie on. Consequen
|Σ◦(π)| = (

n
2

)
. A collectionΣ of X-splits is said to becircular if Σ ⊆ Σ◦(π) for some

cyclic permutationπ of X. In caseΣ(T ) ⊆ Σ◦(π) for some phylogeneticX-treeT , we
say thatπ provides acircular orderingfor T . For example,(1,6,7,4,5,2,3) is a circular
ordering for the phylogenetic tree shown in Fig. 1, but(1,6,7,2,3,4,5) is not such an
ordering. Throughout the paper, for a cyclic permutationπ = (x1, x2, . . . , xn), we will
adopt the convention thatxn+1 = x1.

3. Circular orderings and phylogenetic trees

In this section, we establish some properties of circular orderings and phylog
trees. LetT be a phylogeneticX-tree. For all verticesv of T , let d(v) denote the degre
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of v and, for all distinctx, y ∈ X, let I (T ;x, y) denote the set of interior vertices ofT in
the path connectingx andy.

Proposition 3.1.

(i) Let T be a phylogeneticX-tree with at least one interior vertex. Then the numbe
distinct circular orderings forT is

∏
v∈V̊ (T )

(
d(v) − 1

)!.
Furthermore, for all distinct elementsx, y ∈ X, the proportion of these circula
orderings for whichy immediately followsx is

∏
v∈I (T ;x,y)

(
d(v) − 1

)−1
.

(ii) Let π be a cyclic permutation ofX and let |X| = n. Suppose thatn � 3. Then the
number of trivalent phylogeneticX-trees for whichπ is a circular ordering equals the
(Catalan) number

1

n − 1

(
2n − 4

n − 2

)
.

Proof. To prove both parts of (i), it suffices to show that, for all (not necessarily dist
elementsx, y ∈ X, the number of circular orderings forT in whichy immediately follows
x is

∏
v∈O(T ;x,y)

(
d(v) − 1

)! ∏
v∈I (T ;x,y)

(
d(v) − 2

)!, (1)

whereO(T ;x, y) denotes the set of interior vertices ofT not in the path connectingx
andy. In the casex = y, the setI (T ;x, y) is empty and the condition ‘y immediately
follows x ’ is redundant. The proof of (1) is by induction on the number of interior vert
of T .

Let x andy be elements ofX. If |V̊ (T )| = 1, then the number of circular orderings f
T in which y immediately followsx is the number of cyclic permutations ofX in which
y immediately followsx. The number of such cyclic permutations is(n − 1)! if x = y and
(n − 2)! if x �= y. It follows that if |V̊ (T )| = 1, then (1) holds.

Now suppose that|V̊ (T )| = k, wherek � 2, and that (1) holds for all ordered pairs
leaves of all phylogenetic trees withk − 1 interior vertices. Letu be an interior vertex o
T that is adjacent to exactly one other interior vertex and letX′ denote the subset ofX
whose elements are precisely the elements ofX adjacent tou. NowT has at least two suc
vertices, so, by making an appropriate choice foru, we may assume thatx /∈ X′.
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Choose an elementz in X′ such that, ify is an element ofX′, z is chosen to bey.
Let T ′ be the phylogenetic tree obtained fromT by deleting the elements ofX′ − z and
suppressingu. SinceT ′ is a phylogenetic tree and|V̊ (T ′)| = |V̊ (T )|− 1, it follows by our
induction assumption that the number of circular orderings forT ′ in whichy immediately
follows x is

∏
v∈O(T ′;x,y)

(
d(v) − 1

)! ∏
v∈I (T ′;x,y)

(
d(v) − 2

)!. (2)

Now X′|(X − X′) is anX-split of T and so, for every circular ordering forT in which
y immediately followsx, the elements ofX′ in this ordering are consecutive. Furthermo
the only proper subsets ofX′ that are blocks of anX-split of T are singletons. By ou
choice ofu, there are just two (distinct) cases to consider:

(I) eitherx = y or z �= y; or
(II) z = y.

