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Abstract.—The extent to which phylogenetic diversity (PD) captures feature diversity (FD) is a topical and controversial
question in biodiversity conservation. In this short paper, we formalize this question and establish a precise mathematical
condition for FD (based on discrete characters) to coincide with PD. In this way, we make explicit the two main reasons
why the two diversity measures might disagree for given data; namely, the presence of certain patterns of feature evolution
and loss, and using temporal branch lengths for PD in settings that may not be appropriate (e.g., due to rapid evolution of
certain features over short periods of time). Our article also explores the relationship between the “Fair Proportion” index
of PD and a simple index of FD (both of which correspond to Shapley values in cooperative game theory). In a second
mathematical result, we show that the two indices can take identical values for any phylogenetic tree, provided the branch
lengths in the tree are chosen appropriately. [Evolutionary distinctiveness; feature diversity; phylogenetic diversity; shapley
value.]

1 INTRODUCTION

Almost 30 years ago, Dan Faith published a seminal
paper that laid out how phylogenies might aid in
identifying sets of species with maximal “feature
diversity” (Faith 1992). Faith’s stated goal was to support
practical biodiversity conservation in the face of limited
resources, coupled with the assumption that maximising
feature diversity (the total number of unique character
states represented by a set of taxa) was a desirable
conservation target.

Drawing on the call of Vane-Wright et al. (1991) to
consider taxonomic distinctiveness when prioritizing
species, Faith introduced the phylogenetic diversity (PD)
metric, simply the sum of the edge lengths of the minimal
subtree linking a subset of species to the root of the
encompassing phylogeny (also called the “minimum
spanning path” by Faith (1992)). Importantly, these edge
lengths were given in units of reconstructed character
changes under maximum parsimony on the cladogram
representing a character state matrix with no homoplasy.
Faith showed, with an example, that the sum of these
reconstructed edge lengths would lead to the same total
feature diversity as that calculated from the character
matrix itself. Importantly, if these cladistic edge lengths
are representative of all features, then maximizing PD
(e.g., over a given subset size) would maximise feature
diversity, even in the face of some homoplasy. The bulk
of Faith’s (1992) paper was devoted to introducing the
machinery to maximize PD.

Efficient algorithms for finding maximum PD sets
are available (Bordewich et al. 2008), the metric has
been extended to networks (Minh et al. 2009), and
there are countless case studies that both measure
and optimize PD for conservation (see, e.g., Pollock
et al. 2017); Faith’s original paper has been cited in
excess of 2000 times. A recent review (Tucker et al.
2019) considered the literature concerning both the

empirical correlations between PD and feature diversity,
and the expected relationship between PD and various
conservation values.

Surprisingly, though, the necessary conditions under
which PD will capture feature diversity have never
been formalized. Here, by using discrete characters,
a model with no homoplasy, and appropriate edge
lengths, we prove that the PD of a subtree does indeed
measure feature diversity as defined by (Faith 1992).
This proof allows us to state more formally when PD
does not necessarily capture feature diversity, thereby
allowing for further modeling and statistical evaluation
of the expected relationship under more realistic models.
Given the close connection between PD and taxonomic
distinctiveness, we also consider the conditions under
which its phylogenetic measure (specifically, the Shapley
value of evolutionary isolation) can capture its feature-
based analog.

2 PRELIMINARIES

2.1 Feature Diversity
Consider a set X of taxa with |X|=n, and suppose

that each taxon x∈X has an associated finite set Fx of
“features.” To allow extra generality, we will assume that
each element f ∈Fx has a corresponding positive score
�(f )∈R>0, which might be viewed as a measure of the
complexity, novelty, or richness of f (the default option
is to set �(f )=1 for all f ). Let F denote the set of all
features present amongst the taxa in the collection X,
and let F= (Fx :x∈X) be the ordered n-tuple containing
the feature sets of the taxa in X. We will sometimes call F
a feature assignment as it summarizes how a set of features
is assigned to each taxon in X.

Note that F provides the same information as a table
showing the presence and absence of features across
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TABLE 1. A standard character state matrix (0=absence,
1=presence) representing the assignment of four features (f1,f2,f3,f4)
across three taxa (a,b,c).

Taxon f1 f2 f3 f4

a 1 1 0 1
b 1 0 1 0
c 0 1 1 0

taxa. So if X ={a,b,c}, then the feature assignment F=
(Fa,Fb,Fc), where Fa ={f1,f2,f4}, Fb ={f1,f3}, and Fc =
{f2,f3}, corresponds to a standard character state matrix
where there are two states per feature: presence (1) or
absence (0) (see Table 1).

Given a subset Y of X, let

�F(Y) :=
∑

f ∈∪x∈YFx

�(f ).

Thus, �F(Y) is the sum of the values of the features that
are present in at least one taxon in Y. We refer to �F(Y)
as the feature diversity (FD) of Y, Note that in this sum,
each feature is counted only once if present, and that our
FD is closer to “trait diversity” as used by (Tucker et al.
2019), and distinct from “functional diversity” as used
more generally in ecology.

The function �F (which assigns each subset Y of X
a non-negative real value �F(Y)) clearly satisfies the
following two properties: �F(∅)=0 and �F is monotone
(i.e., Y ⊆Y′ ⇒�F(Y)≤�F(Y′)). Moreover, �F also satisfies
the submodularity inequality:

�F(Y∪Y′)+�F(Y∩Y′)≤�F(Y)+�F(Y′), (2.1)

and a proof is provided in the Appendix.

2.2 Phylogenetic Diversity
Now consider a rooted phylogenetic X-tree T = (V,E)

with root �, leaf set X, and edge length assignment
� :E→R≥0. For technical reasons (by allowing greater
generality in the statement of our results, in particular,
when later on considering features that are present in
all taxa under consideration), we assume that T has an
additional “stem edge” (�′,�), where �′ is a degree-1
vertex and � has in-degree 1 and out-degree at least 2.
Note that we do not consider �′ as a leaf of T, that is,
as a present-day species, but as an ancestral species that
lived sometime in the past. The reason for including this
stem edge is that features may have evolved ancestrally
to some clade, and this stem edge provides a way to
formally accommodate this possibility. The phylogenetic
diversity (PD) of a subset Y of X is usually defined as
the sum of the lengths of the edges in the minimal
subtree of T that contains the leaves in Y and the root
� of T. Here, we extend this definition by also including
the length of the stem edge (�′,�) in the calculation
of PD for any subset Y ⊆X with |Y|≥1. This adds a
constant, namely �((�′,�)), to all subsets Y ⊆X\∅but does
not affect properties of PD, such as its monotonicity or
submodularity.

