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Abstract.— We describe some new and recent results that allow for the analysis and representation of reticulate evolution by
nontree networks. In particular, we (1) present a simple result to show that, despite the presence of reticulation, there is always
a well-defined underlying tree that corresponds to those parts of life that do not have a history of reticulation; (2) describe
and apply new theory for determining the smallest number of hybridization events required to explain conflicting gene trees;
and (3) present a new algorithm to determine whether an arbitrary rooted network can be realized by contemporaneous
reticulation events. We illustrate these results with examples. [Directed acyclic graph; reticulate evolution; hybrid species;
subtree prune and regraft.]

Evolutionary relationships are generally represented
by nonreticulating trees, and for certain groups of taxa
(e.g., mammals) this model seems well suited. However,
for other groups (for example, plants, some fish, and bac-
teria), processes of reticulate evolution such as the forma-
tion of hybrid species, horizontal gene transfer, and other
mechanisms (for example, endosymbiosis) suggest that
evolutionary history would be better described by a net-
work that is more complex than a tree, with some species
arising from the genetic contribution of two (rather than
one) ancestral lineages.

Although processes of reticulate evolution have long
been recognized in biology, techniques for represent-
ing and analyzing reticulate evolution have tended to
be fairly ad hoc. For example, one might first build a
tree and then heuristically add some additional edges
if these improve the fit of the data (as in Legendre and
Makarenkov, 2002). In the last few years there has been
much new theoretical work by computer scientists and
mathematicians (e.g., Baroni, 2004; Baroni et al., 2004;
Gusfield, 2004; Gusfield et al., 2004; Holland et al., 2004;
Huson et al., 2004, 2005; Moret et al., 2004; Song and
Hein, 2004) with the aim of providing more rigorous ap-
proaches to the representation and analysis of reticulate
evolution.

In the the third and fourth sections, we provide a brief
overview of some of our recent work and show how it
can be applied to set lower bounds on the degree of retic-
ulation required to explain two conflicting phylogenetic
trees. We illustrate the application of these results on two
trees that describe the evolution of alpine Ranunculi in
New Zealand. In the fifth section, we present a fast al-
gorithm that determines whether or not a hybrid phy-
logeny can be realized by hybridization events between
species that existed at the same time—an obvious bio-
logical requirement, though one that is often overlooked
in a formal mathematical representation. The last section
contains some concluding remarks.

HYBRID PHYLOGENIES

In this section we introduce some terminology that
is useful for describing and studying hybrid evolution.
Informally, a “hybrid phylogeny” is simply a rooted
network in which each arc (directed edge) leads from

an ancestral taxon to its immediate descendants. How-
ever, unlike a rooted phylogenetic tree, we allow for
some (ancestral or extant) taxa to have two (or more)
incoming arcs. In other words, we regard those taxa
as being hybrids, consisting of a genetic composition
from both (or all) of the incoming arcs. In this section,
we formalize these notions in order to obtain precise
results. Furthermore, we describe a tree that underlies
any hybrid phylogeny, and provide some background
and motivation for the rest of the article. Throughout,
the notation and terminology mostly follows Baroni
(2004) and Baroni et al. (2004).

First we recall some graph-theoretic terminology. Di-
rected graphs (also known as digraphs) are used in evo-
lutionary biology to represent the evolutionary history
of extant species. Usually, this representation takes the
form of a rooted phylogenetic tree. However, in this ar-
ticle we are mostly interested in representations called
(rooted) hybrid phylogenies. A directed graph consists of
a collection of nodes and a collection of directed edges
called arcs, with each arc joining two nodes. Nodes typi-
cally represent species, individuals, or DNA sequences,
whereas arcs represent relationships of ancestry. Thus, if
u is the “parent” of v, then we denote this relationship
with the arc (u, v). The first node indicates where the arc
is coming from and the second node indicates where the
arc is going to, thus (u, v) �= (v, u).

The degree of a node v is the number of arcs incident
with v. In directed graphs, we often distinguish between
arcs coming out of a node and those coming into a node.
In particular, the outdegree of v is the number of arcs
whose first component is v and is denoted d+(v). The
indegree of v is the number of arcs whose second com-
ponent is v and is denoted d−(v). In rooted phylogenies
and hybrid phylogenies, the outdegree of a node v is the
number of “children” of v, whereas the indegree of v is
the number of “parents” of v.

A directed path in a digraph is an alternating sequence

v0, a1, v1, a2, v2, . . . , vk−1, ak , vk

of nodes and arcs in which ai is an arc from vi−1 to vi
for all i , and no node or arc appears more than once.
Essentially, a path describes one way in which we can
get from one node to another following the direction of
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the arcs. A directed cycle of a digraph is a directed path
in which the first and last nodes are equal. A digraph is
acyclic if it has no directed cycles.

An acyclic digraph D with no underlying parallel
edges (that is, no pair of arcs joining the same two nodes)
is rooted if there is a distinguished node ρ, called the root,
with the properties that d−(ρ) = 0 and there is a directed
path from ρ to every node of D.

If D is a rooted digraph, then a rooted subtree of D is
any rooted tree that is obtained from D by deleting nodes
(and any arcs incident with these nodes) and arcs.

We now formally describe rooted phylogenetic trees
and hybrid phylogenies. Throughout these definitions,
and indeed throughout this article, X will always denote
a set of extant species. A rooted phylogenetic tree T on X
is a rooted tree with no nodes that have both indegree
one and outdegree one, whose leaf set is X, and whose
root has outdegree at least two. In addition, T is binary or
fully resolved if all interior nodes have outdegree two. We
sometimes refer to X as the label set of T and denote it as
L(T ). Indeed, for a collection P of rooted phylogenetic
trees, we denote the union of the label sets of the trees in
P by L(P). Two rooted binary phylogenetic trees T1 and
T2 are shown in Figure 1.