In (I), u is not in the path ofT connectingx andy while, in (II), u is in the path ofT
connectingx andy. If (I) holds, then, for every circular ordering forT ′, we can replace
z with any ordering of the elements ofX′ to obtain a circular ordering forT in which y

immediately followsx. Furthermore, if (II) holds, then, for every circular ordering forT ′
in which y immediately followsx, we can replacey with any ordering of the elements
X′ with y as the first element to obtain a circular ordering forT in which y immediately
follows x. Moreover, all such circular orderings forT can be obtained in precisely one
these two ways as the deletion ofX′−z from any such ordering provides a circular order
for T ′ in whichy immediately followsx. Since any two circular orderings obtained in t
way are distinct and|X′| = d(u)−1, it follows by (2) that the number of circular orderin
for T in whichy immediately followsx is

|X′|!
∏

v∈O(T ′;x,y)

(
d(v) − 1

)! ∏
v∈I (T ′;x,y)

(
d(v) − 2

)!
=

∏
v∈O(T ;x,y)

(
d(v) − 1

)! ∏
v∈I (T ;x,y)

(
d(v) − 2

)!
and

(|X′| − 1
)! ∏

v∈O(T ′;x,y)

(
d(v) − 1

)! ∏
v∈I (T ′;x,y)

(
d(v) − 2

)!
=

∏
v∈O(T ;x,y)

(
d(v) − 1

)! ∏
v∈I (T ;x,y)

(
d(v) − 2

)!
in cases (I) and (II), respectively. Thus, (1) holds, completing the proof of (i).

To prove (ii), let C(n) denote the set of pairs(T ,π), where T is a trivalent
phylogeneticX-tree andπ is a circular ordering forT . We will count C(n) in two
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Fig. 2. A set of paths (dashed lines) for(1,6,7,4,5,2,3).

ways. By Lemma 2.1(ii), the number of choices forT is (2n − 4)!/((n − 2)!2n−2) and,
by Lemma 2.1(i) and Proposition 3.1(i), for eachT , the number of choices forπ is
2n−2. Alternatively, we may countC(n) by noting that the number of distinct cycl
permutations ofX is exactly(n − 1)! and, for each such cyclic permutationπ , the number
of phylogeneticX-treesT for which (T ,π) ∈ C(n) is precisely the number we wan
Equating these two counts ofC(n) and then rearranging gives the desired result.�

An illustration of the system of paths described in the statement of Theorem
shown in Fig. 2, where(1,6,7,4,5,2,3) is the associated cyclic permutation.

Theorem 3.2. Let π = (x1, x2, . . . , xn) be a cyclic permutation ofX and let T be
a phylogeneticX-tree. For all i ∈ {1,2, . . . , n}, let Pi denote the path inT from xi to
xi+1. Then:

(i) Every pendant edge ofT occurs in exactly two of the pathsP1,P2, . . . ,Pn.
(ii) Every interior edge ofT occurs in a positive and even number of the pa

P1,P2, . . . ,Pn.
(iii) π is a circular ordering forT if and only if every interior edge ofT occurs in exactly

two of the pathsP1,P2, . . . ,Pn.

Proof. Part (i) is an immediate consequence of the fact that, for alli, the elementxi occurs
in exactly two of the pairs(x1, x2), (x2, x3), . . . , (xn, x1).

To prove (ii), let e be an interior edge ofT and let A|B be the X-split of T
corresponding toe. Without loss of generality, we may assume thatx1 ∈ A. Then there
is an elementxi of A such thatxi+1 is an element ofB, in which casee is an edge in the
pathPi . Furthermore, there is an elementxj of B such thatxj+1 is an element ofA, in
which casee is an edge in the pathPj , wherePi �= Pj . Hencee occurs in at least two o
the pathsP1,P2, . . . ,Pn. Furthermore, by extending this argument, it is easily seen tha
number of such paths is even. This completes the proof of (ii).

