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Abstract Given any finite and closed chemical reaction system, it is possible to
efficiently determine whether or not it contains a ‘self-sustaining and collectively
autocatalytic’ subset of reactions, and to find such subsets when they exist. However,
for systems that are potentially open-ended (for example, when no prescribed upper
bound is placed on the complexity or size/length of molecules types), the theory devel-
oped for the finite case breaks down. We investigate a number of subtleties that arise
in such systems that are absent in the finite setting, and present several new results.

Keywords Chemical reaction system · Autocatalytic network · ω-continuity

1 Introduction

Consider any system of chemical reactions, in which certain molecule types catal-
yse reactions and where there is a pool of simple molecule types available from the
environment (a ‘food source’). One can then ask whether, within this system, there
is a subset of reactions that is both self-sustaining (each molecule can be constructed
starting just from the food source) and collectively autocatalytic (every reaction is
catalysed by some molecule produced by the system or present in the food set) [8,9].
This notion of ‘self-sustaining and collectively autocatalytic’ needs to be carefully
formalised (we do so below), and is relevant to some basic questions such as how bio-
chemical metabolism began at the origin of life [2,11,14,15]. A simple mathematical
framework for formalising and studying such self-sustaining autocatalytic networks
has been developed—so-called ‘RAF (reflexively-autocatalytic and F-generated)
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theory’. This theory includes an algorithm to determine whether such networks exists
within a larger system, and for classifying these networks; moreover, the theory allows
us to calculate the probability of the formation of such systems within networks based
on the ligation and cleavage of polymers, and a random pattern of catalysis.

However, this theory relies heavily on the system being closed and finite. In certain
settings, it is useful to consider polymers of arbitrary length being formed (e.g. in
generating the membrane for a protocell [4]). In these and other unbounded chem-
ical systems, interesting complications arise for RAF theory, particularly where the
catalysis of certain reactions is possible only bymolecule types that are of greater com-
plexity/length than the reactants or product of the reactions in question. In this paper,
we extend earlier RAF theory to deal with unbounded chemical reaction systems. As
in some of our earlier work, our analysis ignores the dynamical aspects, which are
dealt with in other frameworks, such as ‘chemical organisation theory’ [1]; here we
concentrate instead on just the pattern of catalysis and the availability of reactants.

1.1 Preliminaries and definitions

In this paper, a chemical reaction system (CRS) consists of (i) a set X of molecule
types, (ii) a set R of reactions, (iii) a pattern of catalysis C that describes which
molecule(s) catalyses which reactions, and (iv) a distinguished subset F of X called
the food set.

We will denote a CRS as a quadrupleQ = (X,R,C, F), and encode the pattern of
catalysis C by specifying a subset of X × R so that (x, r) ∈ C precisely if molecule
type x catalyses reaction r . See Fig. 1 for a simple example (from [11]).

In certain applications, X often consist of—or at least contain—a set of polymers
(sequences) over some finite alphabetA (i.e. chains x1x2 · · · xr , r ≥ 1, where xi ∈ A),
as in Fig. 1; such polymer systems are particularly relevant to RNA or amino-acid
sequence models of early life. Reactions involving such polymers typically involve
cleavage and ligation (i.e. cutting and/or joining polymers), or adding or deleting a
letter to an existing chain. Notice that if no bound is put on the maximal length of the
polymers, then both X and R are infinite for such networks, even when |A| = 1.

Fig. 1 A simple CRS based on
polymers over a two-letter
alphabet (0,1), with a food set
F = {0, 1, 00, 11} and seven
reactions. Dashed arrows
indicate catalysis; solid arrows
show reactants entering a
reaction and products leaving. In
this CRS there are exactly four
RAFs (defined below), namely
{r1, r2}, {r3}, {r1, r2, r3}, and
{r1, r2, r3, r5}
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In this paper we do not necessarily assume that X consists of polymers, or that the
reactions are of any particular type. Thus, a reaction can be viewed formally as an
ordered pair (A, B) consisting of a multi-set A of elements from X (the reactants of r )
and a multi-set B of elements of X (the products of r ); but we will mostly use the
equivalent and more conventional notation of writing a reaction in the form:

r = (a1 + a2 + · · · + ak → b1 + b2 + · · · + bl),

where the ai ’s (reactants of r ) and b j ’s (products of r ) are elements of X , and k, l ≥ 1
(e.g. x → y, x + x → y and y → x + x ′ are reactions). When considering a set of
such reactions, one can also allow for some (or all) of the reactions to be reversible
(i.e. of the form A � B) by ensuring that both the forward and backward reactions
(i.e. A → B and B → A) are present in the set.