A hybrid phylogeny H on X is a rooted acyclic digraph
in which

(i) X is the set of nodes of outdegree zero,
(ii) the root has outdegree at least two, and

(iii) for all nodes v with d+(v) = 1, we have d−(v) ≥ 2.

Nodes of indegree at least two (called hybridization nodes)
represent hybridization events. These correspond to an
exchange of genetic information between hypothetical
ancestors by processes such as horizontal gene transfer,
gene fusion, etc. To illustrate, a hybrid phylogeny H on
X = {a, b, c, d, e} is shown in Figure 1, where the root is
the topmost node. The node ∗ as well as the node labeled
b are hybridization nodes. Here and in all other figures,
it is implicit that arcs are directed downwards. Observe
that a rooted phylogenetic tree on X is a particular type

FIGURE 1. A hybrid phylogeny H, and two rooted phylogenetic
trees T1 and T2 displayed by H.

of hybrid phylogeny (one that contains no hybridization
nodes).

Let T be a rooted phylogenetic tree on X and let H be a
hybrid phylogeny on X′, where X ⊆ X′. Then H displays
T if T can be obtained from H by deleting nodes and
edges, and by replacing nodes of indegree one and out-
degree one and their incident edges with a single edge
(that is, suppressing nodes of indegree one and outdegree one).
Extending this to a collection P of rooted phylogenetic
trees, we say thatH displaysP ifH displays every tree in
P . For example, in Figure 1, the hybrid phylogeny H dis-
plays both T1 and T2. Biologically speaking, saying that
H displays T means that a gene tree with the topology
described by T could arise from an evolutionary history
depicted by H without requiring the action of other pro-
cesses such as lineage sorting.

The concept of display can be generalized to allow re-
finement of nonbinary trees; however, we do not require
this in this article.

An Underlying Tree for a Hybrid Phylogeny

Processes of reticulate evolution such as the evolution
of hybrid species seem to call into question the very ex-
istence of any meaningful concept of a tree of life. How-
ever, we now describe a simple mathematical result that
formalizes how there is always an underlying tree corre-
sponding to those parts of life that do not have a history
of reticulation. This result is similar in spirit (though dif-
ferent in detail) to results by Bafna and Bansal (2004),
Gusfield (2004), and Huson et al. (2005).

Let H = (V, E) be a hybrid phylogeny on X with root
node ρ. Let VC be the set of nodes of H that lie on at
least one undirected cycle (that is, a cycle that arises by
ignoring the orientation of the arcs). Let VT = (V − VC ) ∪
{ρ} ∪ X. For a node v of V, let c(v) denote the set of species
x in X for which there is a directed path from v to x
(i.e., c(v) is the extant species for which v is an ancestor,
often referred to as a cluster or a clade). To illustrate these
concepts, consider the hybrid phylogeny H shown in
Figure 2a. Here the nodes in VT are solid. Furthermore,
c(u) = {a, b, c} and c(z) = {d, e}.

A hierarchy C on X is a collection of subsets of X, con-
taining X and all singleton subsets of X, and satisfying
the property

A, B ∈ C ⇒ A∩ B ∈ {∅, A, B}.
Observe that the sets in C are nested—if they have one
or more species in common, then one set is a subset of
the other. It is a classical result in phylogenetics that a
hierarchy on X is exactly the set of clusters of a rooted
phylogenetic X-tree. Given a hybrid phylogeny H, the
following result describes a tree that underlies H. In-
formally speaking, it is the tree obtained by “collapsing”
portions ofHwhere hybridization has occurred. This has
the potential to give rise to trees that are poorly resolved
in places.

Proposition 1. Let H be a hybrid phylogeny on X with node
set V. Then the collection C = {c(v) : v ∈ VT } is a hierarchy
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FIGURE 2. (a) A hybrid phylogeny H and (b) the rooted phylogenetic tree associated with H as described in Proposition 1.

on X, in which case there is a rooted phylogenetic X-tree whose
set of clusters is C.

Proof. The proof is by contradiction. Suppose that {c(v) :
v ∈ VT } is not a hierarchy. By definition, there exist
nodes v1, v2 ∈ VT and elements a, b, x ∈ X such that x ∈
c(v1) ∩ c(v2), a ∈ c(v1) − c(v2), and b ∈ c(v2) − c(v1). Be-
cause c(v1) is not a subset of c(v2), there is no directed
path in H from v2 to v1. Similarly, there is no directed
path from v1 to v2. Because x ∈ c(v1) ∩ c(v2), there is a di-
rected path P1 from v1 to x and a directed path P2 from
v2 to x. Let v be the first node that is shared by both P1
and P2. Note that such a node exists since x is a node
shared by P1 and P2. Because there is no directed path
from v1 to v2 or v2 to v1, we know that v �= v1 and v �= v2.
Similarly, there exist directed paths Qi from ρ to vi (for
i = 1, 2) and we can let w be the last node that is shared
by Q1 and Q2. Again, such a node exists since ρ is shared
by both Q1 and Q2. Now if we ignore the direction of the
four paths P1, P2, Q1, and Q2, then the path from w to v1
(given by Q1) and w to v2 (given by Q2) and from v1 to v
(given by P1) and from v2 to v (given by P2) constitutes
an undirected cycle in H, contradicting the assumption
that v1, v2 ∈ VT . This completes the proof.

For the hybrid phylogeny H shown in Figure 2a, the
above construction yields the rooted phylogenetic tree T
shown in Figure 2b. Here C in the statement of Proposi-
tion 1 is

{{a, b, c, d, e}, {d, e}, {a}, {b}, {c}, {d}, {e}}.