We next prove (iii). Suppose that every interior edge ofT occurs in exactly two of the
pathsP1,P2, . . . ,Pn. The proof of the sufficient part of (iii) is by induction on the si
of X. Evidently, if n � 3, thenπ is a circular ordering forT . Now assume thatn � 4
and that this direction holds for all phylogenetic trees withn − 1 leaves. LetT ′ be the
phylogenetic tree obtained fromT by deletingxn and suppressing any resulting degree-
vertex. Then, as every interior edge ofT occurs in exactly two of the pathsP1,P2, . . . ,Pn,
every interior edge ofT ′ occurs in exactly two of the pathsP1,P2, . . . ,Pn−2,P

′ ,
n−1
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whereP ′
n−1 is the path inT ′ from xn−1 to x1. Therefore, by our induction assumptio

π ′ = (x1, x2, . . . , xn−1) is a circular ordering forT ′ and soΣ(T ′) ⊆ Σ◦(π ′).
Now considerT . Let σ be an element ofΣ(T ). We complete the sufficient directio

of (ii) by showing thatσ is an element ofΣ◦(π). If σ = {xn}|(X − xn), thenσ ∈ Σ◦(π).
Thus, assume thatσ �= {xn}|(X − xn). Then there is an interior edgee of T corresponding
to σ and an elementz ∈ X − {x1, xn−1, xn} that is in the same block ofσ asxn. Let σ ′
denote the(X − xn)-split obtained fromσ by removingxn from the appropriate block
Clearly,σ ′ is an element ofΣ(T ′) and, in particular, an element ofΣ◦(π ′). It now follows
that σ ∈ Σ◦(π) unlessxn−1 and x1 are both in the block ofσ not containingxn. But
then, asz ∈ {x2, x3, . . . , xn−2}, at least four of the pathsP1,P2, . . . ,Pn containe. This
contradicts the initial assumption that every interior edge ofT occurs in exactly two of the
pathsP1,P2, . . . ,Pn. Hence,π is a circular ordering forT .

For the converse of (iii), suppose thatπ is a circular ordering forT , but there is an
interior edgee of T that occurs in at least four of the pathsP1,P2, . . . ,Pn. Let Q1,
Q2, andQ3 denote the first three such paths. Leta andb denote the initial and termina
vertices ofQ1, respectively, and letc andd denote the initial and terminal vertices ofQ3,
respectively. Thena, b, c, andd are all distinct, ande induces anX-split of T in whicha

andc are in one block, andb andd are in the other block. Sinceπ is a circular ordering
for T , it follows thata andc (as well asb andd) are adjacent in the cyclic permutatio
π |{a, b, c, d}. However,π |{a, b, c, d} = (a, b, c, d); a contradiction. This completes th
proof of (iii) and the theorem. �

Let S be a non-empty subset ofX. For a phylogeneticX-treeT , let T |S denote the
phylogeneticS-tree for which

Σ(T |S) = {
A ∩ S|B ∩ S: A|B ∈ Σ(T ) andA ∩ S, B ∩ S �= ∅}

.

Furthermore, for a cyclic permutationπ of X, let π |S denote the cyclic permutation ofS

obtained by restrictingπ to S.
The straightforward proof of the next lemma is omitted. For a phylogenetic treeT , we

denote the set of circular orderings forT by o(T )

Lemma 3.3. If T is a phylogeneticX-tree andS is a non-empty subset ofX, then

o(T |S) ⊇ {
π |S: π ∈ o(T )

}
.

Although not needed for this paper, we note that the converse of Lemma 3.3 also
in particular, o(T |S) = {π |S: π ∈ o(T )}. However, the proof is less straightforward.

Proposition 3.4 allows us to use subsets ofX of size four to analyse circular orderin
of phylogeneticX-trees.

Theorem 3.4. Let π = (x1, x2, . . . , xn) be a cyclic permutation ofX and let T be
a phylogeneticX-tree. Thenπ is a circular ordering forT if and only if, for all subsetsS
of X of size four,π |S is a circular ordering forT |S.
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Proof. If π is a circular ordering forT , then, by Lemma 3.3,π |S is a circular ordering for
T |S.

