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Some asymptotic properties of the symmetric difference metric 

for tree comparisons are described, settling two conjectures 

from [4). These were that for binary trees the probability 

that the distance d(Ti,T j ) equalled the maximum value of 2n-6 

approached 1. 0 as [n] --t [n+1) 'in>3. For non-binary trees this 

limit appeared to be less than 1.0. The metric is then 

applied to the analysis of evolutionary trees from sequences 

of macromolecules. A family of trees is considered as a 

subset of similar trees, such as may be generated from a tree 

by rearranging taxa around a short internal edge. Two 

applications are reported. In the first with minimal trees 

from different proteins the trees fall into different 

families, largely composed of trees from the same protein. In 

the second case with near minimal trees from the combined data 

set the trees still fell into more than one family though of 

very similar trees. 

RECENT WORK ON THE SYMMETRIC DIFFERENCE METRIC 

Programs that reconstruct evolutionary trees may produce more than one 

tree and metrics for comparing these trees are useful. The sy~netric 

difference (or partition) metric [1, 13] has been part icular ly useful 

because its distribution is known with binary trees for up to 16 

labelled pendant points (see figure 1), or for up to 12 with non­

binary trees [4]. The metric is easy to compute [2,10]. Two 

conjectures were made earlier [4] about the behaviour of this metric 

as n, the number of labelled points, increases to infinity. For two
• 

randomly selected binary trees Ti,T j it appeared that the probability 

that the distance d(Ti,T j ) equalled the maximum value (2n-6) 

approached 1.0 as n increased. For non-binary trees this limit 

appeared to be less than 1. 

Our previous approach [4 ] required the enumeration of all classes of 
phylogenetic trees and as such is not suitable for studying large 

values of n. Recent work by one of us [ 15] has used a new approach to 
settle these conjectures, and has extended our knowledge of the 
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Figure 1. Properties of the Syrrunetric difference metric. The 
expected frequencies for the distance between randomly selected pairs 
of binary trees. For a given number of taxa n, the relative frequency 
f (d) is the proportion of pairs of trees (among all pairs) that are 
distance d apart. For d ~ 0,2,4, ... 2n-6, -(log f(d)) is plotted. 
Diagonal lines connect points of the same d value and horizontal lines 
connect points with the same S (n-3-d/2) values. Thus, for example, 
the frequency .f of pairs of binary trees with 11 taxa where d=6 is 
10-4 . 4 The expected frequencies are given in table 4 of [4 J. The 
right hand axis has asymptotic values of s from 0 to 5, calculated by 
the method of Steel [15]. 

properties of this metric. 

We let BPT (n) be the set of binary trees having n labelled pendant 

vertices, and let qn S be the proportion of all pairs T 1 ,T 2 E BPT(n), 

such that each pair has exactly S pairs of equivalent internal edges. 
• 

SAlternatively, qn may be regarded as the probability that two 

randomly chosen binary trees T1 ,T 2 (from BPT(n)) have d(T1,T~) "2(n-

3-S) . 
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The main result is that as n -) ~ ,qn S has a Poisson distribution with 

mean IJ. liS. 

That	 is, 

O I/SIn particular, lim qn e- ~ 0.8S, settling a conjecture [4J 

liSe-liS ~ 0.11 

Thus for large values of n, most (88%) pairs of trees have no edges in 

common, while 99% have at most one common edge. This makes the metric 

useful for hypothesis testing where trees constructed from DNA 

sequences may be expected to be "similar" and a metric for which most 

trees are 'far apart' is desirable. 

Indeed the above results also show that 

1)	 The probability that two trees in BPT (n) are dis tance < m 

apart -)0 as n -) ~ , for any fixed m. 

2)	 The expected distance between two binary trees tends to the 

maximal distance, (2n-6). 

It also appears that qn S for S > 0 is monotone decreasing (and it has 
0been shown that qn is monotone increasing) so the table [4 J can be 

extrapolated for n>16. Together with the main result above this gives 

a monotone convergence to the Poisson distribution. 

Many of the main results above do not carryover to non-binary trees 

(PT (n», suggesting that the metric works more "naturally" on binary 

trees than on non-binary. In particular, the expected distance 

between two phylogenetic trees does not tend to the maximal distance, 

confirming a conjecture in [4J - indeed, using a result from [3], the 

expected distance can be shown to converge to 1/(4In2-2)-1/2 ~ 0.7943. 

