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Abstract: If predictions for species extinctions hold, then the ‘tree of life’ today may be quite different to that in (say) 100 
years. We describe a technique to quantify how much each species is likely to contribute to future biodiversity, as measured 
by its expected contribution to phylogenetic diversity. Our approach considers all possible scenarios for the set of species 
that will be extant at some future time, and weights them according to their likelihood under an independent (but not iden-
tical) distribution on species extinctions. Although the number of extinction scenarios can typically be very large, we show 
that there is a simple algorithm that will quickly compute this index. The method is implemented and applied to the prosim-
ian primates as a test case, and the associated species ranking is compared to a related measure (the ‘Shapley index’). We 
describe indices for rooted and unrooted trees, and a modifi cation that also includes the focal taxon’s probability of extinc-
tion and which links two complementary approaches to conserving phylogenetic diversity.
Keywords: phylogenetic diversity, extinction, biodiversity conservation, Shapley index 

Introduction 
Within a given taxonomic group, individual biological species are generally considered to be of equal 
or near-equal biodiversity value. So, for instance, areas with a greater number of species are more valu-
able than those with fewer (Myers et al. 2000). When wild species are ranked by value, this is usually 
based on their threat of extinction (see e.g. SARA, 2002). However, as pointed out by Cousins (1991), 
species are discovered and identifi ed because they are different from other species, which suggests that 
they may differ in value. In the context of conservation, Avise (2005) has highlighted fi ve different 
currencies for valuing species: rarity, distribution, ecology, charisma, and phylogeny. Here, we consider 
the value of a species based on its position in a phylogeny. A phylogeny is the directional, acyclic graph 
depicting relationships between leaves (species), which we defi ne formally in the next section. A phy-
logeny generally has a root (which assigns direction) and edge weights that can represent unique feature 
diversity (e.g. as measured by evolutionary time or genetic distance). Species can be defi ned by the 
features they possess, and one measure of their worth is the expected contribution of their genetic, 
morphological or evolutionary distinctiveness. To this end, we can use a phylogeny to assign a measure 
of evolutionary value to a species, since branch lengths can be chosen to correspond to genetic, mor-
phological or evolutionary distance. Because of the highly imbalanced shape of the Tree of Life, some 
species in a phylogeny will have far fewer close relatives than others in that phylogeny (Mooers and 
Heard, 1997), and these more distantly-related species will be expected to contribute more unique 
features (Faith, 1992). 

Phylogenetic measures of conservation value have a long pedigree (see e.g. Altschul and Lipman, 
1990; May, 1990) and have begun to be explored in some detail (Haake et al. 2005; Hartmann and Steel, 
2007; Pavoine et al. 2005a, 2005b; Redding and Mooers, 2006). So, for example, Pavoine and 
colleagues presented one new phylogenetic measure of conservation value, a set of sampling weights 
such that the expected pairwise distance on the tree is maximized. Haake and colleagues extended the 
‘Shapley value’ (Shapley, 1953) from co-operative game theory to the conservation setting to calculate 
the average distance of a focal species to all possible subsets of taxa. For both measures, species with 
high conservation scores are those expected to contribute more to the resulting sets. Yet another measure 
that uniquely apportions the tree to its tips (Redding, 2003; Isaac et al. 2007) and which is the focus of 
a new international conservation initiative (the EDGE initiative, Zoological Society of London) scales 
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almost perfectly with the Shapley value (unpub-
lished results). 

One question with these measures concerns the 
set of species that individual species are asked to 
complement. For instance, given known extinction 
probabilities for species, some future sets of spe-
cies are much more likely than others and so some 
species will be more valuable because their close 
relatives are less likely to be included in future sets 
of species. Here we formalize this idea to extend 
the Shapley value of a species to include pre-
assigned extinction probabilities, and show how 
this value can be effi ciently computed. We then 
compare our measure with the original Shapley 
value using the prosimian primates as a test case. 

