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a b s t r a c t

In evolutionary biology, genetic sequences carry with them a trace of the underlying tree that describes

their evolution from a common ancestral sequence. The question of how many sequence sites are

required to recover this evolutionary relationship accurately depends on the model of sequence

evolution, the substitution rate, divergence times and the method used to infer phylogenetic history.

A particularly challenging problem for phylogenetic methods arises when a rapid divergence event

occurred in the distant past. We analyse an idealised form of this problem in which the terminal edges

of a symmetric four-taxon tree are some factor ðlÞ times the length of the interior edge. We determine

an order l2 lower bound on the growth rate for the sequence length required to resolve the tree

(independent of any particular branch length). We also show that this rate of sequence length growth

can be achieved by existing methods (including the simple ‘maximum parsimony’ method), and

compare these order l2 bounds with an order l growth rate for a model that describes low-homoplasy

evolution. In the final section, we provide a generic bound on the sequence length requirement for a

more general class of Markov processes.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

When sequence sites evolve independently under a Markov
process along the branches of a tree T, the sequences observed
at the tips contain information concerning the underlying
tree. This allows for the tree T to be reconstructed accurately
from sufficiently long sequences; this is the basis of modern
molecular systematics (Felsenstein, 2003). The number of sites
required to reconstruct T accurately depends on how long the
edges of the tree are. More precisely, it depends on the expected
number of substitutions on each branch (edge) e of the
tree—which we refer to as the branch length of e (this is
the product of the temporal duration of the branch and the
substitution rate).

A number of authors (e.g. Churchill et al., 1992; Lecointre
et al., 1994; Saitou and Nei, 1986; Townsend, 2007; Wortley
et al., 2005; Xia et al., 2003; Yang, 1998) have considered various
ways to quantify the phylogenetic signal in aligned DNA
sequences, and to estimate the sequence length required to
reconstruct a phylogenetic tree. Most of these studies have
involved simulation or heuristic approaches, although some
analytical bounds have also been obtained (Mossel and Steel,
2005; Steel and Szekely, 2002). Typically, these bounds state that
ll rights reserved.

; fax: +64 3 364 2587.

scher),
if an interior branch length is very short, or if a terminal (external)
branch length is long, then a large number of sites will be
required.

In this paper we explore these results further by obtaining
bounds that are expressed purely in terms of the relative sizes of
the branch lengths, not their absolute values. One motivation for
our approach is that different genes are known to evolve at
different rates, so that any particular branch length will depend on
which gene is considered; however, the ratios of the branch
lengths will be unchanged if the gene-specific rate applies
uniformly across the tree.

A particularly difficult tree reconstruction problem, requiring
long sequences to resolve, arises when one has an interior edge
with a short branch length incident with edges (or subtrees)
having large branch lengths. Such a scenario occurs, for example,
when speciation events in rapid succession (leading to short
branch lengths) occurred in the distant past (leading to the large
branch lengths for the incident edges). Several examples of this
have been highlighted in the literature (Lockhart et al., 2006;
Rokas and Carrol, 2006) and include the origin of metazoa and the
origin of photosynthesis.

In this paper we analyse a scenario which, although somewhat
idealised, nevertheless captures the essence of this problem—a
four-taxon tree, where the terminal edges have equal branch
lengths that are l41 times the branch lengths of the interior edge,
and a simple symmetric model of site evolution (specifically, we
assume sites evolve independently according to a common two-
state Markov process).
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We provide a mathematical analysis to the question of how
many sites are required to resolve the tree correctly (from the
three possible resolved topologies on four taxa). We are
particularly interested in how the growth of the sequence length,
k, depends on l, independent of the absolute value of a particular
edge length. We establish that k must grow at the rate l2, which
implies that regardless of how fast (or slow) any particular
sequence is evolving, we can set explicit lower bounds on the
length of sequences required to resolve the tree. We then show
that for our setting, the growth in k need not be any worse than
this quadratic growth in l, because an existing method (namely,
maximum parsimony) achieves this growth rate. This does not
imply that maximum parsimony is the ‘best’ method for tree
reconstruction; we chose it simply because we can analytically
calculate tree reconstruction probabilities for this method. Our
results complement an earlier simulation-based analysis (Yang,
1998). We contrast our results by considering a quite different
model of site evolution (the infinite state model) and establishing
that order l growth in k can sometimes suffice for this model.

