
Reducing Distortion in Phylogenetic Networks

Daniel H. Huson1, Mike A. Steel2, and Jim Whitfield3

1 Center for Bioinformatics (ZBIT), Tübingen University, Germany
huson@informatik.uni-tuebingen.de

2 Allan Wilson Centre, University of Canterbury, Christchurch, New Zealand
m.steel@math.canterbury.ac.nz

3 Department of Entomology, University of Illinois at Urbana-Champaign, USA
jwhitfie@life.uiuc.edu

Abstract. When multiple genes are used in a phylogenetic study, the
result is often a collection of incompatible trees. Phylogenetic networks
and super-networks can be employed to analyze and visualize the incom-
patible signals in such a data set. In many situations, it is important to
have control over the amount of imcompatibility that is represented in a
phylogenetic network, for example reducing noise by removing splits that
do not recur among the source trees. Current algorithms for computing
hybridization networks from trees are based on a combinatorial analysis
of the arising set of splits, and are thus sensitive to false positive splits.
Here, a filter is desirable that can identify and remove splits that are not
compatible with a hybridization scenario. To address these issues, the
concept of the distortion of a tree relative to a split is defined as a mea-
sure of how much the tree needs to be modified in order to accommodate
the split, and some of its properties are investigated. We demonstrate the
usefulness of the approach by recovering a plausible hybridization sce-
nario for buttercups from a pair of gene trees that cannot be obtained
by existing methods. In a second example, a set of seven gene trees from
microgastrine braconid wasps is investigated using filtered networks. A
user-friendly implementation of the method is provided as a plug-in for
the program SplitsTree4.

1 Introduction

In systematics, the evolution of different species is of interest, however, phylo-
genetic inference is often based on the DNA or protein sequence of homologous
genes and the resulting gene trees are usually interpreted as estimations of an
underlying species tree. A common observation is that different genes give rise
to different trees, even in the absence of tree-reconstruction errors, and this
fact can usually be explained by mechanisms such as incomplete lineage sorting,
duplication-and-loss, horizontal gene transfer (e.g. in bacteria) or hybridization
(e.g. in plants).

Although phylogenies based on single gene analysis [32] continue to play a
central role in phylogenetics, biologists interested in the evolution of specific
groups of taxa often sequence and use more than one gene to infer the phylogeny
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of the taxa [23], the hope being that as more data is brought into the analysis, a
better “species-signal” to “gene-noise” ratio will be obtained and that deviating
signals from individual genes can be filtered out.

If the goal is simply to obtain a good estimation of the species tree and if
there is evidence that a majority of the genes under study have evolved in a
similar way along the same species tree, then one approach is to concatenate the
alignments given for each of the genes to produce one large dataset, to which
tree-building methods are then applied [23,25]. If each of the genes is long enough
to contain strong phylogenetic signals for the group of taxa under investigation,
then a second approach is to compute individual gene trees, to summarize them
using a (usually somewhat unresolved) consensus tree and then to interpret the
consensus as a representation of the well-supported parts of the species tree
[30,10,26].

In both cases, the final result suppresses all incompatible signals. However, if
the actual incongruencies of the individual gene trees are themselves of interest,
then a representation of the data set that maintains (some of) the incompatible
signals may be useful. Such a representation is given by the concept of a “split
network” [1] and methods for computing such networks are presented in [8] and
are implemented in the program SplitsTree4 [15].

To obtain an explicit model of reticulate evolution, reticulate networks are
used [15] that explain a given set of trees in terms of hybridization, horizon-
tal gene transfer or recombination events [13,7,19,17,18]. Current methods for
determining a hybridization scenario that explains a given set of trees operate
by performing a combinatorial analysis of the total set of splits of the trees
to identify a hybridization network that generates the trees [22,17]. By defin-
ition, combinatorial methods are very sensitive to false positive splits, that is,
splits that are incompatible to other splits in the input due to reasons such as
homoplasy, tree-estimation error, incomplete lineage sorting etc.

Given a collection (or profile) P of k gene trees all inferred on the same set of
taxa X , one approach to constructing a set of splits that summarize the set of
trees, without eliminating all incompatibilities, is given by the consensus network
method [2,14]. This method consists of returning all splits that occur in at least
αk of the given input trees, for a given threshold α ∈ [0, 1].

A main drawback of the consensus network approach is that in practice typical
data sets often consist of partial trees, that is, gene trees that each only mention
some subset X ′ of the total taxon set X . Partial trees arise because the sequence
data for some gene has not yet been sequenced, or because the gene is not present
in the genome, for some taxon.