3 LINKING FEATURE DIVERSITY TO PHYLOGENETIC

DIVERSITY

The extinction of species at the present leads to both
the loss of feature diversity and phylogenetic diversity.
This is illustrated in Figure 1, for a set F={�,�,�,	} of
four features.

Now consider a model, based on a rooted phylogenetic
X-tree T in which (i) each feature in F arises on exactly
one edge of T and (ii) each feature that arises is never lost
and is passed down to all descendant vertices (including
the leaves). This is just a model where every feature is a
perfect synapomorphy.

We can describe this more precisely by specifying a
map h :F →E, which indicates which edge each given
feature arises on (note that several features may arise on
the same edge). Thus, h−1(e) denotes the set of features
that arise on edge e. Here, we assume that h−1(e) =∅ for
all interior edges of T (i.e., each interior edge of T gives
rise to at least one feature). Notice that this is equivalent
to allowing interior edges with “no event” (i.e., without a
feature arising on them) and then contracting all interior
“no event” edges.

Note, however, that there may be pendant edges
incident to leaves of T on which no features arise.
Similarly, it may be the case that no feature arises on the
stem edge; in particular, no features arise on this stem
edge precisely when there is no feature that is present in
every taxon.

Under this model, Fx is then equal to the union of the
sets h−1(e) over all the edges e on the (unique) path from
�′ to leaf x.

When a feature assignment F can be realized in this
way, we will denote this by writing F=F[T,h]. Not every
feature assignment F can be realized in this way (on any
tree). As an example, consider the feature assignment
described by the character matrix in Table 1. In this case,
there is no rooted phylogenetic X–tree T = (V,E) and
map h : {f1,f2,f3,f4}→E for which (Fa,Fb,Fc)=F[T,h].

Fortunately, it is easy to characterize precisely when
a feature assignment F can be realized as F[T,h],
and where T is either stipulated or not. The required
condition corresponds to the well-known structure of
characters necessary (and sufficient) to perfectly fit a
common phylogenetic tree, namely that character states
are arranged among taxa as a set of nested apomorphies.

To describe this, we first introduce some additional
notation. Let Xf :={x∈X : f ∈Fx} denote the subset of taxa
in X that have feature f . Moreover, let CF :={Xf : f ∈F} be
the collection of the sets Xf . The following result easily
follows from other well-known results in phylogenetics
(in particular, Proposition 2.1 in (Steel 2016)).

Proposition 1.

(i) F=F[T,h] for some h :F →E if and only if Xf
corresponds to a cluster of T for each feature f ∈F .
Moreover, when F=F[T,h], the map h is uniquely
determined: for each f ∈F , h(f ) is the edge directly above
the most recent common ancestor of the taxa in Xf .
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FIGURE 1. The extinction of species a,c,d, and g at the tips (leaves) of the phylogenetic tree T leads to a PD loss equal to the sum of the
lengths of dashed edges absent from the “pruned” tree T|Y of the surviving species Y ={b,e,f }. In addition, the four features (�,�,�, and 	) that
have evolved in T under some birth–death processes (where += birth, −= death) are all present among the pre-extinction set of tip species, but
only 	 is still present following extinction, so feature diversity (FD) has also declined. In general, an edge may have several birth and/or death
events.

(ii) There exists a tree T and map h such that F=F[T,h] if
and only if CF is a hierarchy on X. In other words, for all
pairs Xf ,Xf ′ ∈CF , we have Xf ∩Xf ′ ∈{∅,Xf ,Xf ′ } (i.e.,
Xf and Xf ′ are either disjoint or nested).

4 FIRST MAIN RESULT

We can now describe the relationship between FD
and PD in a precise way. The proof is provided in the
Appendix.

Theorem 1. Let T be a rooted phylogenetic X-tree and let F
be an assignment of features across the taxa in X.

(i) F=F[T,h] for some function h :F →E if and only if �F

is exactly equal to the PD function for some edge length
assignment � of T that assigns strictly positive lengths
to all interior edges of T and non-negative lengths to all
pendant edges and the stem edge (�′,�) (i.e., �F(Y)=
PD(T,�)(Y) for all subsets Y of X).

(ii) When (i) holds, h and � are both uniquely determined.
In particular, �=�h, where, for each edge e of T, �h(e) :=∑

f :h(f )=e�(f ) (and �h(e)=0 for each pendant edge e of

T with h−1(e)=∅).

As a simple illustration of Theorem 1 (and
Proposition 1) consider �F, where F consists of the
four characters in Table 1, together with the rooted
phylogenetic tree T = ((a,b),c). By Proposition 1, it is
easily checked that F cannot be realized as F[T,h] for any
map h. It follows from Theorem 1 that �F cannot be made
to correspond exactly to phylogenetic diversity on the
tree T using non-negative edge lengths that are strictly
positive on the interior edges (moreover, this holds for
any other tree on leaf set {a,b,c}). In general, if F does

not equal F[T,h] for some map h then �F cannot be made
to correspond exactly to phylogenetic diversity on the
tree T.

5 DIVERSITY INDICES

A diversity index for FD (or PD) is a non-negative
score assigned to each taxon x∈X that sums to the total
FD (or PD, respectively) of X. Diversity indices can be
viewed as a way to apportion FD (or PD) fairly among
the extant taxa. Although there are various ways to do
this, we focus on one that is characterized by simple
axioms, namely, the Shapley value (from cooperative
game theory), which coincides, in the PD setting, with
the well-known Fair Proportion index (described below).