We also extend the approach to more general Markov
processes on trees, obtaining exact, but less explicit lower bounds
on k and which involve absolute (rather than relative) branch
lengths. Our arguments are based on standard techniques from
probability theory, such as central limit approximation, and
information-theoretic arguments based on the properties of
Hellinger distance.
2. Preliminaries

Consider an unrooted binary phylogenetic tree on four taxa,
say 12j34, with branch length x for the interior edge e5 and lx

for the terminal edges e1; . . . ; e4, where l41. This is illustrated in
Fig. 1(a), and the topology of the tree is shown at the top of
Fig. 1(b). The other two competing topologies (13j24 and 14j23)
are also shown in Fig. 1(b). Here branch length refers to the
expected number of substitutions under some continuous time
substitution process.

Recall that a binary character or site pattern refers to an
assignment to each taxon of a state from some two-element set,
which we will denote through this paper as fa;bg.

Suppose that a sequence of binary characters are generated
independently and identically (i.i.d.) under a symmetric two-state
model on the tree. This model is often called the CFN (Caven-
der–Farris–Neyman model) or more briefly the Neyman 2-state
model (for more details see e.g. Semple and Steel, 2003). Although
it is the simplest non-trivial Markov process on a tree, it allows for
an exact analysis. Moreover, stochastic results for this model
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Fig. 1. (a) The generating tree with interior branch length x and all four terminal

branch lengths equal to lx. (b) This tree has the topology 12j34, while the other

two binary topologies are 13j24 and 14j23.
typically extend to more general finite-state models where an
exact analysis is usually more complex (Mossel and Steel, 2005),
and in Section 5 we show how some of our approaches extend to
more general Markov processes.

If we denote the substitution probability on edge ei by PðeiÞ,
then for each terminal edge we have PðeiÞ ¼

1
2 ð1� expð�2lxÞÞ

while for the central edge e5, we have Pðe5Þ ¼
1
2 ð1� expð�2xÞÞ. Let

yi ¼ 1� 2PðeiÞ for i ¼ 1; . . . ;5: Then we can express these five yi

values in terms of y:¼e�2x as follows:

yi ¼ yl for i ¼ 1; . . . ;4; and y5 ¼ y.

Now, if we fix x and let l grow, or, alternatively, if we fix lx and
let x tend to zero, then it is easily shown that the sequence length
k required to reconstruct the topology of the generating tree
accurately tends to infinity. Informally, this is because under
either of the two limiting situations described, the three trees in
Fig. 1(b) will (in the limit) give the same probability distribution
on site patterns, and so the three trees will describe any data
equally well (a more formal proof can be provided by using
Lemma 3.2). This holds for any tree reconstruction method that
treats all three topologies fairly (if a method has an a priori
preference for one topology, it will perform worse on an
alternative topology). Moreover, if lx is fixed, then k grows at
the rate 1=x2 as x tends to zero (by Theorem 4.1 of Steel and
Szekely, 2002). However, if we do not fix x or lx in advance two
fundamental questions arise: what is the slowest rate that k can
possibly grow as a function of l? and (ii) does some value of x

(dependent on l) achieve this rate of growth for a certain tree
reconstruction method? We will see that for the simple scenario
described, the answers to these questions are (i) l2 and (ii) yes (up
to a constant factor).
3. Lower bounds

The main result of this section is the following:

Theorem 3.1. Suppose k sites evolve i.i.d. under a symmetric two-

state model on some (unknown) four-taxon tree that has branch

length x on the interior edge and lx on each terminal edge. Then any

method that is able to correctly identify the underlying tree topology

with probability at least 1� � requires

kXc� � l
2

for any x, where c� ¼ 1
2 ð1�

3
2 �Þ

2.

To establish this result we require some preliminary results. We
begin with a general information-theoretic bound on the number
of i.i.d. observations required to reconstruct a discrete parameter
in a general setting.

Suppose one has a finite set A, and each element a 2 A has an
associated probability distribution on a finite set U. Suppose we
observe k observations from U that are generated independently
by the same unknown element a 2 A. Suppose, furthermore, that
some method M estimates the element of A that generated our
observations and does so correctly with probability at least 1� �
(regardless of which element a actually generated the data). Then
we can set a lower bound on k in terms of a stochastic distance
between elements of A. Recall that the Hellinger distance of two
elements a; a0 2 A is defined as follows. If p and q denote the
probability distribution induced by a and a0, respectively, then let

d2
Hða; a

0Þ:¼
X
u2U

ffiffiffiffiffi
pu

p
�

ffiffiffiffiffi
qu

p� �2
¼ 2 1�

X
u2U

ffiffiffiffiffiffiffiffiffiffi
puqu

p
 !