Real-Time Hybrids

Maddison (1997) (see also Moret et al., 2004) pointed
out an important biological requirement of hybrid phylo-
genies. Namely, although a hybrid phylogeny might dis-
play two trees, there may be no process of hybridization
between contemporaneous taxa (either past or present)
that can realize this hybrid phylogeny. Nevertheless, by
allowing for additional (unsampled, or perhaps extinct)
taxa one can resolve this issue without introducing any
additional hybridizations. Essentially the role of such an
additional taxa is to “carry” a gene (or combination of
genes) from the past into some time when it can be in-

serted into the new hybrid species. Whether these taxa
really are (or were) present is another question, but if we
are concerned with just placing lower bounds on the de-
gree of hybridization then we can (conservatively) allow
them.

To illustrate this point, consider Figure 3. Both hybrid
phylogenies H and H′ display T1 and T2 using two hy-
bridization nodes. However, whereasHhas a “real-time”
realization (see Fig. 4)—a concept that will be formalized
in the fifth section, H′ has no such realization. To see the
latter, observe that the “parents” of the hybrid species
b must coexist in time and the parents of the hybrid
species c must also coexist in time. Yet, by considering
the ancestor-descendant relationships of these parents,
this is not possible. Nevertheless, by allowing another
species x that may be either extinct or not yet sampled,
one can provide such a realization to H′. This realization
is shown as H′′ in Figure 4.

In the fifth section we present an algorithm for deter-
mining whether a given hybrid phylogeny has a real-
time realization, or whether additional taxa (as in H′′ in
Fig. 4) might be required.

Finding the Minimal Degree of Hybridization

A topical question is, What is the smallest number or
reticulation events required to explain a set of gene trees?
This number sets a lower bound on the degree of retic-
ulation that has occurred in the evolution of the species
under consideration. If this initial set of data is a collec-
tion of rooted phylogenetic trees, this problem can be
interpreted within the framework of hybrid phylogenies
as follows.

For a hybrid phylogeny H with node set V and root ρ,
set

h(H) =
∑

v∈V;v �=ρ

(d−(v) − 1).

Note that, as d−(v) is the number of parents of v and every
node has exactly one parent if there is no hybridization,
d−(v) − 1 is the number of “extra parents” that v has.
Observe that h(H) ≥ 0, and h(H) = 0 precisely if H is a
rooted phylogenetic tree. Extending this definition, the
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FIGURE 3. Two rooted phylogenetic trees T1 and T2 and two hybrid phylogenies H and H′ that display T1 and T2.

hybrid number of a collection P of rooted phylogenetic
trees is

h(P) = min{h(H) : H is a hybrid phylogeny

that displays P}.

The value h(P) represents the smallest number of
hybridization events that are required to explain P .
Bordewich and Semple (2005) showed that computing
this number is NP-hard even in the simplest case that P
consists of just two rooted binary phylogenetic trees on
the same leaf sets. However, despite this negative result,
there are some attractive and useful positive results that
have recently been described for computing and bound-
ing h(P). We describe these in the next section.

THE MINIMUM NUMBER OF HYBRID EVENTS REQUIRED
FOR TWO TREES

We begin this section with some further graph-
theoretic notation. Let T be a rooted binary phylogenetic
X-tree and let Abe a subset of X. We denote the minimal
rooted subtree of T that connects the elements in A by
T (A). Furthermore, we use T |Ato denote the rooted sub-
tree that is obtained from T (A) by suppressing all nodes
of indegree one and outdegree one.

FIGURE 4. Two hybrid phylogenies that explain the real-time evo-
lutionary histories of T1 and T2 in Figure 3.

Now let T and T ′ be two rooted binary phylogenetic
X-trees. We will write h(T , T ′) to denote h(P) for P =
{T , T ′}.

The first result we describe shows how one can sim-
plify the calculation of h(T , T ′) when one or more clus-
ters are shared by both T and T ′. More precisely, suppose
that A ⊂ X is a cluster of both T and T ′ (that is, there is
a node of each tree that has A as its set of descendants
in X). Let T |A and T ′|A denote the subtree of T and T ′
(respectively) that have leaf set A, and let Ta and T ′

a be
the rooted trees obtained from T and T ′ (respectively) by
replacing the subtree having leaf set A with a new leaf a .

Theorem 1. Let T and T ′ be two rooted binary phylogenetic
X-trees. Suppose that A ⊂ X is a cluster of both T and T ′.
Then

h(T , T ′) = h(T |A, T ′|A) + h(Ta , T ′
a ).

The proof of Theorem 1 is given in Appendix 1. This
result is typical of other relationships that can be estab-
lished by exploiting a description of h(T , T ′) in terms
of what has recently been called a “good-agreement-
forest” for the pair T and T ′ (see Baroni et al., 2005).
(“Good” is an overused term, so in this article we will re-
fer to such agreement forests as “acyclic.”) We describe
this connection now and provide an application in the
next section to show how these results can be used in
practice.

To make the interpretation work, we regard the root
of both T and T ′ as a node ρ that is adjoined to the
original root by a new edge. Furthermore, we view ρ
as part of the label sets of both T and T ′; that is, we
view the label sets of T and T ′ as X ∪ {ρ}. For example,
consider the two rooted binary phylogenetic trees T and
T ′ shown in the top part of Figure 5. For the purposes
of the interpretation, we view T and T ′ as shown in the
bottom part of Figure 5.



50 SYSTEMATIC BIOLOGY VOL. 55

FIGURE 5. Two rooted binary phylogenetic trees T and T ′ without (above) and with (below) their root labeled ρ.