In this paper, we extend our earlier analysis of RAFs to the general (finite or infinite)
case andfind that certain subtleties arise that are absent in thefinite case.Wewillmostly
assume the following conditions (A1) and (A2), and sometimes also (A3).

(A1) F is finite;
(A2) each reaction r ∈ R has a finite set of reactants, denoted ρ(r), and a finite set

of products, denoted π(r);
(A3) for anygivenfinite setY ofmolecule types, there are onlyfinitelymany reactions

r with ρ(r) = Y .

Given a subset R′ of R, we say that a subset W ⊆ X of molecule types is closed
relative to R′ if W satisfies the property r ∈ R′ and ρ(r) ⊆ W ⇒ π(r) ⊆ W. In
other words, a set of molecule types is closed relative to R′ if every molecule that
can be produced from W using reactions in R′ is already present in W . Notice that
the full set X is itself closed. The global closure of F relative to R′, denoted here as
gclR′(F), is the intersection of all closed sets that contain F (since X is closed, this
intersection is well defined). Thus gclR′(F) is the unique minimal set of molecule
types containing F that is closed relative to R′.

We can also consider a constructive closure of F relative to R′, denoted here as
cclR′(F), which is union of the set F and the set of molecule types x that can be
obtained from F by carrying out any finite sequence of reactions from R′ where, for
each reaction r in the sequence, each reactant of r is either an elements of F or a
product of a reaction occurring earlier in the sequence, and x is a product of the last
reaction in the sequence.

Note that gclR′(F) always contains cclR′(F) (and these two sets coincide when the
CRS is finite) but, for an infinite CRS, cclR′(F) can be a strict subset of gclR′(F), even
when (A1) holds. To see this, consider the system (X,R)where X = {x0, x1, x2, . . .},
F = { f }, where R′ = {r0, r1, r2, r3, . . .} is defined as follows:

r1 = ( f → x1);
r j = ( f + x j → x j+1), for all j ≥ 1;
r0 = (x1 + x2 + · · · → x0).
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Then x0 ∈ gclR′(F) − cclR′(F). In this example, notice that r0 has infinitely many
reactants, which violates (A2). By contrast, when (A2) holds, we have the following
result.

Lemma 1 Suppose that (A2) holds. Then cclR′(F) = gclR′(F). Moreover, under
(A1) and (A2), if R′ is countable, then this (common) closure of F relative to R′ is
countable also.

Proof Suppose the condition of Lemma1 holds but that cclR′(F) is not closed;wewill
derive a contradiction. Lack of closure means there is a molecule x in X − cclR′(F)

which is the product of some reaction r ∈ R′ that has all its reactants in cclR′(F). By
(A2), the set of reactants of r is finite, so we may list them as x1, x2, . . . , xk , and, by
the definition of cclR′(F), for each i ∈ {1, . . . , k}, either xi ∈ F or there is a finite
sequence Si of reactions fromR′ that generates xi starting from reactants entirely in F
and using just elements of F or products of reactions appearing earlier in the sequence
Si . By concatenating these sequences (in any order) and appending r at the end, we
obtain a finite sequence of reactions that generate x from F , which contradicts the
assumption that cclR′(F) is not closed. If follows that cclR′(F) is closed relative to
R′, and since it is clearly a minimal set containing F that is closed relative to R′, it
follows that cclR′(F) = gclR′(F). That cclR′(F) is countable under (A1) and (A2)
follows from the fact that any countable union of finite sets is countable. �	
In view of Lemma 1, whenever (A2) holds, we will henceforth denote the (common)
closure of F relative toR′ as clR′(F).