. (1)

The latter equality holds as
P

u2U pu ¼
P

u2U qu ¼ 1. The following
result is from Steel and Szekely (2002) (Theorem 3.1 and (2.7)).
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Lemma 3.2. If there is a subset A0 of A of size mX2 for

which dHða; a
0Þpd for all a; a0 2 A0 and some method M correctly

identifies each element of A0 with probability at least 1� � from k

independently-generated elements in some set U, then

kX
1

4
1�

m

m� 1
�

� �2

d�2.

In our setting, A will consist of the three binary four-taxon trees
on leaf set f1;2;3;4g, U will consist of the assignment of states of
the elements of this leaf set, and m will be 3 (in this section) or 2
(in Section 5).

Let S be the set of possible binary site patterns on f1;2;3;4g.
These consist of the site patterns s1:¼aabb; s2:¼abab and
s3:¼abba, and five non-informative ones s4; . . . ; s8 (note that pairs
of complementary site patterns—for example aabb and
bbaa—are regarded as equivalent). For any site pattern s 2 S,
let ps ¼ PðsjT1Þ (respectively, qs ¼ PðsjT2Þ) be the probability
that the site pattern s is generated on T1 (respectively, T2). We
can express the probabilities ps1

and ps2
in terms of y ¼ e�2x by

using the Hadamard representation of Hendy (1989) (see Semple
and Steel, 2003, Section 8.6). We have

ps1
¼ 1

8 � ð1þ 2 � y2l
� 4 � y2lþ1

þ y4l
Þ, (2)

and

ps2
¼ 1

8 � ð1� 2 � y2l
þ y4l

Þ ¼ 1
8ð1� y2l

Þ
2. (3)

To obtain an upper bound on the Hellinger distance for our
problem, we require a further technical lemma.

Lemma 3.3. Let g41 and let hðxÞ ¼ xgð1� xÞ=ð1� xgÞ.
Then the supremum of hðxÞ for x in the half-open interval ½0;1Þ
equals 1=g.

Proof. Since g41 it can be checked that h0ðxÞ40 for all x in ð0;1Þ,
and so supx2½0;1ÞhðxÞ ¼ limx"1hðxÞ. By L’Hôpital’s rule, we have
limx"1hðxÞ ¼ 1=g. &

Proof of Theorem 3.1. If any method has a probability of at least
1� � of correctly reconstructing each of the three binary trees on
four taxa from i.i.d. sequences of length k then, by Lemma 3.2 with
m ¼ 3 we have

kX
ð1� 3

2�Þ
2

4
� d�2

H , (4)

where dH is the maximum Hellinger distance between any
two of the three trees. Now, if each of the three trees has the
x; lx combination of branch lengths (for interior, terminal
branches, respectively) then, by symmetry, all three of
these pairwise Hellinger distances are equal. Moreover, we claim
that

d�2
H X2l2 (5)

which together with (4) requires kXc�l
2 for the choice of c�

described. Thus it remains to establish (5).

Without loss of generality, T1 ¼ 12j34 and T2 ¼ 13j24.

Now, for all i ¼ 3; . . . ;8, we have psi
¼ qsi

. Furthermore,

ps1
¼ qs2

and ps2
¼ qs1

as the given trees are identical except for

their leaf labelling. Consequently, Eq. (1) can be simplified as

follows:

d2
HðT1;T2Þ ¼ 2 1�

X8

i¼1

ffiffiffiffiffiffiffiffiffiffiffi
psi

qsi

p !
¼ 2 1�

X8

i¼3

psi
� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
ps1

ps2

p !