An agreement forest forT andT ′ with k + 1 components
is a collection {Tρ , T1, T2, . . . , Tk}, whereTρ is a rooted tree
whose label setLρ includesρ andT1, T2, . . . , Tk are rooted
binary phylogenetic trees with label sets L1, L2, . . . , Lk
such that the following properties are satisfied:

(i) The label sets Lρ , L1, L2, . . . , Lk partition X ∪ {ρ}.
(ii) For all i ∈ {ρ , 1, 2, . . . , k}, Ti is the same as (isomor-

phic to) T |Li and T ′|Li .
(iii) The trees in {T (Li ) : i ∈ {ρ , 1, 2, . . . , k}} and {T ′(Li ) :

i ∈ {ρ , 1, 2, . . . , k}} are node disjoint rooted subtrees
of T and T ′, respectively.

More informally,F is an agreement forest for T and T ′ if,
up to suppressing degree-two nodes, F can be obtained
from each of T and T ′ by deleting |F | − 1 edges. As an
example, the two forests F1 and F2 shown in Figure 6 are
both agreement forests for the two trees T and T ′ shown
in Figure 5.

It has recently been shown (Bordewich and Semple,
2004) that for any two rooted binary phylogenetic trees
T and T ′ on the same leaf set, the smallest value of k
of any agreement forest for T and T ′ equals the rooted
subtree prune and regraft distance between T and T ′. De-
noted drSPR(T , T ′), this distance is the minimum number
of rooted subtree prune and regraft operations required

FIGURE 6. Two agreement forests for the two rooted binary phylogenetic trees shown in Figure 5.

to transform T into T ′. It is tempting to conjecture that
drSPR(T , T ′) and h(T , T ′) are identical, and indeed the for-
mer takes the value 1 if and only if the latter does. How-
ever, drSPR(T , T ′) is only a lower bound for h(T , T ′), and
one can construct pairs of trees T and T ′ on n species
such that drSPR(T , T ′) = 2 yet h(T , T ′) > n

2 − 1 (Baroni
et al., 2005).

An agreement forest for T and T ′ is a maximum-
agreement forest if, amongst all agreement forests for T
andT ′, it has the smallest number of components. To con-
tinue the previous example, it is straightforward to check
that the forest F1 in Figure 6 is a maximum-agreement
forest for the two trees T and T ′ in Figure 5. Thus
the rooted subtree prune and regraft distance between
these two trees is 2. For the interpretation of h(T , T ′)
in terms of agreement forest, we need one further
definition.

Let F = {Tρ , T1, T2, . . . , Tk} be an agreement forest for
T and T ′. Let GF be the directed graph whose nodes
represent the trees in F and for which (Ti , T j ) is a di-
rected edge from the node representing Ti to the node
representing T j precisely if i �= j and either

(I) the root of the subtree T (Li ) in T is an ancestor of
the root of the subtree T (L j ) in T , or
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FIGURE 7. The graph GF1 .

(II) the root of the subtree T ′(Li ) in T ′ is an ancestor of
the root of the subtree T ′(L j ) in T ′.

Because F is an agreement forest, the roots of the sub-
trees T (Li ) and T (L j ) and the roots of the subtrees T ′(Li )
and T ′(L j ) are not the same. We call F a acyclic-agreement
forest if GF is acyclic; that is, if GF has no directed cycles.
Furthermore, if over all acyclic-agreement forests for T
and T ′, F contains the smallest number of components,
then F is a maximum-acyclic-agreement forest for T and
T ′, in which case we denote this value of k by mg(T , T ′).
Observe that mg(T , T ′) = 0 if and only if, up to isomor-
phism, T and T ′ are identical. The forest F2 in Figure 6
is a acyclic-agreement forest for the two trees T and T ′
in Figure 5. Indeed, this forest is a maximum-acyclic-
agreement forest for T and T ′. To see that F1 is not a
acyclic-agreement forest for T and T ′, observe that GF1

contains a directed cycle (see Fig. 7, where the nodes are
drawn as large circles enclosing the trees they represent).

The interpretation of the hybrid number of two rooted
binary phylogenetic trees on the same label sets in terms
of agreement forests is stated in following theorem which
is established by Baroni et al. (2005).

Theorem 2. Let T and T ′ be two rooted binary phylogenetic
X-trees. Then

h(T , T ′) = mg(T , T ′).

For example, it follows from Theorem 2 that the value
of h(T , T ′) for the two trees in Figure 5 is 3.

We mentioned previously that computing h(T , T ′) is
NP-hard. The reason for this is that finding a maximum-
acyclic-agreement forest for T and T ′ is NP-hard. Cur-
rently, the best known method for finding such a forest is
trial and error. However, if one has an acyclic-agreement
forest F (not necessarily maximum) for T and T ′, then
there is a simple algorithm using F for constructing a
hybrid phylogeny that displays both T and T ′. This al-
gorithm is provided by the inductive proof of Theorem 2
in Baroni et al. (2005) and is given below.

There is a simple, fast, and well-known way of decid-
ing whether or not a directed graph D is acyclic. Find a
node, v1 say, that has indegree zero. If there is no such
node, then D contains a directed cycle. Now delete v1
(and all arcs incident with v1) from D, and find a node, v2
say, that has degree zero. Again, if there is no such node,

D contains a directed cycle. Deleting v2 and continuing
in this way, we eventually find that D is not acyclic or
obtain an ordering of the nodes, v1, v2, . . . , vn say of D, so
that for all i ∈ {1, 2, . . . , n}, the node vi has indegree zero
in the digraph obtained from D by deleting the nodes
v1, v2, . . . , vi−1 and all edges incident with these nodes.
This ordering implies that D is acyclic (see Lemma 1 in
Appendix 1). Consequently, we will call such an ordering
an acyclic ordering of D. We remark here that this process
is formally incorporated in the algorithm given in the
fifth section.