Definition [RAF, and related concepts]
Suppose we have a CRSQ = (X,R,C, F) that satisfies condition (A2). An RAF for
Q is a non-empty subset R′ ofR for which:

(i) for each r ∈ R′, one has ρ(r) ⊆ clR′(F); and
(ii) for each r ∈ R′, at least one molecule type in clR′(F) catalyses r .

In words, a non-empty set R′ of reactions forms an RAF for Q if, for every reaction
r in R′, each reactant of r and at least one catalyst of r is either present in F or able
to be constructed from F by using just reactions from within the setR′.

An RAF R′ for Q is said to be a finite RAF or an infinite RAF depending on
whether or not |R′| is finite or infinite. The concept of an RAF is a formalisation of a
‘collectively autocatalytic set’, pioneered by Stuart Kauffman [8,9]. Since the union
of any collection of RAFs is also an RAF, any CRS that contains an RAF necessarily
contains a unique maximal RAF. An irrRAF is an (infinite or finite) RAF that is
minimal—i.e. it contains no RAF as a strict subset. In contrast to the uniqueness of
the maximal RAF, a finite CRS can have exponentially many irrRAFs [7].

The RAF concept needs to be distinguished from the stronger notion of a construc-
tively autocatalytic and F-generated (CAF) set [10] which requires that R′ can be
ordered r1, r2, . . . , rN so that all the reactants and at least one catalyst of ri are present
in cl{r1,...,ri−1}(F) for all i ∈ {1, . . . , N } (in the initial case where i = 1, we take
cl∅(F) = F). This condition essentially means that, in a CAF, each reaction can only
proceed if one of its catalysts is already available. By contrast, an RAF could become
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Fig. 2 Examples of a finite RAF (that is not a CAF), a finite CAF and a finite pseudo-RAF (that is not
an RAF). In these examples, the molecule types are round nodes (the food set is denoted f1, f2, . . ., and
p1, p2, . . . are products), reactions are hollow squares, and dashed arrows indicate catalysis

established by allowing one or more reactions r to proceed uncatalysed (presumably
at a much slower rate) so that later, in some chain of reactions, a catalyst for r is
generated, allowing the whole system to ‘speed up’. Notice that although the CRS in
Fig. 1 has four RAFs it has no CAF.

The RAF concept also needs to be distinguished from the weaker notion of a
pseudo-RAF [12], which replaces condition (ii) with the relaxed condition:

(ii)′: for all r ∈ R′, there exists x ∈ F or x ∈ π(r) for some r ∈ R′ such that
(x, r) ∈ C .

In other words, a pseudo-RAF that fails to be an RAF is an autocatalytic system that
could continue to persist once it exists, but it can never form from just the food set F ,
since it is not F-generated.

These two alternatives notions to RAFs are illustrated (in the finite setting) in
Fig. 2. Notice that every CAF is an RAF and every RAF is a pseudo-RAF, but these
containments are strict, as Fig. 2 shows.

While the notion of a CAF may seem reasonable, it is arguably too conservative in
comparison to an RAF, since a reaction can still proceed if no catalyst is present, albeit
it at a much slower rate, allowing the required catalyst to eventually be produced by
subsequent reactions. However relaxing the RAF definition further to a pseudo-RAF is
problematic (since a reaction cannot proceed at all, unless all its reactants are present,
and so such a system cannot arise spontaneously just from F). This, along with other
desirable properties of RAFs (their formation requires only low levels of catalysis in
contrast to CAFs [10]), suggests that RAFs are a reasonable candidate for capturing the
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minimal necessary condition for self-sustaining autocatalysis, particularly in models
of the origin of metabolism.

1.2 Properties of RAFs in an infinite CRS

As in the finite CRS setting, the union of all RAFs is an RAF, so any CRS that contains
an RAF has a unique maximal one. It is easily seen that an infinite CRS that contains
an RAF need not have a maximal finite RAF, even under (A1)–(A3), but in this case,
the CRS would necessarily also contain an infinite RAF (the union of all the finite
RAFs).