(6)

¼ 2ð1� ð1� ps1
� ps2

Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ps1

ps2

p
Þ (7)

¼ 2ðps1
þ ps2

� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
ps1

ps2

p
Þ. (8)
Let d ¼ 1
2 y

2l
ð1� yÞ. Then ps1

¼ ps2
þ d, and so Eq. (8) can be re-

written as

d2
HðT1;T2Þ ¼ 4ps2

1þ
d

2ps2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

d
ps2

s !
. (9)

Applying the inequality
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
X1þ y=2� y2=4, for any y40, to

y ¼ d=ps2
in (9), gives

d2
HðT1;T2Þp

d2

ps2

¼ 2
y2l
ð1� yÞ

1� y2l

" #2

p
1

2l2
,

where the last inequality follows by invoking Lemma 3.3 with

g ¼ 2l; x ¼ y. This establishes (5) and thereby completes the proof

of the theorem. &

4. An upper bound: the performance of maximum parsimony

We now show that the lower bound described above is
essentially ‘best possible’ (up to a constant factor) for the given
model, as it can be achieved for a certain choice of x by a simple
tree reconstruction method, namely maximum parsimony (MP).
This method selects the tree that requires the smallest number of
substitutions to extend the sequences at the tips of the tree to
(ancestral) sequences at all the interior vertices of the tree (for
further background, the reader can consult, for example, Felsen-
stein, 2003 or Semple and Steel, 2003).

The probability that MP correctly reconstructs the true tree
12j34 will be called the MP reconstruction probability. Let f ð�Þ
denote the one-sided �-critical value for the standard normal
distribution, defined by

f ð�Þ ¼ z3

Z z

�1

1ffiffiffiffiffiffi
2p
p e�t2=2 dt ¼ �.

Theorem 4.1. Suppose k sites evolve i.i.d. under a symmetric two-

state model on some (unknown) four-taxon tree that has branch

length x on the interior edge and lx on each terminal edge. Then for a

sequence c0l with liml!1c0l ¼ 4e2, the following holds: If

kXc0lf ð�=2Þ2 � l2, an interior branch length x exists for which the

MP reconstruction probability is at least 1� �.

In order to prove this theorem, some preliminary work is
required. Suppose we generate a sequence C of k i.i.d. sites under
the symmetric two-state model. Define the random variables Xi

and Yk as follows. Let

Xi ¼

1 if ith character in C is of the kind ða;a;b;bÞ;
�1 if ith character in C is of the kind ða;b;a;bÞ;
0 else

8><
>:

and let

Yk ¼
Xk

i¼1

Xi.

The probability that MP will favour the tree 12j34 over 13j24 is
then PðYk40Þ. We will exploit the fact that the random variables
Xi are i.i.d., and so Yk can be approximated for large k by a normal
distribution with a mean mk and a standard deviation sk. These
two parameters can be easily described (just) in terms of y; l and k

as follows.

Lemma 4.2.
1.
 mk ¼ k � 1
2 y

2l
ð1� yÞ.
2.
 s2
k ¼ k � 1

4 ð1þ 2y4lþ1
� 2y2lþ1

� y4lþ2
Þ.ffiffiffip
3.
 mk=skX k � y2l
ð1� yÞ.
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Proof. Since X1; . . . ;Xk are independent and take values þ1;0 and
�1, we have
(i)
 mk ¼ k � ½PðX1 ¼ 1Þ �PðX1 ¼ �1Þ�;

(ii)
 s2

k ¼ k � ½PðX1 ¼ 1Þ þPðX1 ¼ �1Þ � ½PðX1 ¼ 1Þ �PðX1 ¼ �1Þ�2�.
Now in the two-state symmetric model and the generating tree in
Fig. 1(a), we have

PðX1 ¼ 1Þ ¼ ps1
and PðX1 ¼ �1Þ ¼ ps2

,

where ps1
; ps2

were given above in Eqs. (2) and (3), respectively.
Parts (1) and (2) of the lemma now follow by substitution of the
expressions for ps1

; ps2
into (i) and (ii), respectively. For Part (3),

note that Parts (1) and (2) imply that

mk

sk
¼

ffiffiffi
k
p
�

Ny

Dy
, (10)

where Ny ¼ y2l
ð1� yÞ;Dy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2y4lþ1

� 2y2lþ1
� y4lþ2

q
. We

now show that Dyp1. We have 1þ 0:5y2lþ1
Xy2l and so

2y2lþ1
ð1� y2l

þ 0:5y2lþ1
ÞX0. Thus 1� 2y2lþ1

ð1� y2l
þ 0:5y2lþ1

Þ

p1, which implies that D2
yp1. Part (3) now follows from (10) by

the inequality Dyp1. &

Proof of Theorem 4.1. Note that the MP reconstruction prob-
ability is the probability that MP will favour the true tree 12j34
over both alternative trees on four taxa, namely 13j24 and 14j23.
Recall that the event of the tree 12j34 being favoured over 13j24
can be expressed as PðYk40Þ. The event of 12j34 being favoured
over 14j23 can be expressed similarly by defining the random
variables X̃ i and Ỹ k which are analogous to Xi and Yk, using the
character ða;b;b;aÞ instead of ða;b;a;bÞ. Then, the MP reconstruc-
tion probability can be written as PððYk40Þ \ ðỸ k40ÞÞ. Let

Zk ¼
Yk � mk

sk
.