5.1 Feature Diversity Index
Given F, let

ϕF :X →R≥0

be the function defined by:

ϕF(x) :=
∑
f ∈Fx

�(f )
n(f )

,

where n(f ) is the number of taxa that have feature f (i.e.,
n(f )=|Xf |). In words, ϕF(x) assigns to each taxon x a sum
of scores—one score for each of its features—where the
score for feature f is �(f ) if x is the only taxon having this
feature; otherwise, the score equals �(f ) divided by the
total number of taxa having feature f .

The following result provides a formal justification for
regarding ϕF as a natural index of FD. Note that this
index does not depend on any underlying phylogeny, or
on assumptions concerning feature evolution. It is also
easily computed.
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The result is phrased within the general framework
of cooperative game theory (a topic more well-known
in economics than biology, though it has recently been
applied to PD, as we discuss below). In this general
framework, one has a finite set X and a function s that
assigns to each subset Y of X a corresponding score s(Y)
with s(∅)=0 (in our current setting s(Y)=�F(Y)). Given
the pair (X,s) (also called a “cooperative game”), one
seeks to apportion the score of the full set X among each
of its elements according to an index (i.e., a value for
each element of X) in a way that reflects the contribution
each element makes to the total score. In this general
framework, there is a particular index, called the Shapley
value, that is uniquely determined by well-motivated
axioms, and which is given by an explicit (if somewhat
complex) combinatorial expression (Shapley 1953). To be
precise, given the pair (X,s) and an element x∈X, the
Shapley value for x is defined as:

SVs(x)= 1
n!

∑
S⊆X:x∈S

(|S|−1)!(n−|S|)!�(S,x),

where �(S,x)=s(S)−s(S\{x}), and where n=|X|. In
words, the Shapley value for an element (here, a leaf)
is its expected contribution to the score (here, feature
diversity) of all possible future subsets of elements from
the set (here, subsets of taxa), where subset sizes are
equiprobable (Steel 2016). The Shapley value satisfies
four desirable axioms (in fact, it is uniquely characterized
by them), namely efficiency, symmetry, a dummy axiom,
and additivity. Efficiency states that the sum of Shapley
values equals the score of X, that is,

∑
x∈X SVs(x)=s(X).

Symmetry implies that two elements x,y∈X with x =y
that contribute the same amount of worth (in our case, of
feature diversity) to any subset they join receive the same
Shapley value (formally, for all x,y∈X with x =y and
for all S⊆X\{x,y}, if s(S∪{x})=s(S∪{y}), then SVs(x)=
SVs(y)). The dummy axiom, on the other hand, states that
an element x∈X that does not contribute any worth to
any subset obtains a Shapley value of zero (formally, if for
all S⊆X\{x}, s(X∪{x})=s(X), then SVs(x)=0). Finally,
additivity constitutes the technical property that given a
set X and two different score functions, say s1 and s2, we
have for all x∈X: SVs1+s2 (x)=SVs1 (x)+SVs2 (x).

Our next result states that the simple FD index ϕF

introduced above coincides with the Shapley value for
s=�F (the proof is provided in the Appendix).

Proposition 2. The FD index ϕF is precisely the Shapley
value for the pair (X,�F). In particular,

∑
x∈X ϕF(x)=�F(X).

5.2 Phylogenetic Diversity Index
Given the pair (T,�), the Fair Proportion index (FP) (from

Redding (2003) and Redding et al. (2007), see also (Isaac
et al. 2007)) for taxon x is given by:

FP(T,�)(x)=
∑

e∈P(T;�′,x)

1
n(e)

·�(e),

where P(T;�′,x) denotes the unique path from �′ to x and
where n(e) is the number of leaves descending from the
endpoint of edge e closest to the leaves.

It turns out that the FP index coincides exactly with
the Shapley value based on PD (i.e., when PD is used as
the characteristic function in the underlying cooperative
game), a result first shown by Fuchs and Jin (2015).
As ϕF is (by Proposition 2) equivalent to the Shapley
value based on FD, Theorem 1 thus has the interesting
implication that if a feature assignment F can be realized
on a tree (i.e., if F=F[T,h]), then the Shapley values based
on PD and FD coincide.

Proposition 3. If F=F[T,h], then ϕF(x) is equal to the Fair
Proportion index for taxon x on tree T for the edge length
assignment �h.

The proof of this statement is given in the Appendix.
We now establish a further result. We show that ϕF(x)

can always be interpreted as FP(T,�)(x) for any tree T
(even if F =F[T′,h] for any tree T′).

Theorem 2. Let F be a feature assignment such that Fx =
∅ for all x∈X, and let T be any rooted phylogenetic X-tree
(with additional stem edge). Then, there exists an edge length
assignment � :E→R>0 that assigns strictly positive lengths
to all edges of T, such that ϕF(x)=FP(T,�)(x) for all x∈X.

A simple example to illustrate Theorem 2 is provided
in Figure 2 for the assignment of features given in Table 1.
Taking�(fi)=1 for i=1,2,3,4,we haveϕF(a)= 1

2 + 1
2 +1=

2 and ϕF(b)=ϕF(c)= 1
2 + 1

2 =1. Then, ϕF can be realized
as a FP index on each of the four possible phylogenetic
trees on leaf set {a,b,c} by strictly positive edge lengths
as shown. Other choices of strictly positive edge lengths
for the trees in (ii)–(iv) are possible, and for the star tree
we require 0<�<1=minx∈X ϕF(x).

The proof of Theorem 2 is provided in the Appendix;
however, we provide an outline of the argument here.
First observe that if T is a star tree then Theorem 2 clearly
holds, since we can simply assign edge length ϕF(x)−�
to the edge incident with leaf x and length |X|� to the
stem edge (for 0<�<minx∈X ϕF(x)) and obtain ϕF(x)=
FP(T,�)(x) for all x∈X. If T is not a star tree, then we could
assign edge length 0 to all the interior edges and the stem
edge and length ϕF(x) to the pendant edge incident with
leaf x in order to obtain the required identity, but this
does not satisfy the additional condition promised in the
theorem. The non-trivial part of the proof of Theorem 2 is
to show that one can “lift” some fraction of the lengths of
the pendant edges so as that (i) all edges of T have strictly
positive length, and in such a way that (ii) the required
identity between the FD and PD diversity indices holds
for each taxon x. The formal proof of Theorem 2 actually
establishes a slightly stronger result to that stated, and
one that is equally valid for rooted phylogenetic X-trees
without a stem edge.
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FIGURE 2. The feature diversity index ϕF for the features in Table 1 (each having unit � value) can be represented as a FP index on any tree
topology with positive edge lengths (see text for further details).