Given a profile of partial gene trees, the Z-closure method [16] computes a
super network on the full taxon X that summarizes all the input trees. This
approach first uses an inference rule to construct a set of splits on the full taxon
set and then, as above, a network construction algorithm [8] is employed to
obtain a split network. A practical weakness of this method is that it does not
provide a natural parameter (such as α above) with which one can control the
amount of incompatibility that is represented in the resulting network.
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The goal of this paper is to develop an adjustable parameter than can be used
with any super network method or consensus method to generate split networks
that represent a controlled amount of incompatible signals. The approach that
we take is to filter splits by the amount of “distortion” that they generate. We
have implemented this approach as a plug-in FilteredSuperNetwork for the
SplitsTree4 program [15].

This concept is particularly useful in the context of computing hybridization
networks from gene trees, because it can be used to remove splits from a data
set that are not compatible with a simple hybridization scenario. This is due
to the fact that the distortion of a split equals the number of SPR or TBR
operations required to modify a tree to accommodate the split, which will be
small for incompatibilities caused by hybridization.

We illustrate this use of a distortion filter for a set of 46 Ranunculus (but-
tercup) species, represented by two gene trees, one based on a chloroplast JSA
region, and the other based on a nuclear ITS region [20]. Although this dataset
is known to contain examples of both allopolyploid and diploid hybridization
events (Pete Lockhart, personal communication), past attempts to compute a
corresponding hybridization network from the two trees have failed [17]. Here
we demonstrate that a plausible hybridization network can be computed when
employing an appropriate distortion filter.

A second example is given by a set of seven gene trees for 45 species of wasps
[3]. Mixed-model Baysian analysis [24] of the combined data set indicates that
there is little support for internal edges of the phylogeny and here we show how
filtered network methods can be used to investigate whether this lack of support
is due to conflict between the different gene trees, or whether it represents a lack
of real coherent signal in the data.

In the following Section 2 we provide the necessary formal definitions, and then
introduce the concept of distortion and explore some of its properties. Then, in
Section 3, we present an algorithm for efficiently computing the distortion of a
tree relative to a split. Finally, in Section 4, we illustrate the application of the
algorithm to two different biological data sets.

WearegratefultotheCassFieldStationoftheUniversityofCanterbury,wherewe
developed themain ideas of this paper.D.H.H.would like to thank theDFGand the
Erskine Programme for funding. J.W. would like to thank the Allan Wilson Centre
for sponsoringhis trip toNZ, andNational ScienceFoundationGrantDEB0316566
for funding the generation of the wasp data. Thanks to Pete Lockhart for providing
the buttercup trees and for many useful discussions.

2 The Distortion of a Tree Relative to a Split

We mostly follow the notation of [29]. By a partial X–tree we mean a tree T
together with a labeling map φ from some subset X ′ of X into the vertices of
T so that each vertex of degree at most 2 receives at least one label. Given an
X–split σ = A|B we may regard σ as a map from X into {0, 1} (where elements
of A are sent to 0 and elements of B are sent to 1) and so, by restricting σ to
X ′, we may view σ as a binary character for T .
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If T is a phylogenetic tree (that is, the only vertices of T labeled by X ′ are
the leaves and these each receive exactly one label), then let h(T , σ) denote the
homoplasy score of the binary character σ on T , that is, the parsimony score of
σ, minus 1.

For any X-split σ and partial X–tree T , we define the distortion of T relative
to σ as

∂(T , σ) := min
T ′∈Phy(T )

h(T ′, σ),

where Phy(T ) denotes the set of phylogenetic refinements of T , that is, the phy-
logenetic trees with the same label set as T and that contain all the splits of T .

The following result provides an interpretation of the distortion as a measure
of how much a tree needs to be modified in order to accommodate the split σ,
see Figure 1. Recall that two commonly-used ways to transform trees are by
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Fig. 1. (a) A tree T labeled by taxa X = {a, . . . , i}, with superscript 0 or 1 indicating
that the taxon lies in part A or B, of the split σ = A | B = {a, b, e, f, i} | {c, d, g, h}; we
have h(T , σ) = 3. (b) A refinement T ′ of T , with h(T ′, σ) = 1, leading to ∂(T , σ) = 1.
(c) ∂(T , σ) = h(T ′, σ) = 1 matches the transformation of T ′ into T ′′ on which σ is
compatible, using one SPR move.