Thus, Zk is the normalised difference of the parsimony score
between tree 13j24 and 12j34 for a k i.i.d. characters generated by
the tree in Fig. 1(a). By Lemma 4.2(3) we have

PðYkp0Þ ¼ P Zkp�
mk

sk

� �
pPðZkp�

ffiffiffi
k
p

y2l
ð1� yÞÞ. (11)

Now, by symmetry of the branch length of the generating tree in
Fig. 1(a), we have PðYkp0Þ ¼ PðỸ kp0Þ. Moreover, by Boole’s
inequality

PððYk40Þ \ ðỸ k40ÞÞX1�PðYkp0Þ �PðỸ kp0Þ,

which, combined with (11), furnishes the following inequality for
the MP reconstruction probability:

PððYk40Þ \ ðỸ k40ÞÞX1� 2PðYkp0ÞX1� 2PðZkp�
ffiffiffi
k
p

y2l
ð1� yÞÞ.

(12)

Now, y2l
� ð1� yÞ has a unique local maximum in ½0;1�, namely at

y0:¼1� ð1=2lþ 1Þ, at which it takes the value al=l, where al ¼
ð1� 1=1þ 2lÞ2l � l=ð1þ 2lÞ ! 1

2 e�1 as l!1. Moreover, the
difference between the distribution of Zk and a standard normal
distribution tends uniformly to zero as l (and hence k) grows. This
follows by applying standard bounds on the central limit theorem
approximation (see, for example, Zahl, 1966; one cannot directly
apply the usual form of the central limit theorem as the
distribution of the Xi’s is changing with increasing l). Thus we
have PðZkp�

ffiffiffi
k
p

al=lÞp�=2 provided that k grows at the rate
c0ll

2f ð�=2Þ2 for a sequence c0l ! 4e2 as l!1.

In summary, by (12), a value for y exists, namely

y0 ¼ 1� ð1=1þ 2lÞ, and thus a value for Pðe5Þ ¼
1
2 ð1� y0Þ ¼

1=2ð1þ 2lÞ�1=4l also exists, for which the MP reconstruction

probability is at least 1� �. This completes the proof. &
4.1. Remarks
�
 Regarding Theorem 4.1, other tree reconstruction methods
have a similar performance to MP when k grows at the rate l2.
Indeed it is possible that such methods will require shorter
sequences, and better statistical properties on trees with
different tree shapes (as MP is statistically inconsistent under
some combinations of branch lengths that lie outside those
considered in the scenario of Fig. 1). We have chosen to
consider MP here, because the analysis is relatively straightfor-
ward and it suffices to prove the matching lower l2 bound.

�
 One can also derive a (non-asymptotic) form of Theorem 4.1

using Azuma’s inequality (Alon and Spencer, 2000); however,
the term in place of c0l is larger by a factor of 32.

�
 The optimal choice of x of (approximately) 1=4l for MP has

been observed in a slightly different setting by Townsend
(2007).

�
 One can ask whether similar l2 bounds on k as given by

Theorem 3.1 will apply for more complex models. We
conjecture that for stationary, reversible, finite-state Markov
processes, the results will be essentially the same for our tree
in Fig. 1, up to a possibly different constant term in place of c�.

�
 For Markov processes in which the state space is countably

infinite—and where a substitution is always to a new state (the
‘random cluster model’ for homoplasy-free evolution, de-
scribed in Mossel and Steel (2004))—the situation regarding
sequence length requirements is quite different. In this case,
the required sequence length need only grow at the rate l (not
l2), as the following result shows.

Proposition 4.3. Suppose k sites evolve i.i.d. under a random cluster

model on some (unknown) four-taxon tree that has branch length x

on the interior edge and lx on each terminal edge. Then for a constant

C0� which depends just on �, the following holds: If kXC 0� � l, an x

exists for which the MP reconstruction probability is at least 1� �.