6 DISCUSSION

It would be a mistake to interpret Theorem 1 above as
stating that feature diversity coincides with phylogenetic
diversity (on a given tree with suitably chosen branch
lengths) only under evolutionary scenarios in which
features arise once in the tree and are never lost. Instead,
Theorem 1 states that these two measures coincide
precisely when the distribution of features across taxa
can be described by such a single-gain-and-no-loss
model, even if the underlying reality might be different.
For instance, a feature can arise along a stem edge,
be lost in one of the two descendant edges, but arise
again in its descendants such that the entire crown
clade expresses the feature. The feature’s true history is
obscured but its distribution is still perfectly congruent
with the underlying tree and thus meets the conditions
of Proposition 1.

While it is possible for all features to appear to be
perfect synapomorphies even though there have been
undetectable losses and regains, given a rate of evolution
high enough and a state space small enough it is
unlikely that all homoplasy will remain hidden, and, in
such cases, the required conditions (and conclusion) of
Theorem 1 will not hold.

A second (related) reason why Theorem 1 allows PD
and FD to diverge in applications is that even when F=
F[T,h], the edge lengths must be suitably chosen. For
instance, we need a stochastic process in which features
arise independently at a constant (and very small) rate r,
such that, conditional on a feature arising (at least) once
in the tree, as r→0, the expected number of features that
arise on an edge will be proportional to the temporal
length of that edge (and each trait will arise exactly once
in the tree).

The divergence between PD and FD also has
computational consequences. Given a set of taxa X, a
phylogenetic X–tree T with branch lengths, and any
number k, finding a set of k species whose survival of
an extinction event would conserve the largest possible
PD is easy (the greedy algorithm provably works;
Pardi and Goldman 2005; Steel 2005). On the other
hand, if branch lengths do not precisely capture feature
evolution, identifying k species whose survival would

maximize feature diversity is, in general, NP-hard (by a
reduction from the NP-complete problem SET COVER).

6.1 Implications for Empirical Studies
The constraints on when PD and FD will and

will not coincide should be considered in light
of expected empirical patterns. For instance, time-
calibrated ultrametric phylogenetic trees are generally
used when comparing PD scores (see, e.g., Pollock
et al. 2017; Gumbs et al. 2020) and FP scores (see,
e.g., Tonini et al. 2016; Forest et al. 2018; Gumbs et al.
2018; Stein et al. 2018). (Faith 1992) astutely pointed
out that convergent features (i.e., homoplasies) “are not
predictive of similarities of other features,” such that
“greater phylogenetic diversity will, on average, imply
greater feature diversity as defined by any particular
collection of features.” In other words, there is an implicit
appeal to the stochastic model outlined above being a
good approximation for the majority of relevant features.
However, the evolution of some important subset of
features may not be captured with this model at all
(Mazel et al. 2017), or, more prosaically, may simply
evolve at such a high rate that the time-calibrated
ultrametric tree edge lengths are not predictive of
the number and placement of features (e.g., due to
saturation). Indeed, measures of PD and measured
functional diversity (a subset of feature diversity) need
not coincide (Devictor et al. 2010; Brum et al. 2017; see
also the discussion in (Winter et al., 2013)). One critical
empirical question flowing from this work is whether
there are subsets of features that are simultaneously (i)
more valuable to conservation than the average feature
and (ii) convergent or likely to be convergent, perhaps
due to parallel adaptation or high evolutionary rates
(Mazel et al. 2018, 2019; Owen et al. 2019). To the extent
that there are, the force of Faith’s all-important “average”
PD = FD statement weakens. However, answering the
question is non-trivial because it requires that we know
about the mode of evolution of conservation-relevant
features in a focal clade. The only attempt to test this
we know of is by Forest et al. (2007) for Southern African
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plants. Here, the authors catalogued known uses (e.g.,
for medicine or food) for genera of plants and asked
whether sequential maximization of PD on the Southern
African plant phylogeny consistently captured more
useful genera (and so, more currently conservation-
relevant features) than if species were chosen at random.
PD did capture more useful genera, supporting Faith’s
average argument. We echo the call from (Tucker et al.
2019) for more tests of the power of PD to capture
conservation-relevant features, for example, linking
bespoke phylogenies with known species-specific uses
(see, e.g., Ernst et al. 2015, 2016).

We make several comments about the measure of
feature diversity ϕF(x). The first is that its compact
expression does not require any particular model
of feature evolution on a tree: different features
and different subtrees can be governed by different
processes. This might expand its usefulness, because we
need not even map the features onto any particular tree
(as in Figure 1). Moreover, given a feature assignment F,
we can realize ϕF(x) as the FP index on every phylogenetic
X-tree (with suitably chosen edge lengths) even if F
itself cannot be realized on any tree (cf. Theorem 2
and Fig. 2). Importantly, we still require (Faith 1992)’s
“average” argument, namely, that the distribution of
measured features mirrors the features of conservation
concern more generally. Here again, both theoretical and
empirical tests using features of known conservation
value are needed.

A second comment is a reminder that the Shapley
value is quite specific in what it measures, that is,
the expected contribution (here, of features) to all
possible future subsets of taxa, where subset sizes
are equiprobable (Steel 2016). Although the measure
has a long pedigree and is tractable, this is not
a natural distribution of subsets of taxa under, for
example, a field-of-bullets model of future extinction
(see also Faith 2008). More work is needed on what
reasonable subset distributions might be, for example,
based on phylogenies of regional floras and faunas and,
perhaps, reasonable projections of species loss from the
landscape.

Finally in this area, the exploration of how well
PD captures FD needs to be expanded, both to
continuous characters (see, e.g., Tucker et al. 2018), and,
for both discrete and continuous characters, to more
sophisticated and realistic models of evolution (see, e.g.,
table 3 in (Tucker et al. 2019)).