In this paper we consider only extinction 
(neglecting possible speciation), because our focus 
is on the impact of current high rates of extinction 
over relatively short time frames (hundreds of 
years) for which little speciation may be expected. 
Also, although our indices rank species for con-
servation, we emphasise that such conservation 
includes safeguarding natural habitats. 

Defi nition Let T  be a rooted or unrooted phy-
logenetic tree with leaf set X, together with an 
assignment of positive lengths to the edges 
(branches) of T. We let l(e) denote the length of 
edge e, and let E(T  ) denote the set of edges of T. 
For a subset S of X, let PD (S) denote the phyloge-
netic diversity of S defi ned as follows. If T is 
unrooted then PD(S) is the sum of the lengths of 
the edges (branches) of T in the minimal subtree 
that connects S. If T is rooted, then PD(S) is the 
sum of the lengths of the edges of T  in the minimal 
subtree of T  that connects S and the root of the 
tree. Figure 1 illustrates these concepts, and 
includes values at the tips that we will use in the 
next section. Note that although the branch lengths 
in this example are clock-like, this assumption is 
not required in any of the results we describe.

The HED Index 
For a leaf i ∈X, and a subset S ⊆ X – {i} let 

 ∆ ( ) = { }( ) − ( )PD S i PD S i PD S, : .∪  

The quantity ∆PD (S, i) measures how much phy-
logenetic diversity i contributes to the tree that 
one obtains from T once species not in S have 
been pruned out (for example if they go extinct). 

Alternatively, ∆PD (S, i) is the marginal increase 
in phylogenetic diversity of S if i is added. 

Now, suppose that each species has an associ-
ated extinction probability P(ext) (which may vary 
from species to species)—for example, this may 
be the probability that the species is extinct in (say) 
100 years from now (either globally, or in some 
specifi ed community).We will denote this P(ext) 
value for species j by �j. In this paper we consider 
the simplest model which assumes that the extinc-
tion of each species in X comprise independent 
events. Given i ∈ X, let Si denote the random sub-
set of species in X – {i} which survive (i.e. do not 
go extinct). 

By the independence assumption we have: 
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For i ∈ X, let ψi denote the expected value of 
∆PD(Si, i). That is, 

We call ψi the heightened evolutionary distinctive-
ness of species i, and the function i � ψi the 
heightened evolutionary distinctiveness (HED) 
index for T. Notice that if all the species in 
X – {i}were guaranteed to survive, then ψi would 
be just the length of the pendant edge incident with 

Figure 1. (a) A small rooted tree with edge lengths (of 2 units for the 
terminal edges incident with C, D, E, and 1 unit for the other fi ve 
edges). Each tip j has an associated extinction probability P(ext) = ej . 
(b) For a subset S = {B, D} of taxa that are extant at some future time, 
the phylogenetic diversity score PD(S) is the sum of the lengths of 
the edges indicated in bold. The dashed edges lead to extinct taxa.
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leaf i, however random extinctions mean that ψi 
will tend to be increased (‘heightened’) over this 
pendant edge length.

The quantity ψi measures the expected addi-
tional phylogenetic diversity species i would 
contribute at some future time if it is extant 
rather than extinct, given our uncertainty about 
which other species may have also be extinct at 
this future time. It is an example of a type of 
‘distinctiveness’ measure described by Equation 
(2) of Weitzmann (1998). Notice that the extinc-
tion risk of species i does not infl uence ψi, as 
this quantity depends only on the extinction risks 
of other species. We will discuss this issue (and 
describe a related index that does incorporate 
the extinction probability of species i) later in 
the paper. 

A related but different index, based on the Shap-
ley value in co-operative game theory, has recently 
been described by Haake et al. (2005). This index, 
denoted here as ψsh

 can be defi ned (for unrooted 
trees) as follows: For i ∈ X, 

 ψi PD
sh 1=

−⎛

⎝
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This index has certain appealing properties. In 
particular, ∑i∈X ψi

sh  = PD(X ), and there is a 
simple formula for quickly computing    . The 
index ψsh also has a stochastic interpretation, but 
this is not based on extinction or survival of 
species, rather on the expected contribution to 
PD of each species under all possible orderings 
of the total set of species (for details see Haake 
et al. 2005). The index ψsh allocates existing PD 
‘fairly’ amongst the species, whereas ψ quanti-
fi es the expected contribution of each species to 
future PD. 