SPR (‘subtree prune and regraft’) and TBR (‘tree bisection and reconnection’)
operations, which are explained further in [29,9]. In particular, the result explains
why a filter based on distortion will be a useful tool for removing false positive
splits when computing a hybridization network.

Proposition 1. For any partial X–tree T and X–split σ, the value ∂(T , σ)
equals the smallest number of (SPR or TBR) tree rearrangement operations re-
quired to transform at least one phylogenetic refinement of T into a tree that has
the split σ.

Proof. The result follows from Theorem 5.2 of Bryant [6]. �

A tree T ′ ∈ Phy(T ) that minimizes h(T ′, σ) is the optimal refinement of T , with
respect to maximum parsimony, for the binary character that corresponds to σ,
in the sense of [4]. Moreover, the value of ∂(T , σ) is unaltered if one replaces in
the definition the set Phy(T ) by the set of binary phylogenetic refinements of T .
Notice also that if we replace the partial X–tree T by its minimal phylogenetic
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refinement Tp (i.e. the partial phylogenetic X–tree whose splits consist of the
splits of T together with the trivial splits on the label set of T ) then we have

∂(T , σ) = ∂(Tp, σ),

so it suffices to describe an algorithm for computing ∂ for partial phylogenetic trees.
The score ∂ has a dual ‘max-flow’ description. Let p(T , σ) denote the max-

imum number of vertex-disjoint paths that each connect an A–type leaf to a
B–type leaf. By Menger’s Theorem (see [12]) this is equal to the minimum num-
ber of vertices of T that need to be deleted from T in order to separate each
A–type leaf from each B–type leaf.

Theorem 1. For any phylogenetic X–tree and X–split, σ,

∂(T , σ) = p(T , σ) − 1.

Proof. Omitted due to space restrictions. �

Given a collection (‘profile’) of partial X–trees P = {T1, . . . , Tk} define the
distortion of P relative to σ as follows:

∂(P, σ) :=
k∑

i=1

∂(Ti, σ).

Proposition 1 implies that ∂(P, σ) is the minimum total number of transforma-
tions required on refinements of trees in P so that σ is a split of each resulting
tree. In Section 3 we present an algorithm that efficiently computes ∂(T , σ)
directly from σ and T .

One approach to super-network construction from a profile P of partial trees
would be to identify those X–splits σ for which ∂(P, σ) is less than some (ad-
justable) threshold k ≥ 0. However this problem seems in general to be in-
tractable due to the following result.

Proposition 2. The following problem is NP–hard. Given a profile P of partial
X–trees, determine whether there exists a non-trivial X–split σ with ∂(P, σ) = 0.

Proof. The result follows from the NP–hardness of ‘Split-quartet compatibility’
by [5]. �

In view of Proposition 2 an alternative approach is to use P to first construct
a large set of ‘feasible’ X–splits, and then to use ∂ to prune this set to a more
conservative subset. More concretely, we propose to first use the Z-closure algo-
rithm to compute a set of X–splits for P and then to return all splits σ with
∂(P, σ) ≤ k, for a given integer threshold k ≥ 0.

Another option for a profile P of partial X–trees – which generalizes the
consensus network approach– is, for a non-negative integer r, and real number
α ∈ [0, 1] to consider the set of X–splits defined by:

{σ : |{T ∈ P : ∂(T , σ) ≤ r}| ≥ α|P |}.
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For r = 0 and a profile P consisting of binary phylogenetic X–trees, then using
the set of all splits contained in P , this corresponds to the consensus network
(with threshold α).

Proposition 2 indicates that this is a hard problem, if we do not restrict the
set of splits under consideration. For partial trees, one can use the Z-closure
to compute a set of candidate splits. We have implemented this approach as a
plug-in for SplitsTree [15] and discuss this in detail below.

Finally, assume we are given a profile P of (non-partial) X-trees. For small
values of r we can compute all possible X–splits σ with ∂(P, σ) ≤ r as follows:
For each tree T ∈ P , consider all O(

(
n−3

r

)
) possible ways of selecting up to

r vertex-disjoint edges in the tree, where n = |X |. By placing a change on
each selected edge, each such choice of edges defines a binary character σ with
distortion ∂(T , σ) ≤ r. Return all splits whose total score over all trees does not
exceed r.

3 Computation of the Distortion

Given a partial X–tree T and an X–split σ, the definition of ∂(T , σ) in Section 2
does not immediately lead to an algorithm. To compute this value, we describe
a modification of Sankoff’s algorithm [27,28] for computing the parsimony score
of a character on a tree.