In conclusion, our article provides a precise
mathematical framework to help address some
fundamental questions and possible future approaches
concerning the link between feature and phylogenetic
diversity, a critical connection for phylogeny-oriented
conservation triage.
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A.1 APPENDIX: MATHEMATICAL PROOFS
Proof of Theorem 1. The proof of Theorem 1 relies

on the following three lemmas.

Lemma 1. Given a rooted phylogenetic X-tree T, suppose
that F=F[T,h] for some map h :F →E. Let �h :E→R≥0 be
defined by setting

�h(e) :=
∑

f :h(f )=e

�(f ),

for each edge e of T (where �h(e) :=0 if h−1(e)=∅). Then, for
all subsets Y of X we have:

�F(Y)=PD(T,�h)(Y).

Proof . Suppose that F=F[T,h]. For each f ∈F , let Xf
be the set of taxa that have feature f . Then,

�F(Y)=
∑
f ∈F :

Xf ∩Y =∅

�(f )=
∑

e∈E(T):
∃f ∈F :h(f )=e and Xf ∩Y =∅

�h(e), (A1)

where the last equality follows from the fact that F=
F[T,h].

On the other hand,

PD(T,�h)(Y)=
∑

e∈E(T):
cT (e)∩Y =∅

�h(e), (A2)

where cT(e) denotes the set of leaves of T that are
separated from the root of T by e. Now, as F=F[T,h],
when e=h(f ), cT(e) corresponds to the set Xf . Thus, for
e∈E(T), we can conclude that cT(e)∩Y =∅ precisely if

• ∃f ∈F :h(f )=e and Xf ∩Y =∅, or

• �f ∈F :h(f )=e and e is a pendant edge incident to
a leaf y∈Y (in which case �h(e)=0).

Thus, we can re-write Eqn. (A2) as

PD(T,�h)(Y)=
∑

e∈E(T):
∃f ∈F :h(f )=e and Xf ∩Y =∅

�h(e)=�F(Y),

where the last equality follows from Eqn. (A1). This
completes the proof. �

Lemma 2. Given a rooted phylogenetic X-tree T, suppose that
the identity

�F(Y)=PD(T,�)(Y)

holds for all subsets Y ⊆X, where � :E→R≥0 is such that the
interior edges of T are assigned strictly positive lengths and
pendant edges (including the stem edge) are assigned non-
negative lengths. Then, there exists a map h :F →E such that
F=F[T,h].
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Proof . We will prove this statement by contradiction.
Thus, assume that �F(Y)=PD(T,�)(Y) for all Y ⊆X but
there is no map h :F →E such that F=F[T,h]. We now
distinguish two cases: (i) F cannot be explained by
T, but by some other tree T′, that is, F=F[T′,h′], or
(ii) the collection of sets CF ={Xf : f ∈F} does not form
a hierarchy and cannot be explained by any tree (cf.
Proposition 1, Part (ii)).

(i) First, suppose that F =F[T,h] but F=F[T′,h′], and
�F(Y)=PD(T,�)(Y) for all Y ⊆X. Now, as T =T′,
there must be some i,j,k ∈X such that restricting T
and T′ to {i,j,k} yields distinct trees. More precisely,
there exist i,j,k ∈X such that

(a) T|{i,j,k} is either the caterpillar tree on three
leaves with cherry [i,j] or the rooted star tree
on {i,j,k},

(b) T′|{i,j,k} is either the caterpillar tree on three
leaves with cherry [i,k] or the rooted star tree
on {i,j,k},

(c) T|{i,j,k} =T′|{i,j,k} (in particular, T|{i,j,k} and
T′|{i,j,k} are not both star trees).

Let �F(x,x′) :=�F({x})+�F({x′})−�F({x,x′}), for
each distinct pair x,x′ ∈X. Then as �F(Y)=PD(T,�)
for all Y ⊆X, we have from (a) that:

�F(i,j)

{
=�F(i,k), if T|{i,j,k} is a star tree;
>�F(i,k), otherwise.

(A3)
On the other hand, as F=F[T′,h′], we have by
Lemma 1, that �F(Y)=PD(T′,�h′ )(Y) for all Y ⊆X
(where �h′ (e)=∑

f :h′(f )=e�(f ); in particular, �h′ (e)>
0 for each interior edge e of T′). This implies that:

�F(i,k)

{
=�F(i,j), if T′|{i,j,k} is a star tree;
>�F(i,j), otherwise.

(A4)
Comparing Eqns (A3) and (A4), and using the
fact that T|{i,j,k} and T′|{i,j,k} cannot both be star
trees, this yields a contradiction. As (i,j,k) was
an arbitrary triple of leaves for which T|{i,j,k} =
T′|{i,j,k}, this contradiction implies that the initial
assumption was wrong. In particular, F=F[T,h].

(ii) Now, assume that �F(Y)=PD(T,�)(Y) for all Y ⊆X,
but CF ={Xf : f ∈F} does not form a hierarchy. This
implies that there exists f1,f2 ∈F such that

(a) There exists a taxon x1 ∈X such that x1 ∈Xf1 ∩
Xf2 .

(b) There exists a taxon x2 ∈X such that x2 ∈Xf1 \
Xf2 .

(c) There exists a taxon x3 ∈X such that x3 ∈Xf2 \
Xf1 .

We now partition the feature set F into eight
pairwise disjoint subsets A,...,G, where

A :={f ∈F : f ∈Fx1 \(Fx2 ∪Fx3 )}
B :={f ∈F : f ∈Fx2 \(Fx1 ∪Fx3 )}
C :={f ∈F : f ∈Fx3 \(Fx1 ∪Fx2 )}
D :={f ∈F : f ∈ (Fx1 ∩Fx2 )\Fx3}
E :={f ∈F : f ∈ (Fx1 ∩Fx3 )\Fx2}
F :={f ∈F : f ∈ (Fx2 ∩Fx3 )\Fx1}

G :={f ∈F :
3⋂

i=1

Fxi}

H :={f ∈F : f /∈
3⋃

i=1

Fxi}.