Computing the HED Index 
Computing the HED index directly via (1) could 
be problematic as it requires summation over all 
the subsets of X – {i} and this grows exponentially 
with |X |. However we now show that the index 
can be readily and quickly computed, both for 
rooted and unrooted trees. This polynomial-time 
algorithm for computing ψ thus complements (but 
is quite different to) the polynomial-time 
algorithm described by Haake et al. (2005) for 
computing ψsh.

Rooted trees 
For a rooted phylogenetic X–tree T , and one of its 
edges e, let C (e) denote the set of species in X that 
are descended from e (i.e. the clade that results 
from deleting e from T ). For i ∈ X, let e1, e2, ..., 
ek (k = k(i) �1) denote the edges (branches) on the 
path from i to the root of T, listed in the order they 
are visited by that path. Recall that l(e) denotes the 
length of edge e. The proof of the following theo-
rem is given in the Appendix. 

Theorem 3.1

  

Note that in this (and the next) theorem we adopt 
the convention ε jj∈∏ =Ø 1, which is relevant for 
the fi rst term (r = 1) in the sum as C (er ) – {i} is 
empty. Thus the fi rst term in the summation expres-
sion for ψi given by Theorem 3.1 is simply l(e1 ), 
the length of the pendant edge of  T incident with 
species i.

Example 
We can apply the HED index to the members of the 
rooted tree depicted in Figure 1. For example, to 
compute ψA by using Theorem 3.1 we have 
ψA = 1 + 1 ⋅ �B + 1 ⋅ �B �C = 1.19. By inspection, we 
can see that the most valuable species will be D, 
since it shares an edge with only one other species 
above the root, and that this species (E) has a high 
P(ext). At the other extreme, A shares its path to the 
root with two other species, and one of them (B) has 
a low P(ext). It should therefore receive a low HED 
value. The computed values are ψD = 2.9, ψB = 2.71, 
ψE = 2.1, ψC = 2.09, and ψA = 1.19. Using the 
Shapley index (Haake et al. 2005), D and E are 
ranked fi rst (with value = 2.63), followed by C (2.33) 
and then A and B (1.75). Pavoine’s QE metric 
(Pavoine et al. 2005) returns the same ranking as 
does the Shapley. A portal for computing HED is 
available at http://www.disconti.nu/-phylo/
emd.dpf 

Unrooted trees, and properties
of the index
We now provide a similar formula for  effi-
ciently computing the HED index for unrooted trees. 
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Given a leaf i of T and an edge e of T, e induces a 
split of X into two disjoint subsets, and one of these 
subsets, which we denote as Ci (e), contains i. The 
proof of the following theorem is given in the 
Appendix. 

Theorem 3.2

  

Notice that the rooted HED index is just a special 
case of the unrooted HED index (indeed 
Theorem 3.1 can be deduced from Theorem 3.2).
To see this, given a rooted tree T attach a new leaf 
ρ to the root via a new edge to obtain an unrooted 
tree, and assign the new edge length 0. Let �ρ = 0. 
Then it is easily seen that the HED index for T  is 
just the HED index for the derived unrooted tree. 