The algorithm for constructing a hybrid phylogeny
from an acyclic-agreement forest F is as follows. Note
that, in any acyclic ordering of GF , the node Tρ always
appears first.

Algorithm: HYBRIDPHYLOGENY (F)
Input: An acyclic-agreement forestF for two rooted

binary phylogenetic X-trees T and T ′ with
k + 1 components.

Output: A hybrid phylogeny H that displays both T
and T ′ in which the number of hybridization
nodes is k.

1. Find an acyclic ordering, Tρ , T1, T2, . . . , Tk say, of GF .
2. Set H0 = Tρ and set i = 1.
3. Attach Ti to Hi−1 via two new edges. Each of

these edges join the root of Ti to some (not nec-
essarily distinct) edge of Hi−1. These edges are
added so that the resulting hybrid phylogeny displays
T |L({Tρ , T1, . . . , Ti }) and T ′|L({Tρ , T1, . . . , Ti }).

Set Hi to be the resulting hybrid phylogeny, and re-
turn Hi if i = k.

4. Increment i by 1 and go to Step 3.

APPLICATION

In this section, we apply the theory of the last sec-
tion to two phylogenetic trees on 46 sequences of alpine
Rununculi of New Zealand, reported by Lockhart et al.
(2001). The first tree was constructed from nuclear ITS
sequences, whereas the second was constructed from
chloroplast (J SA) sequences (for details see Lockhart et
al., 2001). The two trees showed considerable agreement;
however, there was also a fair degree of incompatibility.
One possible explanation for this incompatibility is the
occurrence of hybrid evolution, whereby the nuclear ITS
sequence has a different history to the chloroplast (JSA)
sequences. Of course, there may be other sources of phy-
logenetic error (sampling effects such as noise, model
misspecification, lineage sorting) that could cause the
two trees to conflict, even in the absence of any hybrid
evolution. Nevertheless, we can still ask the following
question: Assuming the two trees correctly describe the
history of the two genes, and their incongruence is due to
hybrid evolution, what is the smallest number of hybrid
events required to explain this? The study is complicated
slightly by the fact that neither tree is binary. In this case,
we took a conservative approach and allowed nonbinary
subtrees to be resolved in any way that helped minimize
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FIGURE 8. The tree T1 for nuclear ITS sequences and T2 for chloroplast J SA sequences from Lockhart et al. (2001) restricted to Group I.

the required number of hybridization events. Also, for
the sake of illustration in this article, we will restrict at-
tention to a subgroup (“Group I”) of the sequences con-
sisting of 20 sequences. This group is a candidate for
reticulate evolution, since the F1 progeny of hybrid ori-
gin are known to be fertile (Fisher, 1965). The two trees
for these 20 sequences are shown in Figure 8, with T1 the
nuclear, and T2 the chloroplast tree.

For T1 and T2, one can identify five clusters (denoted
l1 to l5 in Fig. 8) shared by these two trees; this allows us
to apply Theorem 1. In this way we reduce the problem
from comparing two 20-taxon trees to one of comparing
two 5-taxon trees (each having leaf set l1, . . . , l5), to-
gether with the trees on the shared clusters (in fact, these
latter trees do not contribute to the h score, because
all these pairs of cluster subtrees are compatible). Now
using Theorem 2 one can show using a detailed case
analysis that h(T1, T2) = 3. Figure 9 shows one hybrid
phylogeny (H) that displays the five clusters shared by
T1 and T2 with three hybrid events. Note that this is not
the only such phylogeny. Similarly, for the full set of 46
sequences it can be shown (by hand) that the h value

FIGURE 9. Two hybrid phylogenies that display T1 and T2 and requiring three hybridization events (the fewest possible for these two trees).

lies between 7 and 12 (Baroni, 2004). Thus, assuming
the trees are correct, we require at least 3 hybrid events
to describe the evolution of the Group I sequences, and
at least 7 hybrid events to describe the evolution of the
entire group of 46 sequences. We should stress that this
analysis is to illustrate the techniques, rather than to
formally show that there has been this degree of hybrid
evolution in the taxa described—as we mentioned, there
are other reasons why trees may disagree, and these
need to be considered (these other processes often leave
different statistical signatures from hybridization; see
Holder et al., 2001; Huson et al., 2005).

Using an argument similar to that used to show that
H′ in Figure 3 has no real-time realization (in the sense
described in earlier), it is easily checked that the hybrid
phylogeny H shown in Figure 9 also has no real-time
realization. However the hybrid phylogeny H′ in Fig-
ure 9 allows for a real-time hybrid evolution scenario,
with just two extra taxa y1 and y2. Although the analysis
of deciding a real-time realization could be resolved for
this small-scale example by an ad hoc case analysis, it is
clear that such a task could be complicated for a large
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and complex hybrid phylogeny. In the next section, we
present an algorithm to determine whether an arbitrary
hybrid phylogeny can be realized by hybrid evolution
between contemporaneous ancestral taxa.

AN ALGORITHM FOR REAL-TIME HYBRIDS

The concept of a real-time hybrid has been briefly and
informally mentioned already; now we formalize this
notion and provide an algorithm to determine whether
an arbitrary hybrid phylogeny can be realized in this way.
Some of the more technical parts of this section have been
moved to Appendix 1 to assist readability.

Let H be a hybrid phylogeny with node set V and
arc set A. We say that H has a temporal representation if
there exists a map f : V → N = {0, 1, 2, . . . , } with the
following properties:

(i) If v is a node of H with d−(v) = 1, then f (u) < f (v)
for the (only one) immediate ancestor u of v.

(ii) If v is a node of H with d−(v) ≥ 2, then f (u) = f (v)
for all immediate ancestors u of v.