Note that D =∅ (because by (a)–(c), f1 ∈ (Fx1 ∩Fx2 )\
Fx3 ). Analogously, E =∅ (because f2 ∈ (Fx1 ∩Fx3 )\
Fx2 ).

Given a set of features S, let �(S) :=∑
f ∈S�(f )

denote the sum of scores of features present
in S. As �(f )>0 for all f ∈F , by the preceding
argument, in particular �(D),�(E)>0.
We now compute �F(Y) for all Y ⊆{x1,x2,x3} with
|Y|≥1, and compare it to PD(T,�)(Y). Recall that
PD(T,�)(Y) for Y ⊆X is computed by considering
the sum of edge lengths in the minimum subtree
of T connecting the taxa in Y and �′. Without
loss of generality, we can assume that the subtree
induced by {x1,x2,x2} has the structure depicted
in Fig. A.1 (otherwise, we exchange leaf labels).
Now, by assumption �F(Y)=PD(T,�)(Y) for all
Y ⊆X. For Y ⊆{x1,x2,x3} with |Y|≥1, this gives
rise to a system of 7 linear equations (where �(p)
denotes the length of path p):

�F({x1})=PD(T,�)({x1})
⇔�(A)+�(D)+�(E)+�(G)=�(p1)

+�(p5)+�(e�)

�F({x2})=PD(T,�)({x2})
⇔�(B)+�(D)+�(F)+�(G)=�(p2)+�(p4)

+�(p5)+�(e�)

�F({x3})=PD(T,�)({x3})
⇔�(C)+�(E)+�(F)+�(G)=�(p3)+�(p4)

+�(p5)+�(e�)

�F({x1,x2})=PD(T,�)({x1,x2})
⇔�(A)+�(B)+�(D)+�(E)+�(F)+�(G)

=�(p1)+�(p2)+�(p4)+�(p5)+�(e�)
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FIGURE A.1. Subtree induced by taxa x1, x2, and x3 in the proof
of Lemma 2. v denotes the most recent common ancestor of x2 and x3.
Analogously, w denotes the most recent common ancestor of x1,x2, and
x3. Furthermore, p1 denotes the unique path from w to x1, p2 denotes
the unique path from v to x2 and so forth.

�F({x1,x3})=PD(T,�)({x1,x3})
⇔�(A)+�(C)+�(D)+�(E)+�(F)+�(G)

=�(p1)+�(p3)+�(p4)+�(p5)+�(e�)

�F({x2,x3})=PD(T,�)({x2,x3})
⇔�(B)+�(C)+�(D)+�(E)+�(F)+�(G)

=�(p2)+�(p3)+�(p4)+�(p5)+�(e�)

�F({x1,x2,x3})=PD(T,�)({x1,x2,x3})
⇔�(A)+�(B)+�(C)+�(D)+�(E)+�(F)+�(G)

=�(p1)+�(p2)+�(p3)+�(p4)+�(p5)+�(e�).

Solving this system of linear equations for
�(A),...,�(G) yields �(A)=�(p1), �(B)=�(p2),
�(C)=�(p3), �(D)=�(E)=0, �(F)=�(p4), and
�(G)=�(p5)+�(e�).

However, as our assumption implies that
�(D),�(E)>0, this is a contradiction. Thus,
the initial assumption was false. In particular,
{Xf : f ∈F} forms a hierarchy. Thus, by
Proposition 1, Part (ii), there exist T′ and h′
such that F=F[T′,h′]. Now, by case (i) of this
proof, this implies F=F[T,h]. This completes
the proof.

�

Lemma 3. Let T be a rooted phylogenetic X-tree (with
additional stem edge). Then, the edge lengths of T are uniquely

FIGURE A.2. Representing a phylogenetic X-tree T relative to a
reference leaf i. Note that T is not assumed to be binary.

determined by the induced PD scores of all subsets Y ⊆X with
|Y|≤2.

Proof . Let T be a rooted phylogenetic X-tree (with
additional stem edge), and assume that PDT(Y) is given
for all Y ⊆X with |Y|≤2. We now show that we can
uniquely infer the edge lengths of T from these scores.
Let i∈X be a leaf of T. Then, there is a unique path
ek+1,ek,...,e1,e0 from �′ to i in T (see Fig. A.2), and we can
infer the lengths of these edges in a ‘top-down‘ approach
(i.e., starting with edge ek+1 and moving down the tree
towards edge e0).

For �(ek+1), let j be a leaf that is not a descendant of
edge ek (in other words, j is not in the same maximal
pending subtree as i). Then, clearly,

PDT({i,j})=PDT({i})+PDT({j})−�(ek+1),

(because �(ek+1) contributes twice to the sum PDT({i})+
PDT({j}), but only once to PDT({i,j})). In other words,
�(ek+1)=PDT({i})+PDT({j})−PDT({i,j}).

Now, let ei = (u,v) be an interior edge in the path from
�′ to i, for which the lengths of its preceding edges
are already determined, that is, �(ek+1),...,�(ei+1) are
known. Moreover, let j be a leaf that is a descendant from
ei, but not from ei−1.

Then, with a similar argument as in the previous case,
we have

PDT({i,j})=PDT({i})+PDT({j})−�(P(T;�′,v)),

where �(P(T;�′,v)) denotes the length of the
unique path from �′ to v in T (which contributes
twice to the sum PDT({i})+PDT({j}), but only
once to PDT({i,j})). In other words, �(P(T;�′,v))=
PDT({i})+PDT({j})−PDT({i,j}). On the other hand,
�(P(T;�′,v))=�(ek+1)+�(ek)+···+�(ei+1)+�(ei), and as
�(ek+1),...,�(ei+1) are known, we can uniquely infer �(ei).