Using Theorem 3.1 it can be shown that if T is 
a rooted phylogenetic tree then the condition: 

  (3)

holds for all selections of positive branch lengths 
and �’s if and only if T  is a ‘star tree’ (that is, every 
leaf is adjacent to the root). Moreover Theorem 3.2 
shows that there is no unrooted phylogenetic tree 
T  for which (3) holds for all positive branch lengths 
and � values (of course (3) may hold on phyloge-
netic trees—either rooted or unrooted—if the 
branch lengths and � values take certain values). 
This contrasts with the index ψsh which satisfi es  
∑i∈X ψsh

i      = PD(X ) on all unrooted phylogenetic trees 
and choices of branch lengths, a property that is 
referred to as the Pareto effi ciency axiom by Haake 
et al. (2005). In the setting of this paper we should 
not be surprised that (3) holds for ψ only in very 
special cases since we are not trying to divide out 
existing PD amongst present taxa (one motivation 
behind ψsh) but rather quantify the expected con-
tribution each species makes to future PD. 

Application 
We compared the HED index with the Shapley 
(Haake et al. 2005) values for the Prosimians 
(Mammalia: Primata), a group of approximately 

50 species with a broad range of extinction 
probabilities. This group includes the Aye-Aye, the 
lemurs, the lorises and galagos. We made use of a 
recent dated Supertree of the order Primates (Vos 
and Mooers, 2004; Vos, 2006), see Figure 2, and 
Red List risk designations from the IUCN (www.
iucnredlist.org, accessed February 2006). Follow-
ing Isaac et al. (2007) and Redding and Mooers 
(2006), we fi rst converted the fi ve categories of 
risk (CR, EN, VU, NT, and LC) to probabilities of 
extinction. Under the IUCN criteria, the species in 
the VU category are given a P(ext) = 0.1 over the 
next 100 years. We gave the lowest and highest 
threat categories very conservative probabilities of 
extinction over the next 100 years of 0.001 and 0.9 
respectively, leaving P(ext) = 0.5 for EN, and 
P(ext) = 0.01 for NT: this scale is very similar to 
that calculated from real population viability 
analyses for birds (Redding and Mooers, 2006). 
We are primarily interested in how the ranking of 
species changes using different approaches. 

The bivariate correlation between the metrics is 
high (0.94). Both measures chose the Aye-Aye 
(Daubentonia madagascarensis) as the most impor-
tant species, followed by Perodicticus potto. Inter-
estingly, the three most highly ranked species under 
current conservation policy (the critically endan-
gered lemurs Propithecus tattersalli, Hapalemur 
simus, H. aureus) are nested well up in the tree 
(Fig. 2) such that none of them were chosen in the 
top ten for either SV or HED. If we compare the rest 
of the rankings for these two metrics, the largest 
single difference is for the two Arctocebus species: 
they rank twelfth under SV (being relatively isolated 
on the tree), but only twenty-sixth under HED: 
because neither is severely threatened, the chances 
are good that their common path will persist. 

On the prosimian tree, both measures are 
heavily infl uenced by the pendant edge (PE) length 
of the focal species (with correlations of PE vs. 
SV = 0.94, and of PE vs. HED = 0.98). PE is 
always part of the marginal increase to ψ, while 
interior edges are most likely represented with 
high probability, especially for larger and more 
balanced trees. Here, both polytomies and the use 
of a pure birth model for estimating unknown edge 
lengths bias pendant edges to be long. Simulated 
trees under more realistic models return signifi cant 
but weaker correlations (e.g. for d = 0.9b, N = 500 
species and a right-skewed distribution of 
extinction probabilities, correlations of PE vs. 
SV ~ 0.82, and PE vs. HED ~ 0.84). Even here, 
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Daubentonia madagascariensis EN
Phaner furcifer NT
Cheirogaleus medius LC
Cheirogaleus major LC
Allocebus trichotis EN
Microcebus coquereli VU
Microcebus murinus LC
Microcebus rufus LC
Indri indri EN
Avahi laniger NT
Propithecus diadema EN
Propithecus tattersalli CR
Propithecus verreauxi VU
Varecia variegata EN
Eulemur coronatus VU
Eulemur macaco VU
Eulemur fulvus LC
Eulemur mongoz VU
Eulemur rubriventer VU
Lemur catta VU
Hapalemur simus CR
Hapalemur griseus LC
Hapalemur aureus CR
Lepilemur leucopus NT
Lepilemur mustelinus NT
Lepilemur dorsalis VU
Lepilemur edwardsi NT
Lepilemur microdon NT
Lepilemur ruficaudatus NT
Lepilemur septentrionalis NT
Perodicticus potto LC
Loris tardigradus EN
Nycticebus coucang LC
Nycticebus pygmaeus VU
Arctocebus calabarensis NT
Arctocebus aureus NT
Galago senegalensis LC
Galago alleni NT
Galagoides demidoff LC
Galagoides zanzibaricus NT
Galago moholi LC
Galago gallarum NT
Galago matschiei NT
Otolemur crassicaudatus LC
Otolemur garnettii LC
Euoticus elegantulus NT
Euoticus pallidus NT