Such a map is a called a temporal labeling of H. To illus-
trate, a temporal labeling of a hybrid phylogeny is shown
in Figure 10, where, for each node, the first element is the
node and the second element is the element of N assigned
under the temporal representation f . All rooted phylo-
genetic trees have a temporal representation. However,
not all hybrid phylogenies have such a representation.
For example, the hybrid phylogeny shown in Figure 11a,
which has the same shape as H′ shown in Figure 3, has
no temporal representation.

The main result of this section (Theorem 3) is to char-
acterize exactly when an arbitrary hybrid phylogeny has
a temporal representation. To this end, we next describe
a particular digraph DH associated with a fixed hybrid
phylogenyHwith node set V. This graph is not designed
to depict the evolutionary relationships, instead it sum-
marizes properties of H. The node set for this new graph
will be denoted [V] and will consist of nodes [v] that rep-
resent either a single node in H, or a subset of nodes in
H that must have been contemporaneous (because they
are nodes involved in the same hybridization event, as
parental species or as the child species). In particular,

FIGURE 10. A temporal labeling of a hybrid.

FIGURE 11. (a) A hybrid phylogeny H2 with no temporal represen-
tation and (b) its associated digraph DH2 .

let V and A be the node and arc sets of H, respectively.
Let

AT = {(u, v) ∈ A : d−(v) = 1}

and

AH = {(u, v) ∈ A : d−(v) ≥ 2}.

Any arc in AT is called a tree arc and any arc in AH is called
a hybridization arc. Note that the sets AT and AH partition
A. Ignoring the direction of the arcs of H, an equivalence
relation on V is now defined by setting [v] = {v} ∪ {u ∈
V : there is a path of hybridization arcs from u to v in H}.
Observe that if v is not incident with a hybridization arc,
then [v] = {v}. Set

[V] = {[v] : v ∈ V}.

We describe our associated digraph DH as follows. The
node set of DH is [V], and [u] and [v] are joined by an arc
([u], [v]) if there exists a ∈ [u] and b ∈ [v] such that (a, b)
is a tree arc in A. It is easily seen that DH is connected.
To illustrate, consider Figures 11 and 12. Figure 11b
shows the digraph DH2 , where H2 is shown in Figure 11a
with

[V] = {{r}, {s, c, v}, {u, b, t}, {a}, {d}}.

Furthermore, for the hybrid phylogeny H1 shown in Fig-
ure 12a, the digraph DH1 is shown in Figure 12b. To
provide some intuition for DH, we note that the arcs
in DH represent the direction of time. Thus a directed
cycle means that a descendant species is older than its
ancestors, which is not possible.

LetHbe a hybrid phylogeny and suppose that f : V →
N is a temporal labeling of H. Let f̄ be the map from [V]
to N that is defined by setting f̄ ([v]) = f (v) for all v ∈ V.
To see that this map is well defined, first observe that if
[u] = [v], then there is an (undirected) path from u to v
consisting of hybridization arcs. Because the end nodes
of any arc on this path are assigned the same natural
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FIGURE 12. (a) A hybrid phylogeny H1 and (b) its associated di-
graph DH1 .

number under f , it follows that all nodes in this path
are assigned the same natural number under f . Hence,
for all w, w′ ∈ [v], we have f (w) = f (w′). Thus f̄ is well
defined. Moreover, as f is a temporal labelling ofH, there
is no u and v in the same equivalence class such that (u, v)
is a tree arc.

The following result provides a concise characteriza-
tion for when a hybrid phylogeny has a temporal repre-
sentation; its proof is given in Appendix 1.

Theorem 3. A hybrid phylogeny H has a temporal represen-
tation if and only if DH is acyclic.

Theorem 3 is the basis for a polynomial-time algorithm
(TEMPREP) for determining whether or not a hybrid phy-
logeny has a temporal representation and, if so, provid-
ing a temporal labeling.

Algorithm: TEMPREP (H)
Input: A hybrid phylogeny H with node set V.

Output: A temporal labelling f of H or the statement
H has no temporal representation.

1. Construct DH.
2. Set i = 0 and D0 = DH.
3. Choose Si to be any non-empty set of nodes of Di that

have indegree zero. If there are no such nodes, then
halt and return H has no temporal representation.

4. Set Di+1 to the digraph resulting from Di by deleting
the nodes Si and all arcs incident with these nodes. If
Di+1 is the empty graph, then go to Step 5. Otherwise,
increment i by 1 and go to Step 3.

5. Define f : V → N by setting f (v) = i for all v ∈ V,
where [v] ∈ Si .

6. Return the map f .

The correctness of this algorithm is guaranteed by the
following result, whose proof is given in Appendix 1.

Theorem 4. Let H be a hybrid, and suppose that TEMPREP is
applied to H.

(i) IfH has a temporal representation, then TEMPREP returns
a temporal labelling of H.

(ii) If H has no temporal representation, then TEMPREP re-
turns the statement H has no temporal representation.

Moreover, the running time of TEMPREP is quadratic in the
size of the node set of H.

For example, if one takes the hybrid phylogeny H1 in
Figure 12a and apply the algorithm TEMPREP, we can
reconstruct the temporal representation shown in Fig-
ure 10. Note that there is some choice as to the assign-
ment of numbers for the leaves a and d. Such choices
will generally arise for any hybrid phylogeny that has
a temporal representation. Observe that it is the relative
ordering of the nodes and not the actual values assigned
by a temporal labeling that is important. We can make
this idea more precise as follows.