Also, the probability that two randomly chosen trees Ti,T j E PT(n) 

(the set of all phylogenetic trees, binary and non-binary, with n 

labelled pendant vertices) are a maximal distance apart tends to zero 
1/8 ).as n-)~ (unlike the case for BPT (n) where the limit was e-

Basically this is because the trees most distant from any T E PT (n) 

are	 binary trees and IBPT(n) I I IPT(n) I -) 0 as n-)~. Additional 

details are in Steel [15J. 
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Table 1.	 Distances between the trees in figure 2. only the entries for the 
first 16 trees are shown. Edge lengths were given a value equal to 

2 13.0 their percentage of the total length of the tree. The weighted 
3 12.0 13.0 version of the symmetric difference tree comparison method was 
4 22.0 34.0 33.0 used[12]. 
5 34.0 20.0 33.0 13.0 
6 35.0 35.0 21.0 13.0 14.0 
7 14.0 31.0 29.0 34.0 48.0 50.0 
8 25.0 15.0 26.0 43.0 30.0 45.0 14.0 
9 25.0 280 14.0 43.0 43.0 32.0 14.0 12.0 

10 15.0 28.0 27.0 23.0 36.0 37.0 29.0 39.0 39.0 
11 26.0 12.0 25.0 34.0 20.0 35.0 43.0 25.0 38.0 14.0 
12 25.0 25.0 12.0 33.0 33.0 21.0 41.0 36.0 24.0 13.0 13.0 
13 10.0 26.0 24.0 29.0 42.0 44.0 10.0 22.0 22.0 24.0 37.0 35.0 
14 22.0 12.0 23.0 39.0 26.0 41.0 24.0 9.0 21.0 35.0 21.0 32.0 13.0 
15 27.0 44.0 42.0 53.0 67.0 70.0 19.0 33.0 33.0 50.0 64.0 63.0 25.0 39.0 
16 13.0 27.0 26.0 39.0 52.0 54.0 35.0 47.0 47.0 34.0 46.0 46.0 29.0 42.0 32.0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

APPLICATIONS	 TO PROBLEt1S WITH EVOLUTIONARY TREES 

The decision on whether or not to use a consensus tree, and if so what 
form of consensus tree [8], requires careful thought. For example, in 
one study we had 31 minimal trees for 5 proteins from 11 mammals. The 
trees from different proteins are very similar [9]. Nevertheless, the 
different proteins are giving slightly different trees, probably 
because of parallel changes or reversions and more study is needed to 
understand the differences. 

For a set of minimal trees derived from more than one protein the 
consensus may not be close to any of the minimal trees and could give 
a poor estimate of the 'true' phylogeny. In such cases a consensus 
from each protein may be more useful than a single consensus tree. 
Choosing just a single consensus tree may ignore information in the 
data. 

We need to obtain more information from the trees to understand the 
differences between minimal trees from different proteins. If the 
tree representing the true phylogeny has one or more short edges 
(edges with few nucleotide changes) then taxa can be rearranged around 
these short edges at little cost (cost being an increase in length of 
the tree). 

Such a set of trees we call a 'family', all trees in the family are 
only a small distance (on the tree comparison metric) from all other 
members. We need to be able to recognise whether a set of trees can 
be usefully represented as one or more families. In this context, a 
family is defined as all trees within a fixed distance of a tree T 
(based on the symmetric difference) and in this respect it is similar 
to a clique. 

We considered four possibilities for the results of the analysis. 

I} All near minimal trees, from both individual proteins and from the 
combined sequences, form a single family. This would happen if the 
sequences were all giving a consistent answer, apart from one or more 
short edges on the tree. 
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Figure 2 Cluster analysis of minimal trees. Minimal trees (and for 
some proteins trees one step longer than minimal) were collected for 6 
proteins, and for the combined protein sequences. The edge lengths 
were weighted [6] and the weighted comparisons made with the symmetric 
difference tree comparison metric [12]. The resulting distances 
between trees were clustered using complete linkage clustering 
[14J. Trees are identified as being derived from cytochrome c (Ccl, 
hemoglobin a (ha) and ~ (h~), f ibrinopeU des A and B (Fa and Fb), 
myoblobin (myo) , or from the combined sequences (all). 

2) Near minimal trees for each protein form their own family, near 
minimal trees are more similar to each other than to near minimal 
trees from other proteins. 

3) More than one family occurs and trees from each protein fall into 
the different families. 

4) The concept of families of trees is not useful for analysing these 
results. There is no pattern in the differences between the near 
minimal trees. 