Now suppose thatπ is not a circular ordering forT . ThenT must contain at least on
interior edge. For alli ∈ {1,2, . . . , n}, let Pi denote the path inT from xi to xi+1. Since
π is not a circular ordering forT , it follows by Theorem 3.2(ii) and (iii) that there is a
interior edgee of T that occurs in (at least) three of these paths. LetQ1, Q2, andQ3

denote the first three such paths. Leta andb denote the initial and terminal vertices ofQ1,
respectively, and letc andd denote the initial and terminal vertices ofQ3, respectively.
As a, b, c, andd are distinct,π |{a, b, c, d} = (a, b, c, d) and {a, c}|{b, d} is a split of
T |{a, b, c, d}. But (a, b, c, d) is not a circular ordering forT |{a, b, c, d}. This completes
the proof of Theorem 3.4.�

For phylogeneticX-treesT andT ′, we writeT � T ′ precisely ifΣ(T ) ⊆ Σ(T ′). It is
easily verified that� induces a partial order on the set of phylogeneticX-trees.

Corollary 3.5. LetT andT ′ be phylogeneticX-trees. Then

(i) T � T ′ if and only ifo(T ′) ⊆ o(T ).
(ii) o(T ) = o(T ′) if and only ifT ∼= T ′.

Proof. By [12, Theorem 6.3.5],T � T ′ if and only if, for all subsetsS of X size four,
T |S � T ′|S. Also, it is readily checked that for all subsetsS of X of size four,T |S � T ′|S
if and only if o(T ′|S) ⊆ o(T |S). Combining these two characterizations, we deduce
T � T ′ if and only if o(T ′|S) ⊆ o(T |S) for all subsetsS of X of size four. Now, by
Theorem 3.4, we have o(T ′|S) ⊆ o(T |S) for all subsetsS of X of size four if and only if
o(T ′) ⊆ o(T ). Part (i) of the corollary now follows. Part (ii) is an immediate conseque
of (i) and Proposition 2.2. �

4. Application to tree metrics

In this section, we apply circular orderings to the study of tree metrics. We show
the theory developed in the last section provides a convenient tool for establishing tw
results concerning tree metrics, neither of which explicitly mentions circular ordering

Let T be a phylogeneticX-tree and suppose that the edges ofT have real-valued
weights assigned by a functionw :E(T ) → R. For allx, y ∈ X, let P(T ;x, y) denote the
set of edges ofT in the path connecting verticesx andy. Define the mapd(T ;w) :X×X →
R by setting, for allx, y ∈ X,

d(T ;w)(x, y) =



∑
e∈P(T ;x,y)

w(e), if x �= y,
0, otherwise.



C. Semple, M. Steel / Advances in Applied Mathematics 32 (2004) 669–680 677

a

ight of
f
itrary
cients

for all
r

Let

l(T ,w) =
∑

e∈E(T )

w(e).

We call l(T ,w) the total edge weight ofT .
The proof of Lemma 4.1 is a direct consequence of Theorem 3.2. Part (i) of this lemm

is a classical and well-known result, for example, see [6,8,16].

Lemma 4.1. Let T be a phylogeneticX-tree and letπ = (x1, x2, . . . , xn) be a cyclic
permutation ofX. Letw :E(T ) → R be an edge weighting ofT and letd = d(T ;w).

(i) If π is a circular ordering forT , then

l(T ,w) = 1

2

n∑
i=1

d(xi, xi+1).

(ii) Suppose thatw is strictly positive on all edges ofT and let

wmin = min
{
w(e): e ∈ E̊(T )

}
.

Thenπ is a circular ordering forT if and only if

l(T ,w) >
1

2

n∑
i=1

d(xi, xi+1) − wmin.

Recently, Pauplin [10] described an elegant representation of the total edge we
any trivalent phylogenetic treeT with real-valued edge weightingw as a linear function o
thed(T ;w)(x, y) values. The first of our two results extends this representation to arb
phylogenetic trees, using an approach that explains the slightly mysterious coeffi
appearing in the representation given in [10]. Essentially, our proof reveals that,
distinctx, y ∈ X, the coefficient ofd(T ;w)(x, y) is the proportion of circular orderings fo
T in whichy immediately followsx.