In the following, we will assume that T is a phylogenetic X ′–tree, with X ′ ⊆
X . However, our algorithm is easily extended to the case that T is multi-labeled
(i.e., has nodes labeled by more than one taxon), and has labels on (some or all)
internal vertices.

Algorithm 2 (Distortion)
Input: A phylogenetic partial X–tree T and an X–split σ.
Output: The distortion ∂(T , σ).
Root T at the midpoint of an edge and let ρ denote the root vertex.
Initialization: For all vertices v and all a ∈ {0, 1} set:

Sv(a) =
{

0, if a = 0 and φ−1(v) ⊆ A, or a = 1 and φ−1(v) ⊆ B
∞, if a = 0 and ∅ �= φ−1(v) ⊆ B, or a = 1 and ∅ �= φ−1(v) ⊆ A.

Compute Sρ using the following recursion:
For a, b ∈ {0, 1}, and a vertex v with children w1, . . . , wk, set

Sv(a) =
∑

wi:Swi
(a)<Swi

(b)+1

Swi(a) +
∑

wi:Swi
(a)≥Swi

(b)+1

Swi(b) + Δ,

where

Δ =
{

1, if there exists wi : Swi(a) ≥ Swi(b) + 1;
0, otherwise.

The result is given by ∂(T , σ) = min{Sρ(0), Sρ(1)} − 1.
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Proposition 3. Let T be a partial phylogenetic X–tree and σ = A | B be an
X-split. Algorithm 2 computes the distortion ∂(T , σ) in linear time.

Proof. The algorithm considers each parent-child pair of vertices exactly once,
and hence the time requirement is linear.

We will prove the result by induction. First, consider the initialization step.
The map Sv(0) is set to 0 for every internal vertex v, and otherwise to 0 or
∞, depending on whether the label of the leaf v lies in A or B, respectively.
Vice-versa for Sv(1).

Now, consider a vertex v and assume by induction that we have correctly
computed Swi(a) for all children W = {w1, w2, . . . , wk} of v and all a ∈ {0, 1}.

Define W0 := {wi ∈ W | Swi(0) < Swi(1)+1} and W1 := {wi ∈ W | Swi(0) ≥
Swi(1) + 1}.

To compute Sv(0), consider a refinement T ′ of T such that v has one or two
out-edges (depending on whether one or both of the sets WA and WB are non-
empty), e0 = (v, u0) and e1 = (v, u1), leading to one or two subtrees containing
the sets W0 and W1, respectively. We choose state 0 and state 1 on the nodes
W0∪{u0} and W1∪{u1}, respectively, and pay a penalty of 1 for a change along
edge e1, if W1 �= ∅. Note that the degree of u0 or u1 may be 2, which we allow for
purposes of the proof, as this does not alter the achievable score. We compute
Sv(1) in a similar manner. �

4 Implementation and Applications

We have implemented the above ideas as a new plug-in FilteredSuperNetwork
for the program SplitsTree4 [15]. This method takes as input a profile P of (par-
tial) X-trees and produces as output a filtered set of X–splits Σ. These splits can
then visualized as a split network using the algorithm described in [8], or used to
compute a hybridization network, using the algorithm described in [17].

The method proceeds by first computing the Z-closure Σ′ of all partial X–
splits in P and then computing the profile score of every split σ ∈ Σ′. The user
must provide two parameters. The first parameter, maxDistortion, determines
the maximal distortion ∂(T , σ) acceptable to consider σ ∈ Σ′ as being supported
by the tree T ∈ P . The second parameter, minSupportingTrees, determines
the minimum number of trees T ∈ P that are required to support σ so that σ
is present in the set of output splits Σ. Either parameter can be set by a slider
that is coupled to a histogram that shows how many splits will be present in
the output for any given choice of the parameter, given the current value of the
other parameter.

As mentioned above, an important application of the distortion filter is as a
preprocessing step in the computation of hybridization networks [17]. Given a set
of gene trees that show significant incongruencies due to hybridization events,
the goal here is to compute a hybridization network that “explains” the gene
trees. Existing approaches perform a combinatorial analysis of the set of trees
or splits to derive a network, and thus are very sensitive to false positive splits
in the data set. If the underlying hybridization scenario is relatively simple, e.g.
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involving only isolated events, then the distortion filter can be used to remove
interfering splits.