Proof. In the random cluster model, the probability of a
substitution event on an edge e can be written as PðeÞ ¼ 1�
expð�lÞ where l is the expected number of changes on the edge
(the branch length). Now, the random cluster model only
generates characters that are homoplasy-free on the generating
tree; thus, MP will return the generating tree from a sequence of
characters, provided this tree is the only one on which those
characters are homoplasy-free. For a tree with topology 12j34, this
will occur precisely if at least one of the k characters generated
assigns taxa 1;2 a shared state, and taxa 3;4 a second shared state
that is different to that assigned to 1;2. The probability Q that any
given character generated by the tree in Fig. 1(a) has this property
is given by

Q ¼ Pðe5Þ
Y4

i¼1

ð1� PðeiÞÞ ¼ ð1� e�xÞe�4lx.

Moreover, if kX logð1�Þ=Q then 1� ð1� Q ÞkX1� � (using the
inequality � logð1� Q ÞXQ). Consequently, MP will correctly
reconstruct the generating tree with probability at least 1� �
provided that

kX logð��1Þ � ð1� e�xÞ
�1e4lx. (13)

Taking x ¼ 1=4l we have ð1� e�xÞ
�1e4lx�4el, which, in view of

(13), establishes the result. &

5. Lower bounds for more general models

In this section we derive a lower bound on the sequence length
required for tree reconstruction, for a much wider range of
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Markov processes. However, unlike the previous sections our
bound is expressed in terms of the absolute branch lengths (or
bounds on these) rather than in terms of ratios, and it involves
constants that depend on the details of the model.

We first derive a general lemma. Consider any continuous-
time, stationary and reversible Markov process. Let S denote its
state space, and in keeping with earlier terminology let S ¼S4

(thus in previous sections S ¼ fa;bg). Let T1 and T2 be two
topologically distinct four-taxon trees. Suppose that the branch
lengths of T1 are arbitrary, and that each edge of T2 has
the corresponding interior or pendant branch length specified by
T1 (where the pendant edge incident with leaf i in T1

corresponds to the pendant edge incident with leaf i in T2). For
s ¼ ðs1; s2; s3; s4Þ 2 S, let ps (respectively, qs) denote the probability
of generating s at the tips of T1 (respectively, T2). Let p0s
(respectively, q0s) denote the conditional probability of generating
s at the tips of T1 (respectively, T2Þ given that a substitution has
occurred on the central edge of T1 (respectively, T2), and let
Ds:¼q0s � p0s. Then we have the following result.

Lemma 5.1.

d2
HðT1;T2Þpl2 �

X
s2S

D2
s

ps

,

where l denotes the branch length of the interior edge of T1.

Proof. Let t denote the probability that at least one substitution
occurs on the interior edge of T1, and let p0

s (respectively, q0
s )

denote the conditional probability of generating s on T1

(respectively, T2) given that no substitution occurs on the
interior edge of T1 (respectively, T2). By the law of total
probability we have

ps ¼ ð1� tÞ � p0
s þ t � p

0
s

and

qs ¼ ð1� tÞ � q0
s þ t � q

0
s.

Moreover, the assumptions on the correspondence between
branch lengths of T1 and T2 imply that p0

s ¼ q0
s for all s 2 S

and so

qs � ps ¼ tðq0s � p0sÞ ¼ tDs.

Now,

d2
HðT1;T2Þ ¼ 2 1�

X
s2S

ffiffiffiffiffiffiffiffiffi
psqs

p
 !

¼ 2 1�
X
s2S

ps

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

tDs

ps

s !
.

Applying the inequality
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ y

p
X1þ y=2� y2=2 (for all yX� 1)

to y ¼ tDs=ps (and observing that yX� 1 since qsX0), we obtain

d2
HðT1;T2Þp2 1�

X
s

ps 1þ t Ds

2ps

� t2 D2
s

2ps

 ! !
.

Now,
P

s ps ¼ 1, and
P

s Ds ¼ 0 (since
P

sq
0
s ¼

P
sp
0
s ¼ 1) and so

this last inequality reduces to

d2
HðT1;T2Þpt2 �

X
s2S

D2
s

ps

. (14)

Furthermore, t ¼ PðN40Þ, where N is the number of substitutions
occurring on the interior edge of T1. However, PðN40ÞpEðNÞ;
that is, tpl, which, together with (14), provides the inequality
stated in the lemma. &

We now apply this lemma to a slightly more restricted class of
Markov processes to obtain the main result of this section.