Let H be a hybrid phylogeny with node set V that
has a temporal representation, and let f1 and f2 be two
temporal temporal labelings of H. We say that f1 and f2
are ordering isomorphic if, for all u, v ∈ V, the following
hold:

(i) f1(u) < f1(v) if and only if f2(u) < f2(v);
(ii) f1(u) = f1(v) if and only if f2(u) = f2(v).

Using the results in this section (and Appendix 1) one
can construct an algorithm that lists, up to ordering iso-
morphism, all temporal labelings of H so that each such
labeling is outputted in polynomial time. An outline of
this algorithm is given in Appendix 1. It is important to
note that, as this list may be exponential in the size of V,
the algorithm itself is not guaranteed to run in polyno-
mial time.

We end this section by noting that, although a hybrid
phylogeny may have a temporal labeling, this does not
mean that unsampled lineages could not have been in-
volved in the event.

CONCLUDING REMARKS

The reconstruction and analysis of hybrid phylo-
genies gives rise to many challenging mathematical
and computational problems. We have described some
results that can help set lower bounds on the extent of
hybridization required to explain the conflict between
two phylogenetic trees. This is currently an active area
of research in bioinformatics (see, e.g., Huydn et al.,
2005; Huson et al., 2005). Ultimately, statistical questions
will also need to be addressed—for example, how
can one use differing bootstrap (or Bayesian posterior
probability) support values for different trees to quantify
and distinguish genuine reticulate evolution from other
phenomena (e.g., lineage sorting) that can give rise to
conflicting phylogenies? In the classical phylogenetic
analysis on trees, a combinatorial analysis often lays the
foundation for later statistical approaches (for example,
Peter Buneman’s work in the early 1970s concerning the
four-point condition provided a basis for now widely
used distance-based approaches in phylogenetics such
as neighbor-joining with model-corrected distances).
Combinatorial insights into hybrid phylogenies are
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likely also to help in developing statistically-based
approaches to the study of reticulate evolution.

We have also explored the issue of determining
whether a hybrid phylogeny has a real-time realization,
and provided a simple characterization (and algorithm)
for this task. This algorithm runs in polynomial time; and
a naive implementation would allow a running time that
is quadratic in the number of nodes, though it is possible
that a more clever implementation could improve this.

Lastly, in general, a hybrid phylogeny on X that dis-
plays a collection of rooted binary phylogenetic X-trees
need not be unique. Deciding whether there exists such
a hybrid phylogeny is an interesting question and one
that may have an attractive combinatorial solution.
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APPENDIX 1
Proof of Theorem 1

It is clear that the inequality holds if A = X. Therefore, we may as-
sume that A �= X. We first show that

h(T , T ′) ≤ h(T |A, T ′|A) + h(Ta , T ′
a ). (1)

Let FA be a maximum-acyclic-agreement forest for T |A and T ′|A,
and let Fa be a maximum-acyclic-agreement forest for T |a and T ′|a .
Let Ti,a be the unique tree inFa with a node labeled a , and let Tρ , A be the
unique tree in FA with a node labeled ρ. Let TA,a be the tree obtained by
adjoining Tρ , A to Ti,a via an edge joining ρ and a , removing the labels
ρ and a , and then suppressing any degree-two nodes. Because of the
acyclic conditions on FA and Fa , we have that

F = (FA ∪ Fa − {Ti,a , Tρ , A}) ∪ {TA,a }

is an acyclic-agreement forest for T and T ′ with |F | = |FA| + |Fa | − 1.
It now follows by Theorem 2 that

h(T |A, T ′|A) + h(Ta , T ′
a ) = |FA| − 1 + |Fa | − 1 = |F | − 1 ≥ h(T , T ′).

This establishes (1).
We next show that

h(T , T ′) ≥ h(T |A, T ′|A) + h(Ta , T ′
a ).

Let F be a maximum-acyclic-agreement forest for T and T ′. There are
two cases to consider:

(i) there exists Ti ∈ F such thatL(Ti ) ∩ A �= ∅ andL(Ti ) ∩ ((X − A) ∪
{ρ}) �= ∅, and

(ii) for all Ti ∈ F , either L(Ti ) ⊆ A or L(Ti ) ⊆ ((X − A) ∪ {ρ}).
Case (i). Assume that Ti is a such a tree in F . Then the minimal subtree
of T (and T ′) that contains the label set of Ti includes the root of T |A
(and T ′|A). Because F is an agreement forest, this implies that Ti is the
unique tree in F with the properties described in (i).

Let x ∈ L(Ti ) ∩ A, and let Ti,a be the tree obtained from Ti |((X − A) ∪
{ρ} ∪ {x}) by relabeling x as a . Furthermore, let Ti, A be the tree obtained
from Ti |A by adding ρ at the end of a pendant edge adjoined to the
root of Ti |A. Then, as F is an acyclic-agreement forest for T and T ′,

FA = {T j ∈ F : L(T j ) ⊆ A} ∪ {Ti, A}



56 SYSTEMATIC BIOLOGY VOL. 55

is an acyclic-agreement forest for T |A and T ′|A, and

Fa = {T j ∈ F : L(T j ) ⊆ ((X − A) ∪ {ρ})} ∪ {Ti,a }

is an acyclic-agreement forest forTa andT ′
a . Since |F | = |FA| + |Fa | − 1,

we have that

h(T , T ′) = |F | − 1 = (|FA| + |Fa | − 1) − 1 ≥ h(T |A, T ′|A) + h(Ta , T ′
a ).

This establishes (2) for (i).