Let λ :X × X → R�0 be the dissimilarity map onX defined, for allx, y ∈ X, in terms
of the degrees of the interior vertices ofT as follows:

λ(x, y) =



∏
v∈I (T ;x,y)

(
d(v) − 1

)−1
, if x �= y,

0, if x = y.

Theorem 4.2. LetT be a phylogeneticX-tree,w :E(T ) → R be an edge weighting ofT ,
andd = d(T ;w). Then

l(T ,w) =
∑

{x,y}⊆X

λ(x, y)d(x, y).
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Proof. By Lemma 4.1,

l(T ,w) = 1

|o(T )|
∑

(x1,...,xn)∈o(T )

[
1

2

n∑
i=1

d(xi, xi+1)

]
.

However, we may rewrite the right-hand side of this last equation as

1

2

1

|o(T )|
∑

(x,y): x,y∈X

nT (x, y)d(x, y),

where nT (x, y) is the number of circular orderings forT in which y immediately
followsx. By Proposition 3.1(i),nT (x, y)/|o(T )| = λ(x, y) for all distinctx, y ∈ X. Thus,

l(T ,w) = 1

2

∑
(x,y): x,y∈X

λ(x, y)d(x, y)

and the result now follows. �
We now turn to our second application, which concerns the reconstructio

a phylogenetic tree from a dissimilarity mapδ. This is a central problem in molecul
systematics (see, for example, [14]). In caseδ is a tree metric, sayδ = d(T ;w), it is
straightforward to recoverT from δ by standard methods. However, dissimilarity ma
derived from data are generally some perturbation of—but not exactly equal to—a tre
metric. An important theoretical question, that is central to the statistical analysis o
reconstruction methods, is how ‘close’ a dissimilarity mapδ needs to be to a tree metr
d(T ;w) in order to ensure that a particular tree reconstruction method will recoverT from δ.
For certain tree reconstruction methods, it is relatively easy to answer this questio
for example, [4,9]. But for other methods, such as the popular ‘neighbour-joining’ me
the solution appears to require some intricate arguments. We next apply some of our
on circular orderings to investigate this question for one of the earliest methods pro
for reconstructing phylogenetic trees from dissimilarity maps.

For a dissimilarity mapδ on X and a phylogeneticX-treeT , we say that a positiv
edge weightingw :E(T ) → R>0 of T is admissiblefor δ if d(T ;w)(x, y) � δ(x, y) for
all x, y ∈ X. Furthermore, given a dissimilarity mapδ on X the minimum length tree
reconstruction methodreturns a phylogeneticX-tree that minimizes the total edge weig
l(T ,w) over all admissible edge weightingsw for δ of all phylogeneticX-treesT .

Theorem 4.3 shows that if a dissimilarity mapδ is ‘close enough’ to one that is induce
by a trivalent phylogenetic treeT , then the minimum length tree reconstruction meth
applied toδ will return T . Although the minimum length tree reconstruction meth
dates back 25 years (see [15]) and is one of the original techniques for reconst
phylogenetic trees from dissimilarity maps, Theorem 4.3 is the first explicit converg
result for this method. For two dissimiliarity mapsδ andδ′ onX, thel∞-metric is defined
as

‖δ − δ′‖∞ = max
{∣∣δ(x, y) − δ′(x, y)

∣∣: x, y ∈ X
}
.
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Theorem 4.3. Let δ be a dissimilarity map onX and letT be a trivalent phylogeneti
X-tree. Letw be a positive, real-valued edge weighting ofT and setd = d(T ;w). If

‖d − δ‖∞ <
1

n
wmin,

wheren = |X| and wmin = min{w(e): e ∈ E̊(T )}, then the minimum length tree reco
struction method applied toδ returnsT .