Finally, after inferring the lengths of the edges
ek+1,ek,...,e1 as described above, we can also uniquely
infer the length of the pendant edge e0 incident to i as
�(e0)=PDT({i})−∑k+1

j=1 �(ej).
In summary, we can uniquely infer all edge lengths

of edges in the path from �′ to i from the PD scores of

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/advance-article/doi/10.1093/sysbio/syaa062/5892775 by U

niversity of C
anterbury Library user on 28 O

ctober 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[16:14 31/8/2020 Sysbio-OP-SYSB200064.tex] Page: 9 1–11

2020 WICKE, MOOERS AND STEEL–FORMAL LINKS BETWEEN FD AND PD 9

subsets of X of size at most 2. As i was an arbitrary leaf
of T, this completes the proof. �

We now show that Theorem 1 follows from these
lemmas. Part (i) of Theorem 1, namely

F=F[T,h]⇔�F(Y)=PD(T,�)(Y)∀Y ⊆X

follows from Lemmas 1 and 2 (the “only if” implication is
implied by Lemma 1 and the “if” implication is implied
by Lemma 2).

For Part (ii), the uniqueness of � (i.e., �=�h), follows
by combining Lemmas 1 and 3. More precisely, Lemma 1
states that assigning edge lengths according to �h induces
the equality of �F(Y) and PD(T,�h)(Y) for all Y ⊆X,
whereas, by Lemma 3, the edge lengths of a given tree
T are uniquely determined by the induced PD scores
of all Y ⊆X (indeed, even those with size at most 2
suffice). Moreover, the uniqueness of h is implied by
Proposition 1, Part (i). This completes the proof. �

Proof of Theorem 2. In order to prove Theorem 2,
we prove a slightly stronger statement. To this end, let
T be a rooted phylogenetic X-tree with X ={x1,...,xn}
and let (y1,...,yn) be an ordered n-tuple of strictly
positive real numbers. We claim that there exists an
edge length assignment � :E→R>0 that assigns strictly
positive lengths to all edges of T such that yi =FP(T,�)(xi)
for all xi ∈X. By choosing yi =ϕF(xi) for each xi ∈X, the
statement of the theorem immediately follows (due to
the assumed condition Fxi =∅ for all xi ∈X, along with
the fact that � takes strictly positive values, we have that
ϕF(xi) is a strictly positive real number for each xi ∈X
and thus meets the conditions above.)

First, note that we can always achieve yi =FP(T,�′)(xi)
for all xi ∈X when we consider an edge length
assignment �′ that allows edges to be assigned length
zero because, in this case, if exi denotes the pendant edge
incident to xi, we can set �′(exi )=yi for each xi ∈X, and
�′(e)=0 for all interior edges and the stem edge, which
clearly results in yi =FP(T,�′)(xi) for all xi ∈X.

We now show that we can obtain an edge length
assignment � assigning strictly positive lengths to all
edges of T from �′ by redistributing lengths in a “bottom-
up” approach (i.e., moving from pendant edges towards
the stem edge).

First, for each pendant edge exi , set �(exi )=�′(exi )=yi,
which is strictly positive as yi >0 by assumption. Now,
let e be an edge of T such that all edges descending from
e already have strictly positive lengths, whereas all edges
above e (if they exist) still have length zero. Let e1,...,ek
denote the descending edges incident to e, and let t1,...,tk
denote the subtrees pending from e (where tree ti has
stem edge ei for i=1,...,k). Moreover, for i=1,...,k, let
	ei := �(ei)

n(ei)
denote the ratio between the length of ei and

the number of leaves descending from it. Without loss
of generality, we may assume that edge e1 minimizes
this ratio (else we exchange edge labels). Furthermore,
let 0<c<1. We now re-assign edge lengths to e1,...,ek

and e as follows (where �old(ei) refers to the edge length
ei is currently assigned):

1. �new(e) := (1−c)·�old(e1)· n(e)
n(e1)

2. �new(e1) :=c ·�old(e1),

3. �new(ei) :=�old(ei)− n(ei)
n(e) ·�new(e) for i=2,...,k.

Now, in order to show that this is a valid re-distribution
of edge lengths, we need to show that

(i) �new(e)>0 and �new(ei)>0 for i=1,...,k.

(ii) FP(T,�old)(x)=FP(T,�new)(x) for all x∈X, that is, the
FP indices are not affected by the re-assignment of
edge lengths.

First, consider (i). As �old(e1)>0 by assumption, and
0<c<1, we clearly have �new(e)>0, and �new(e1)>0.
Now, consider ei for i∈{2,...,k}. Here, we have

�new(ei)=�old(ei)− n(ei)
n(e)

·�new(e)

=�old(ei)− n(ei)
n(e)

·(1−c)·�old(e1)· n(e)
n(e1)

=�old(ei)− �old(e1)
n(e1)

·n(ei)·(1−c)

≥�old(ei)− �old(ei)
n(ei)

·n(ei)·(1−c)

(because e1 minimizes 	ei =�old(ei)/n(ei))

=�old(ei)−�old(ei)·(1−c)=c ·�old(ei)>0,

where the last inequality again follows from the fact that
(by assumption) �old(ei)>0 and 0<c<1. This completes
the proof of (i).

For (ii) note that the FP indices of taxa not descending
from e are not affected by the re-assignment of edge
lengths, so it suffices to consider all x∈cT(e). In the
following, let ti \ei be the rooted phylogenetic tree
obtained from ti by deleting its stem edge. Then, we
clearly have for all x∈cT(e):

FP(T,�old)(x)=FP(t\ei,�old)(x)+ �old(ei)
n(ei)

,

(because by assumption all edges above ei have length
zero before the re-assignment of edge lengths according
to steps 1–3). On the other hand, we have for all x∈cT(e):

FP(T,�new)(x)=FP(t\ei,�new)(x)+ �new(ei)
n(ei)

+ �new(e)
n(e)

.

Note that FP(t\ei,�old)(x)=FP(t\ei,�new)(x) for all x∈cT(e)
(because the lengths of edges in ti \ei are not changed).
We now show that FP(T,�old)(x)=FP(T,�new)(x) for all x∈X.
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First, let x∈ t1. Then, we have

FP(T,�new)(x)=FP(t\e1,�new)(x)+ �new(e1)
n(e1)

+ �new(e)
n(e)

=FP(t\e1,�old)(x)+ c ·�old(e1)
n(e1)

+
(1−c)·�old(e1)· n(e)

n(e1)

n(e)

=FP(t\e1,�old)(x)+c · �old(e1)
n(e1)

+(1−c)· �old(e1)
n(e1)

=FP(t\e1,�old)(x)+ �old(e1)
n(e1)

=FP(T,�old)(x).