A natural question is the following: if an infinite CRS contains an infinite RAF,
does it also contain a finite one? It is easily seen that even under conditions (A1) and
(A2), the answer to this last question is ‘no’. We provide three examples to illustrate
different ways in which this can occur. This is in contrast to CAFs, for which exactly
the opposite holds: if a CRS contains an infinite CAF, then it necessarily contains a
sequence of finite ones. Moreover, two of the infinite RAFs in the following example
contain no irrRAFs (in contrast to the finite case, where every RAF contains at least
one irrRAF).

Example 1 Let X = { f, x1, . . . , xn, . . .}, F = { f } and R = {r1, r2, . . . , rn, . . .}. Let
r1 = ( f → x1). We will specify particular CRS’s by describing r2, r3, . . ., and the
pattern of catalysis as follows.

– Q1 has a reaction ri = ( f + xi−1 → xi ) for each i > 1 and ri is catalysed by
xi+1 for each i ≥ 1.

– Q2 has a reaction ri = ( f + f + · · · + f [i times] → xi ) for each i > 1 and ri is
catalysed by xi+1 for each i ≥ 1.

– Q3 has the same reactions as Q2 but ri is now catalysed by every x j : j > i .

Fig. 3 illustrates the three CRS’s.
Each of Q1,Q2,Q3 satisfy (A1) and (A2), but only Q1 satisfies (A3). All three

CRSs contain infinite RAFs, but no finite RAF, and no CAF. More precisely:

– Q1 has R as its unique RAF (which is therefore an irrRAF).
– The RAFs of Q2 consist precisely of all subsets of {r j , r j+1, . . . , } for some j .
Thus Q2 has a countably infinite number of RAFs but no irrRAF.

x1 x2 x3

f

Q1

x1 x2 x3

f

Q2

x1 x2 x3

Q3

f

Fig. 3 Three simple examples of infinite CRSs that have infinite RAFs but no finite RAF
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– The RAFs of Q3 consist precisely of all infinite subsets of R. Thus, the set of
RAFs for Q3 in uncountably infinite, and it contains no irrRAF.

2 Determining whether or not a CRS contains an RAF

In this section, we assume that both (A1) and (A2) hold. Given a CRS Q =
(X,R,C, F), consider the following nested decreasing sequence of reactions:
R1,R2, . . . , defined byR1 = R and for each i > 1:

Ri+1 = {r ∈ Ri : ρ(r) ⊆ clRi (F), and ∃x ∈ clRi (F): (x, r) ∈ C}. (1)

Thus,Ri+1 is obtained fromRi by removing any reaction that fails to have either all
its reactants or at least one catalyst in the closure of F relative to Ri . Let μ(Q) =⋂

i≥1Ri . It is easily shown that any RAF R′ present in Q is necessarily a subset of
μ(Q) (sinceR′ ⊆ Ri for all i ≥ 1 by induction on i). Thus if μ(Q) = ∅ thenQ does
not have an RAF. In the finite case there is a strong converse—ifμ(Q) �= ∅ thenQ has
an RAF, and μ(Q) is the unique maximal RAF for Q (this is the basis for the ‘RAF
algorithm’ from [5] and [6]). However, in contrast, this result can fail for an infinite
CRS, as we now show with a simple example, which also satisfies (A1)–(A3).

Example 2 Consider the following infiniteCRS,Q4 = (X,R,C, F), where F = { f },
and X = { f, s, t, } ∪ {x1, x2, x3, . . .} ∪ F , where

F = { f, f f, f f f, . . . , f (i), . . .}

(this last set can be thought of as all polymers of f ). The reaction set is R =
{r1, r2, r3, . . .} ∪ {r ′

2, r
′
3, . . .}, where, for all i ≥ 1:

ri = ( f + f (i) → f (i+1));

r ′
i = ( f (i) → xi + s).