Case (ii). Because GF does not contain any directed cycles, it follows
that the sub-digraph ofGF induced by the set {Ti ∈ F : L(Ti ) ⊆ A} does
not contain any directed cycles. This means that this sub-digraph has
a node, T0 say, of indegree zero. Let T0,ρ be the tree obtained from T0

by adding ρ at the end of a pendant edge adjoined to the root of T0.
Since F is an acyclic-agreement forest for T and T ′, it is easily seen
that

FA = ({Ti ∈ F : L(Ti ) ⊆ A} − {T0}) ∪ {T0,ρ}

is an acyclic-agreement forest for T |A and T ′|A, and

Fa = {T j ∈ F : L(T j ) ⊆ ((X − A) ∪ {ρ})} ∪ {a}

is an acyclic-agreement forest for Ta and T ′
a , where a is used denote the

tree consisting of a single node labelled a . Thus |F | = |FA| + |Fa | − 1,
and so, by Theorem 2,

h(T , T ′) = |F | − 1 = (|FA| + |Fa | − 1) − 1 ≥ h(T |A, T ′|A) + h(Ta , T ′
a ).

This establishes (2) for (ii). Combining (1) and (2) completes the proof
of the theorem.

Proof of Theorem 3
Let D be a digraph with node set V and arc set A, and suppose that

D is acyclic. In an earlier section, we described the concept of an acyclic
ordering of D. It is easily seen that this is equivalent to there being a
map g : V → N such that, for all (u, v) ∈ A, we have g(u) < g(v). Such
a map g will prove useful in proving Theorem 3.

The following lemma is well known and easily proved (for example,
see Bang-Jensen and Guitin, 2001).

Lemma 1. A digraph is acyclic if and only if it has an acyclic ordering.

Proposition 2. LetH be a hybrid phylogeny with node set V and suppose that
f : V → N is a temporal labeling of H. Then f̄ induces an acyclic ordering
of [V]. In particular, DH is acyclic.

Proof. Let f : V → N be a temporal labeling of H, and consider DH.
Let ([u], [v]) be an arc of DH. To prove the proposition it suffices to
show by Lemma 1 that f̄ ([u]) < f̄ ([v]). Now, by definition, there exist
elements a ∈ [u] and b ∈ [v] such that (a, b) is a tree arc of H. Because
f is a temporal labeling of H, we have that f (a ) < f (b), which in turn
implies that f̄ ([u]) < f̄ ([v]) as required.

Proposition 3. Let H be a hybrid phylogeny with node set V, and suppose
that DH is acyclic. Let g be an acyclic ordering of [V]. Let f be the map from

V into N defined by setting f (v) = g([v]). Then f is a temporal labeling of
H.

Proof. Let (u, v) be an arc of H. First assume that (u, v) is a tree arc. Then
u and v are in different equivalence classes; otherwise, DH contains a
loop contradicting the fact that DH is acyclic. Furthermore, there is an
arc from [u] to [v] in DH. It now follows that f (u) < f (v).

Now assume that (u, v) is a hybridization arc of H. Then [u] = [v],
and so f (u) = f (v). Hence, by definition, f is a temporal labeling of H.

Combining Propositions 2 and 3, we obtain Theorem 3.

Proof of Theorem 4
To see that TEMPREP does indeed work, we begin with the following

well-known and easily proved lemma.

Lemma 2. Let D be a digraph that contains no directed cycle. Then there
exists a node of D whose indegree is zero.

To prove part (i) of Theorem 4, suppose that H has a temporal
representation. Then, by Theorem 3, DH has no directed cycles. By
Lemma 2, this implies that every subdigraph obtained from DH by
deleting nodes (and their incident arcs) contains at least one node
of indegree zero. It now follows that TEMPREP applied to H returns
a map f : V → N. To see that f is a temporal labeling of H, define
g : [V] → N by setting g([v]) = Si , where [v] ∈ Si . Because of the way in
which S0, S1, S2, . . . are constructed, g is an acyclic ordering of the nodes
of DH. Therefore, by Proposition 3, the map f is a temporal labeling
of H.

For the proof of part (ii) of Theorem 4 suppose thatHhas no temporal
representation. Then, by Theorem 3, DH contains a directed cycle. Let
{[v1], [v2], . . . , [vk ]} be the nodes in this cycle, where we may assume
that ([v j ], [v j+1]) for all j and ([vk ], [v1]) are arcs of this cycle. It is now
easily seen that beginning with DH, and selecting and removing only
nodes with indegree zero none of the nodes in this cycle can ever be
removed. Thus at some iteration i of TEMPREP when applied to H, no
node of Di has indegree zero, in which case TEMPREP halts and returns
H has no temporal representation. This completes the proof of (ii).

We leave the straightforward check that the running time of
TEMPREP applied to H is quadratic in the size of the node set of H
to the reader.

Outline of An Algorithm to Output All Temporal Labelings
of a Hybrid Phylogeny, Up to Order Isomorphism

By Proposition 2, each temporal labeling of H induces an acyclic
ordering of the node set [V] of DH. Conversely, by Proposition 3, each
acyclic ordering of [V] induces a temporal labeling of H. It follows that
ifH has a temporal representation, then all temporal labelings ofH can
be found by finding all acyclic orderings of [V]. Using the first part of
the proof of Theorem 3, it is easily checked that all such orderings can be
obtained by considering all possible ways of reducing DH to the empty
graph by sequentially selecting and then deleting subsets of nodes of
indegree zero. Because it is only the relative ordering of the nodes of
H that are of interest, it follows that it is only the order in which these
subsets are chosen that is important. Each possible way of reducing DH
to the empty graph gives rise to a unique sequence of chosen subsets of
nodes of DH. In TEMPREP, this corresponds to all possible choices for
the sequence S0, S1, S2, . . .. Furthermore, each such sequence induces,
up to ordering isomorphism, a unique temporal labeling of H. Hence
to list, up to ordering isomorphism, all temporal labelings of H one
simply needs to systematically find all possible choices for selecting
S0, S1, S2, . . . in TEMPREP.