The data is 6 protein sequences for the same 11 mammalian taxa which 
have been converted to 'best guess' nucleotide sequences [9,11]. From.. 
these sequences (separately and combined) the 31 minimal, or near 
minimal, trees have been found and are shown in [9] as trees 12-39 and 
in figure 2 of [11]. (In the following, 'near minimal' includes 
minimal trees.) We used a branch and bound method [5] to find all 
minimal trees (and in some cases all trees close to minimal) . 

RESULTS 

Using the 6 sequences (separately and concatenated) the expected 
length of each edge was calculated [5]. Weighted comparisons [11] of 
the 31 trees were made and are shown in Table 1. Complete linkage 
cluster analysis was selected as the main clustering approach and the 
results shown in figure 2. This gives the interesting result that, in 
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Figure 3. Cluster analysis of minimal and near minimal trees. The 56 
shortest trees from the combined sequences of 7 proteins clustered 
using complete linkage. Those marked. are the six shortest trees 
(using weighted lengths [6)), they fall into four families of trees. 

general, trees from each protein are clustered together. The result 
is consistent whether single linkage, average linkage, of Ward's 
clustering method are used. A difference is that one tree from the 
hemoglobin p is separated from other hemoglobin p trees when complete 
linkage is used. The other anomolous tree (a fibrinopeptide B tree) 
is isolated with all the clustering methods used. 

Our interpretation of this result is that the trees from each protein 
deviate from the real tree, but that the different proteins deviate in 
different ways. Examples would be one protein separating rabbit and 
rodent whereas other sequences place them together. Another protein 
may lead to a different 'error' on the tree. Such a result is to be 
expected in an evolutionary tree with a stochastic mechanism of 
change. There is no evidence for the different proteins supporting 
several distant trees. that would be difficult to explain on an 
evolutionary mechanism. In this case looking for 'families' appears to 
have found more information about the relationships between the trees 
than taking a simple consensus tree. 

Another example compares the near minimal (including minimal) for 
seven proteins (cytochrome c, hemoglobin a and p, fibrinopeptides A and 
B, myoglobin [11] together with a-crystallin. There are 56 minimal 
and near minimal trees with lengths (with linear weighting [11), from 
109.47 to 112.39 (there are then no trees with lengths between this 
value and 113.50) 

These 56 trees have been compared with weighted edge lengths and 
clustered by the same procedures (figure 3). All the trees are quite 
similar but the results have still not converged to a single 
family. They are consistent with 4 families of trees and each family 
includes one of the shortest trees «110, marked. in figure 3). The 
trees most similar to the shortest trees are only slightly longer, the 
more distant trees are considerably longer (within the range of 
lengths specified. This i,,: depicted in figure 4 where the height of 
the surface is the complement of weighted tree length and the 
i'0:-izontal axes are an ordination of the tree comparison metric using 
multidimensional scaling (SPSS-X). Similar trees are close together 
in the X-Y plane and so isolated peaks in the surface represent 
natural families of near I1"Lnimal trees. 
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Figure 4. A graphic representation of the concept of families of 
trees. Peaks on the surface represent the shortest trees in the set 
of 56 trees from figure 3. Similarities between trees based on the 
symmetric difference metric are represented by an ordinate in the x-y 
plane. "Scale 1" and "Scale 2" are the 2 principle axes from a 
multidimensional scaling ordination of the tree comparison matrix (r 2 

for the two axes is 67%) . 

DISCUSSION 

Because there is still more than one family of tree with the combined 
proteins, then it is premature to select just one of them. The 
simplest explanation is that there is insufficient sequences for the 
near minimal trees found by this method to have converged to a single 
family. In particular, it is known [10] that dog is the least stable 
taxon on different trees and it is desirable to add a second carnivore 
sequence to see whether this will reduce the differences between the 
trees. Other explanations are possible and should not be 
overlooked. For example, parallel evolution on different lines of 
descent should be cheeked for. However, just to build a single 
consensus tree from these results glosses over important information 
on the reasons for the differences ... 
Our main interest has been in evaluating the use of trees as 
predictors of new optimal tree that are formed as more data becomes 
available. In such cases a binary tree may be more accurate than a 
non-binary tree. However, in a study on the classification of a group 
it is probably better to take a consensus tree that is non­
binary. This would give more stability to the classification, though 
may not give quite as good predictions about the optimal tree when 
more data is available. Thus the choice on the form of consensus tree 
to be used will depend on the purpose of the study being undertaken, 
in this case, the biological problem to be solved. 
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