The pattern of catalysis is defined as follows: s catalyses r1 and t catalyses r ′
2, and for

all i > 1 f (i) catalyses ri and xi catalyses r ′
i+1. This CRS is illustrated in Fig 4.

Notice thatQ4 satisfies (A1), (A2) and (A3). However, if we construct the sequence
Ri described above, then as the sole catalyst (t) of r ′

2 is neither in the food set, nor
generated by any other reaction, it follows that r ′

2 will be absent fromR2, and so r ′
3 will

also be absent fromR3 (since the only catalyst of r ′
3 is produced by r

′
2). Continuing in

this way, we obtain μ(Q4) = {r1, r2, r3, . . .}, but this set is not an RAF, since the sole
catalyst s of r1 does not lie lie in the closure of F relative to {r1, r2, r3, . . .}—instead s
is produced by the r ′

j reactions and these have all disappeared in the limit. Moreover,
it is clear that no subset of Q4 is an RAF. �	

Thus, we require slightly stronger hypotheses than just (A1)–(A3) in order to ensure
that Q has an RAF when μ(Q) �= ∅. This, is provided by the following result.
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Fig. 4 An infinite CRS Q4 which has no RAF even though μ(Q4) is non-empty (equal to {r1, r2, . . .}).
This CRS satisfies (A1)–(A3) and (A5), but not (A4)

Proposition 1 LetQ = (X,R,C, F) satisfy (A1) and (A2). The following then hold:

(i) μ(Q) contains every RAF forQ; in particular, if μ(Q) = ∅, thenQ has no RAF.
(ii) Suppose that Q satisfies both of the following further conditions:

(A4)
⋂

i≥1 clRi (F) ⊆ clμ(Q)(F), for the sequence Ri defined in Eq. (1).
(A5) Each reaction r ∈ R is catalysed by only finitely many molecule types.

Then Q contains an RAF if and only if μ(Q) is non-empty (in which case, μ(Q)

is the maximal RAF for Q).

Before proving this result, we pause to make some comments and observations
concerning the new conditions (A4) and (A5). Regarding Condition (A4), containment
in the opposite direction is automatic (by virtue of the fact that f (∩Yi ) ⊆ ∩i f (Yi ) for
any function f and sets Yi ), so (A4) amounts to saying that the two sets described in
(A4) are equal.

Notice also that Q4 in Example 2 (Fig. 4) satisfies (A5) but it violates (A4) (as it
must, by Proposition 1, sinceQ4 does not have an RAF). To see howQ4 violates (A4),
notice that clμ(Q4)(F) = F , while

⋂
i≥1 clRi (F) = F ∪ {s}.

Condition (A5) is quite strong, but Proposition 1 is no longer true if it is removed. To
see why, consider the following modificationQ′

4 ofQ4 in which the only product of r ′
i

(for i > 1) is xi , and xi catalyses r1 for all i > 1 (in addition to r ′
i+1), as shown in Fig. 5.

Then clμ(Q′
4)

(F) = ⋂
i≥1 clRi (F) = F so (A4) holds; howeverμ(Q′

4) = {r1, r2, . . .}
which, as before, is not an RAF forQ′

4 since there is no catalyst of r1 in cl{r1,r2,...}(F).
Notice that (A5) fails forQ′

4 since r1 has infinitely many catalysts. Nevertheless, it is
possible to obtain a result that dispenses with (A5) at the expense of a strengthening
(A4), which we will do shortly in Proposition 2.

Proof of Proposition 1 SupposeR′ is any RAF forQ. Induction on i ≥ 1 shows that
R′ ⊆ Ri for all i , so thatR′ ⊆ μ(Q); in particular, if μ(Q) = ∅, thenQ has no RAF.
The proof of part (ii) of Proposition 1 relies on a simple combinatorial lemma.
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Fig. 5 An infinite CRS Q′
4 which has no RAF even though μ(Q′

4) is non-empty (equal to {r1, r2, . . .}).
This CRS satisfies (A1)–(A3) and (A4), but not (A5), nor (A4)′

Lemma 2 Suppose that (Ai , i ≥ 1) is any nested decreasing sequence of subsets and
B is a finite set for which Ai ∩ B �= ∅ for all i ≥ 1. Then some element of B is present
in every set Ai .