Proof. Clearly, the theorem holds if|X| � 3, so assume that|X| � 4. ThenT has at leas
one interior edge. Letε = (1/n)wmin, and letw1 :E(T ) → R be an edge weighting ofT
that agrees withw onE̊(T ) and, for alle ∈ E(T )−E̊(T ), we havew1(e) = w(e)+(1/2)ε.
Let d1 = d(T ;w1). Thend1(x, y) � δ(x, y) for all x, y ∈ X and sow1 is an admissible edg
weighting ofT for δ. Furthermore,

l(T ,w1) = l(T ,w) + 1

2
wmin. (3)

Now suppose thatT ′ is a phylogeneticX-tree that is different toT . SinceT is trivalent,
T � T ′ and so, by Corollary 3.5(i), there exists a cyclic permutation(x1, x2, . . . , xn) in
o(T ′) − o(T ). Let w′ be an admissible edge weighting ofT ′ for δ and letd ′ = d(T ′;w′).
Then, by Lemma 4.1(i),

l
(
T ′,w′) = 1

2

n∑
i=1

d ′(xi, xi+1) � 1

2

n∑
i=1

δ(xi, xi+1) >
1

2

n∑
i=1

[
d(xi, xi+1) − ε

]
. (4)

Moreover, since(x1, x2, . . . , xn) is not a circular ordering forT , it follows by Lemma 4.1(ii)
that

1

2

n∑
i=1

d(xi, xi+1) � l(T ,w) + wmin. (5)

Combining (3), (4), and (5), we deduce that

l
(
T ′,w′) > l(T ,w1)

and so the minimum length tree reconstruction method applied toδ does indeed
returnT . �
4.1. Concluding remarks

The two results we have described here illustrate how circular orderings ca
a convenient vehicle for deriving results on tree metrics. A remaining question is wh
Theorem 4.3 can be improved. In particular, the condition
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t.

k 20
‖d − δ‖∞ <
1

n
wmin, (6)

involves n on the right-hand side, while the analogous conditions for some other tre
reconstruction methods do not involven (see [1,4,9]). It would be interesting to kno
whether (6) can be improved to remove (or weaken) this dependence onn.
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[4] P.L. Erdős, L.A. Székely, M. Steel, T. Warnow, A few logs suffice to build (almost) all trees (II), The

Comput. Sci. 221 (1999) 77–118.
[5] S.L. Hakimi, A.N. Patrinos, The distance matrix of a graph and its tree realization, Quart. Appl. Ma

(1972) 255–269.
[6] M.D. Hendy, Minimality of trees constructedfrom dissimilarity data, Ars Combin. 17 (1984) 203–222.
[7] C. Korostensky, G.H. Gonnet, Using traveling salesman problem algorithms for evolutionary

construction, Bioinformatics 16 (2000) 619–627.
[8] V. Makarenkov, B. Leclerc, Circular orders of tree metrics, and their uses for the reconstruction and

of phylogenetic trees, in: Mathematical Hierarchies and Biology, in: DIMACS Ser. Discrete Math. Theore
Comput. Sci., vol. 37, Amer. Math. Society, 1997.

[9] V. Moulton, M. Steel, Retractions of finite distancefunctions onto tree metrics, Discrete Appl. Math.
(1999) 215–233.

[10] Y. Pauplin, Direct calculation of a tree length using a distance matrix, J. Mol. Evol. 51 (2000) 41–47.
[11] E. Schröder, Vier combinatorische Probleme, Z. Math. Physik 15 (1870) 361–376.
[12] C. Semple, M. Steel, Phylogenetics, Oxford Univ. Press, Oxford, 2003.
[13] J.M.S. Simões-Pereira, A note on the tree realizability of a distance matrix, J. Combin. Theory 6 (196

303–310.
[14] D.L. Swofford, G.J. Olsen, P.J. Waddell, D.M. Hillis, Phylogenetic inference, in: Molecular System

2nd ed., Sinauer, Sunderland, USA, 1996.
[15] M.S. Waterman, T.F. Smith, M. Singh, W.A. Beyer, Additive evolutionary trees, J. Theoret. Biol. 64 (197

199–213.
[16] S.V. Yushmanov, Construction of a tree withp leaves from 2p − 3 elements of its distance matrix, Ma

Zametki 35 (1984) 877–887 (in Russian).
[17] K.A. Zaretskii, Constructing trees from the set of distances between pendant vertices, Uspekhi Mat. Nau

(1965) 90–92.