Now, let x∈ ti for i∈{2,...,k}. Then, we have

FP(T,�new)(x)=FP(t\ei,�new)(x)+ �new(ei)
n(ei)

+ �new(e)
n(e)

=FP(t\ei,�old)(x)+
�old(ei)− n(ei)

n(e) ·�new(e)

n(ei)
+ �new(e)

n(e)

=FP(t\ei,�old)(x)+ �old(ei)
n(ei)

− �new(e)
n(e)

+ �new(e)
n(e)

=FP(T,�old)(x).

In summary, re-assigning edge lengths according
to the conditions 1–3 (listed above) is valid (because
conditions (i) and (ii) hold). Thus, for each edge e whose
length was changed, we now simply set �(e)=�new(e)
and repeat the procedure. In this way, we can construct
an edge length assignment � that assigns strictly positive
lengths to all edges of T (including pendant edges and
the stem edge), such that yi =FP(T,�)(xi) for all xi ∈X. This
completes the proof. �

Proof of Proposition 2. Notice that both ϕF(x) and
�F(Y) (with Y ⊆X) are linear functions in �(f ). More
precisely,

ϕF(x)=
∑
f ∈F

�(x,f )·�(f ),

where �(x,f )=
{

1
n(f ) , if f ∈Fx;
0, otherwise.

Analogously,

�F(Y)=
∑
f ∈F

�′(Y,f )·�(f ),

where �′(Y,f )=
{

1, if f ∈∪x∈YFx;
0, otherwise.

Thus, by linearity (see also Lemma 6.14 in Steel (2016)),
it suffices to show the statements for the case that one
element of F , say fi, has score �(fi)=1, whereas �(fj)=
0 for all fj ∈F \{fi}. Note that � was earlier defined to
be strictly positive, but we are relaxing this here as it
allows us to prove a slightly stronger claim (i.e. the result
holds even when� takes zero values), using a more direct
argument.

For the first part of the proof, recall that given the pair
(X,�F), the Shapley value of x∈X is given by

SV�F
(x)= 1

n!
∑

S⊆X:x∈S

(|S|−1)!(n−|S|)!�(S,x),

where �(S,x)=�F(S)−�F(S\{x}). We now show that
SV�F

(x)=ϕF(x) (where we assume that �(fi)=1 and
�(fj)=0 for all fj ∈F \{fi}).

We can distinguish two cases:

• If fi /∈Fx, then �(S,x)=0 for all S, and thus,
SV�F

(x)=0. On the other hand, we clearly also have
ϕF(x)=0.

• If fi ∈Fx, then �(S,x)=1 if (i) x∈S and (ii) there is
no y∈S with fi ∈Fy; otherwise �(S,x)=0. Let C⊆X
be the set of taxa that have feature fi, i.e., C={y∈
X : fi ∈Fy}, and so n(fi)=|C|. Then, SV�F

(x) can be
written as

1
n!

∑
S:x∈S

S\{x}⊆X\C

(|S|−1)!(n−|S|)! ·1

= 1
n!

n−n(fi)+1∑
k=1

(
n−n(fi)

k−1

)
(k−1)!(n−k)!= 1

n(fi)
,

where the last equality follows from the fact that
1
n!

∑n−r
j=0

(n−r
j

)
j!(n−1−j)!= 1

r for 1≤r≤n (Lemma
6.15 in Steel (2016)) (here: j=k−1 and r=n(fi)).
On the other hand, ϕF(x)= �(fi)

n(fi)
= 1

n(fi)
, which

completes the proof.

The second part of Proposition 2, follows directly
from properties of the Shapley value, namely from the
efficiency axiom; however we give a direct proof. Again,
it suffices to consider the case where �(fi)=1 and �(fj)=
0, for all j = i, in which case we obtain the required
equality:∑

x∈X

ϕF(x)=
∑
x∈X:
fi∈Fx

ϕF(x)+
∑
x∈X:
fi /∈Fx

ϕF(x)=
∑
x∈X:
fi∈Fx

�(fi)
n(fi)

+0

=�(fi)=1=�F(X).

�

Proof of Proposition 3. Let F=F[T,h] and let x∈X.
As noted above, we have:

FP(T,�h)(x)=
∑

e∈P(T;�′,x)

1
n(e)

·�h(e).

Importantly, we can also write ϕF(x) as follows:

ϕF(x)=
∑
f ∈Fx

�(f )
n(f )

=
∑

e∈E(T):
∃f ∈Fx with h(f )=e

�h(e)
n(f )

.
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Now, since F=F[T,h], all the edges on which features
present in Fx arise must lie on the unique path from �′
to x. Moreover, a feature f ′ not contained in Fx, cannot
have arisen on this path. More precisely, if a feature f
arises on edge e, then a taxon x∈X has this feature if and
only if it is a descendant of e. In particular, n(f )=n(e). In
summary, this implies that ϕF(x)=FP(T,�h)(x). �

Proof of Inequality (2.1). Let W be the function that
assigns to each subset Y of X the union of the sets of
features present amongst the taxa in Y. Thus, W(Y) :=⋃

x∈Y Fx. From the proof of Proposition 2 we have:

�F(Y)=
∑
f ∈F

�′(Y,f )·�(f ),

where �′(Y,f )=
{

1, if f ∈W(Y);
0, otherwise.

Now,
W(Y∪Y′)=W(Y)∪W(Y′),

and
W(Y∩Y′)⊆W(Y)∩W(Y′),

(and the containment can be strict). It follows that for all
f ∈F and all Y,Y′ ⊆X.:

�′(Y∪Y′,f )+�′(Y∩Y′,f )−�′(Y,f )−�′(Y′,f )≤0.

Since �F(Y∪Y)+�F(Y∩Y′)−�F(Y)−�F(Y′) is a positive
weighted sum of the corresponding �′ quantities above,
Inequality (2.1) now follows. �
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