For example, consider the set P = {T1, T2} of two gene trees on 46 Ranunculus
(buttercup) species depicted in Figure 2, based on (a) a chloroplast JSA region,
and (b) a nuclear ITS region [20]. The split network representing the set Σ
of all splits from either tree is shown in Figure 2(c). Although this dataset

(a) (b)

(c) (d)

Fig. 2. Two phylogenetic trees for 46 buttercup species, obtained (a) using a nuclear
ITS gene and (b) using a chloroplast JSA region [20]. (c) A split network displaying all
splits contained in the two trees: (d) The split network for those splits whose distortion
is at most 1 on each of the two trees.

is known to contain examples of both allopolyploid and diploid hybridization
events (Pete Lockhart, personal communication), previous attempts to compute
a corresponding hybridization network from the two trees have failed [17], due
to interfering splits.

For this dataset, it makes sense to apply the distortion filter to obtain the set

Σ′ = {σ ∈ Σ | ∂(T , σ) ≤ 1, ∀T ∈ P},

as this consists of every split that is contained in one of the trees, and is also
contained in the other, or in a tree that differs by one tree rearrangement from
the other. Figure 2(d) shows the split network for the reduced data set Σ′.

Application of a hybridization network algorithm [17] produces the network
depicted in Figure 3. The network clearly indicates that R. nivicola arises as
a (allopolyploid) hybrid between R. insignis, and R. verticallatus. Moreover,
the network indicates two further possible hybridization events, one leading to
R. enysii3 (as this involves a single lineage, probably diploid hybridization), and
the other leading to R. pinguis.
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Fig. 3. The hybridization network computed from the filtered set of splits

We now discuss a second example that derives from a study of the phylogeny
of microgastrine braconid wasps, a diverse and terrestrially ubiquitous group of
small insects that live parasitically as immatures within the bodies of caterpillars.
This insect group has been proposed to have diversified rapidly about 50 million
years ago into what are now recognized as the modern genera [21,31,3]. At about
this time their host insects, and the plants they live upon, were also strongly
diversifying [11].

Recent work [3] presents DNA sequence data from seven genes for a set of
45 species of wasps representing a number of microgastrine genera and related
subfamilies of wasps. In most cases not all species were successfully sequenced;
as many as six (and as few as zero) of the species were missing from a gene
tree. Mixed-model Bayesian analysis [24] of the combined seven-gene data set
resolved most phylogenetic relationships at the species level (external edges)
and among wasp subfamilies (deeply internal edges connecting the ingroup to
outgroups), but showed short and relatively poorly-supported internal edges
subtending many of the combinations of wasp genera. The internal relationships
among wasp genera approximate a “star phylogeny”.

It was thus of interest to investigate via filtered network methods whether this
star phylogeny pattern is due to conflict between splits supported by different
sets of data, or whether it represents a real lack of a coherent signal in data
patterns (splits).

We consider seven unrooted, multifurcating gene trees as independently an-
alyzed using Bayesian analysis (GTR + I + Γ substitution model for the two
mtDNA genes 16S and COI, HKY + I + Γ for the nuclear genes EF1α, LW
rhodopsin, wingless, 28S and argK). The five nuclear genes are widely believed to
provide stronger phylogenetic signal for deeper relationships than the two mtDNA
genes, which are more widely employed for inference of close species relationships.
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(a)

(b)

(c)

Fig. 4. Effect on Z-closure network of reducing the distortion threshold. (a) With all
splits included (distortion threshold 46), (b) with distortion threshold 8, and (c) with
distortion threshold 3.

This prediction seems to be borne out by the more distantly related outgroups
(shown as all capitals in the taxon labels) more often being erroneously connected
closely to ingroups in the mtDNA trees, along with stronger diversification among
species within genera (longer edges near the periphery of the tree) than is shown
with the more slowly-evolving nuclear genes.

Figure 4 shows the effect of first applying the Z-closure method for combin-
ing partial trees into a super-network (a), and then using the distortion filter
with different thresholds. When all splits (threshold = 46, encompassing 213
splits) are allowed to contribute to the super-network, the result is a tangled
mess, Figure 4(a). Reducing the threshold to 8, Figure 4(b), results in a clear
simplification of the network (124 splits), with most of the remaining multidi-
mensionality deriving from uncertainty in relationships between outgroups and
the near star-phylogeny of ingroup generic relationships. Reducing the threshold
to 3, Figure 4(c), results in only a single remaining reticulation (from 66 splits);
at lower values even this uncertainty disappears.
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