Theorem 5.2. Suppose k sites evolve i.i.d. under a finite-state,
stationary and reversible continuous-time Markov process in which
each state is accessible from any other state. Let l0 be any strictly

positive value. Consider this process on some (unknown) four-taxon

tree that has branch length at most l on the interior edge and at least

LXl0 on each terminal edge. Then any method that is able to correctly

identify with probability at least 1� � the underlying tree topology

given these restrictions requires

kX
C

4
ð1� 2�Þ2 �

ecL

l2
,

where c and C are positive constants that depend only on R (the rate

matrix for the process) and l0.

Proof. We exploit the fact that any Markov process of the type
described converges to its unique stationary distribution
at an exponential rate (see, for example, Theorem 8.3 of Rozanov,
1969). Let pðsÞ denote the stationary probability of s under
the model. For j ¼ 1; . . . ;4, let pðjÞ 2 fu; vg be the end of the interior
edge uv of T1 that is adjacent to leaf j (we may assume
pð1Þ ¼ pð2Þ ¼ u; pð3Þ ¼ pð4Þ ¼ v), and let SpðjÞ denote the random
state present at that vertex under the model. Then for any sj; s

0
j 2

S there exist positive constants A; a (dependent on R) for which

jPðSj ¼ sjjSpðjÞ ¼ s0jÞ � pðsjÞjpAe�aLj (15)

(Rozanov, 1969, Theorem 8.3), where Lj denotes the branch length
of the edge incident with leaf j. For s ¼ ðs1; s2; s3; s4Þ 2 S ¼S4, let

ps ¼
Y4

j¼1

pðsjÞ.

For s0; s00 2S let p0ðs0; s00Þ denote the probability of generating state
s0 at u and the state s00 at v given that at least one substitution
occurs on the edge uv. Then, by the Markov assumption, and
recalling the definition of p0s from Lemma 5.1, we have

p0s ¼
X

ðs0 ;s00 Þ2S2

p0ðs0; s00Þ �
Y2

j¼1

PðSj ¼ sjjSu ¼ s0Þ �
Y4

j¼3

PðSj ¼ sjjSv ¼ s00Þ.

(16)

Combining (15) and (16), there exist positive constants B; b

(dependent only on R) such that

jp0s � psjpBe�bL (17)

for all s 2 S (recall that LpLj for all j). Now, consider tree T2 which
has branch lengths that correspond to those in T1 (as in Lemma
5.1). Then we also have

jq0s � psjpBe�bL (18)

for all s 2 S. Combining (17) and (18) using the triangle inequality
gives

jDsj ¼ jqs � psjp2Be�bL. (19)

Moreover, since LjXl0 (for all j) and each state is accessible from
any other state, we have psXd (for some d40 dependent only on R

and l0). Combining this with (19) gives the following inequality,
for all s 2 S:

D2
s

ps

pð4B2=dÞe�2bL. (20)

The theorem now follows from Lemmas 5.1 and 3.2 (with
m ¼ 2). &
6. Concluding remarks

In this paper we have provided precise results for a specific and
simple model (the two-state symmetric process), along with less
explicit results for more general Markov processes (and phrased in

mike
Line

mike
Line
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terms of absolute rather than relative branch lengths). The aim is
to determine rigorous bounds on the sequence length required for
resolving a deep divergence, which may shed light on debates as
to whether some early radiations might be fundamentally
unresolvable on the basis of current models and data.

Of course, in applications, other phenomena may further
impede phylogenetic reconstruction (including substitution mod-
el mis-specification, lineage sorting and alignment artifacts,
Philippe et al., 2005), however, these errors are unlikely to help
tree reconstruction if our bound shows it is impossible even when
the ideal model assumptions hold. We have seen that some
models require significantly fewer characters for resolving a
tree—in particular this holds for the random cluster model, and it
is possible that new types of genomic data (involving rare
genomic events where homoplasy is unlikely) can be described
by these and related processes that preserve more phylogenetic
signal regarding distant evolutionary divergences.

One limitation concerning our bounds is that they apply to
pure Markov processes, in which each character evolves according
to the same process. In molecular biology a common assumption
is that there is a distribution of rates across sites, in which each
site evolves at a rate (selected i.i.d. from some distribution) that
acts as a multiplier for all the branch lengths in the tree (see e.g.
Felsenstein, 2003; Semple and Steel, 2003). It would be interest-
ing to extend the analysis in the last section to these models to
obtain a lower bound on k analogous to Theorem 5.2.
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