Figure 2. Prosimian species tree and associated IUCN threat categories. CR: critically  endangered, P (ext) = 0.9; EN: endangered, P (ext) = 0.5; 
VU: vulnerable, P (ext) = 0.1;  NT: near threatened, P (ext) = 0.01; LC: least concern, P (ext) = 0.001. Edge lengths are  on an arbitrary scale 
that represents time since divergence. 
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PE is a poor predictor of HED for the genus 
Propithecus, for H. griseus, and for Nycticebus 
couang (Fig. 2). The fi rst two groups contain the 
three most endangered species, increasing the 
value of close relatives. Nycticebus is an isolated 
genus, and N. couang’s sister species is listed as 
vulnerable (P(ext) = 0.1). Likewise for P. verreauxi 
—although it has close relatives and so a short PE, 
these relatives are at high risk of extinction, which 
increases its value; this is what we saw with spe-
cies D in Figure 1. 

Incorporating the focal taxon’s
extinction risk (HEDGE scores)
The effect of close relatives’ risk status on one’s 
own value is precisely the strength of the HED 
approach. However, the fact that the extinction 
risk of other species affects a focal species, but 
its own risk does not is somewhat counter-
intuitive. We address this by showing how it is 
possible to write the HED index as the sum of 
two terms each of which takes into account the 
extinction risk of the focal species. To describe 
this further, let I be the random variable which 
takes the value i if the focal species i survives (at 
the future time under consideration) and which 
otherwise takes the value of the emptyset (i.e. Ø) 
if i goes extinct. 
Let 

   

where, as before Si is the random subset of species 
in  X – {i} that survive. In words, ψ′i is the increase 
in the expected PD score if we condition on the 
event that species i survives. This quantity has 
also been investigated recently by Dan Faith 
(Faith, 2007) where it is referred to as (expected) 
PD complementarity. 
Similarly, let 

  

In words,    is the decrease in the expected PD 
score if we condition on the event that species i 
becomes extinct. The following result describes how 
to compute these two indices easily from the HED 
index, and verifi es that they add together to give the 
HED index (its proof is given in the Appendix). 

Theorem 4.1
 (i) ψ′i = �i ⋅ ψi ,
 (ii)       = (1 – �i  ) ⋅ ψi ,
 (iii) ψ′i +  ψi″ = ψi .
The approach of assigning a value to a species 
which is a function of its phylogenetic distinctive-
ness and its extinction probability has been referred 
to as ‘expected loss’ by Redding and Mooers 
(2006) and, more evocatively, an ‘EDGE’ score 
(Evolutionarily Distinct and Globally Endangered) 
by Isaac et al. (2007). 

In the same spirit we will call ψ′ and ψ″ (which 
extend our HED index ψ) HEDGE (heightened 
evolutionary distinctiveness and globally endan-
gered) scores. The HEDGE score ψ′i is more 
relevant when evaluating actions that might save 
species, whereas the HEDGE score      is appro-
priate when evaluating actions that might cause 
the extinction of species (such as building a dam). 
Our measures link species-specifi c EDGE-type 
scores (Isaac et al. 2007) with the complementa-
rity framework strongly advocated by Faith 
(2007). 

One potential advantage of HED and HEDGE 
over previous scores is their fl exibility in designing 
conservation scenarios. So for instance, we can 
choose IUCN-ranked species for which conserva-
tion is cheap and/or already partially successful, 
set their P(ext) to 0, and see how rankings of other 
species change. Alternatively, we might want to 
increase the P(ext) to 1.0 for certain species to see 
how others are affected. 

Most generally, HED and HEDGE could be 
incorporated in an assessment of species value that 
included many factors besides risk and future 
contribution, e.g. the ecological, distributional and 
aesthetic values enumerated by Avise (2005), and 
the costs of recovery and probability of its success. 
We present these metrics in the hope that they will 
be used to promote the preservation of species and 
their natural habitats.
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Appendix: Proofs of theorems 

Proof of Theorem 3.1
First observe that the only edge lengths that 
contribute to ∆PD (S, i) are those from the set {l(e1), 
l(e2), …, l(ek)}. Consequently, for the random set 
Si of surviving species of X – {i} we have

 ∆PD (Si, i) = l e Ir r
r

( ) ⋅
≥

∑
1

(Si) 

where Ir (Si) is the 0,1 indicator random variable 
that takes the value 1 precisely if er is not an edge 
of the subtree of T connecting the taxa in Si and 
the root of T; since this is the only situation for 
which er lies in the subtree of T connecting Si ∪ 
{i} but not in the subtree of T connecting Si.
Thus, by linearity of expectation,

 ψi  = E [∆PD (Si, i)] = E l e Ir r
r

i( ) ( )⋅
⎡

⎣
⎢

⎤

⎦
⎥

≥
∑

1
S  

            = ⋅
≥

∑ l er
r

( )
1

E [Ir (Si)], 

and since Ir (Si) takes the values 0 and 1, E [Ir (Si)] 
= P [Ir (Si) = 1]. 
Thus, 

 ψi =
≥

∑ l er
r

( )
1

· P [Ir (Si) = 1]. 

Now, the event ‘Ir (Si) = 1’ occurs precisely if none of 
the elements in C (er) − {i} survive, and this latter 
event has probability ∏ ∈ −j C e ir( ) { }εj . Substituting this 
into the previous equation establishes the theorem.

Proof of Theorem 3.2
For i ∈ X and the random subset Si ⊆ X –{i}, we 
have

 ∆PD (Si, i) = ⋅
∈
∑ l e

e E
( )

( )T
 Ie (Si) 

where Ie(Si) is the 0,1 indicator random variable 
taking the value 1 precisely if Si consists of no 
elements of Ci (e) – {i} and at least one element of 
X – Ci (e). 
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Thus, 

 ψi = ⋅
∈
∑ l e

e E
( )

( )T
 P [Ie (Si) = 1] 

and by the independence assumption

 P [Ie(Si) = 1] = P [Si ∩ (Ci(e) –{i}) = Ø] 
 × P [Si ∩(X – Ci(e)) ≠ Ø]. 

and so

P [Ie(Si) = 1] = ε εj
j C e i

j
j X C ei i∈ − ∈ −

∏ ∏
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⋅ −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( ) { } ( )

,1

as claimed.

Proof of Theorem 4.1
By defi nition,

    ψi = E [PD(Si ∪ {i}) − PD(Si)], 

and so 

 E [PD(Si ∪{i})] = ψi + E [PD(Si)]. 

Now we can write the unconditional expectation 
E [PD(Si ∪ I )] as the weighted sum of conditional 
expectations E [PD(Si ∪ I ) | I = {i}]P ( I = {i}) + 
E [PD(Si  ∪ I ) |  I = Ø] P (I = Ø)
and so 

 E [PD(Si ∪ I)] = (1 − εi) E [PD (Si ∪{i})]  
     + εi  E [PD (Si)]. 

Parts (i) and (ii) now follow by applying these 
equations (and the linearity of expectation) to the 
defi nitions of ψ′i and ψ′′i . Part (iii) follows directly 
from parts (i) and (ii).
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