Proof of lemma Suppose, to the contrary, that for every element b ∈ B, there is some
set Ai(b) in the sequence that fails to contain b (we will show this is not possible by
deriving a contradiction). Let I = max{i(b): b ∈ B}. Since B is a finite set, I is a
finite integer, and since the sequence (Ai , i ≥ 1) is a nested decreasing sequence, it
follows that AI ∩ B = ∅, a contradiction. �	
Returning to the proof of Part (ii), suppose thatμ(Q) �= ∅; wewill show thatμ(Q) is an
RAF forQ (and so, by Part (i), the uniquemaximal RAF forQ). For r ∈ μ(Q), ρ(r) ⊆
clRi (F) for each i (otherwise r would not be an element ofRi+1 and thereby fail to lie
in μ(Q)). Thus ρ(r) ⊆ ⋂

i≥1 clRi (F) ⊆ clμ(Q)(F) by (A4). It remains to show that
r is catalysed by at least one element of clμ(Q)(F). Let Br = {x ∈ X : (x, r) ∈ C}.
By (A5), Br is finite. Moreover, for each i ≥ 1, Br ∩ clRi (F) �= ∅ (otherwise r would
fail to be in Ri+1 and thereby not lie in μ(Q)). By Lemma 2, there is a molecule
type x ∈ Br that lies in

⋂
i≥1 clRi (F) and this latter set is contained in clμ(Q)(F) by

(A4). In summary, every reaction in μ(Q) has all its reactants and at least one catalyst
present in clμ(Q)(F) and so μ(Q) is an RAF for Q, as claimed. �	

Suppose we now remove Condition (A5) in Proposition 1. In this case, by a slight
strengthening of (A4), we obtain a positive result (Proposition 2). To describe this, we
first require a further definition. Recall that C is the set of pairs (x, r) where molecule
type x catalyses reaction r . Given a subset C ′ of C , let

R[C ′] = {r ∈ R: (x, r) ∈ C ′ for some x ∈ X}.

Define a nested decreasing sequence of subsets C1,C2, . . . , by C1 = C and for each
i ≥ 1,

Ci+1 = {(x, r) ∈ Ci : {x} ∪ ρ(r) ⊆ clR[Ci ](F)}, (2)

and let C∞ = ⋂
i≥1 Ci .
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Proposition 2 Let Q satisfy (A1) and (A2), as well as the following property:

(A4)′
⋂

i≥1

clR[Ci ](F) ⊆ clR[C∞](F), for the sequence Ci defined in Eq. (2).

Then Q has an RAF if and only if C∞ �= ∅, in which case R[C∞] is a maximal RAF
for Q.

Proof Suppose that C∞ �= ∅. Then for any r ∈ R[C∞] there exists x ∈ X such
that (x, r) ∈ C∞. It follows that (x, r) ∈ Ci for all i . By definition, this means that
{x} ∪ ρ(r) ⊆ clR[Ci ](F) for all i , and so {x} ∪ ρ(r) ⊆ ⋂

i≥1 clR[Ci ](F). Now, by
(A4)′, this means that {x} ∪ ρ(r) ⊆ clR[C∞](F). In summary, every reaction in the
non-empty setR[C∞] has all its reactants and at least one catalyst in the closure of F
with respect toR[C∞] and soR[C∞] forms an RAF for Q.

Conversely, suppose that Q contains an RAF R′; we will show that C∞ �= ∅. For
each r ∈ R′, select a catalyst xr for r for which xr ∈ clR′(F). Let A = {(xr , r): r ∈
R′}. We use induction on i to show that A ⊆ Ci for all i ≥ 1. Clearly A ⊆ C = C1,
so suppose that A ⊆ Ci and select an element (xr , r) ∈ A. By definition,

{x} ∪ ρ(r) ⊆ clR′(F) = clR[A](F) ⊆ clR[Ci ](F),

which means that (xr , r) ∈ Ci+1, establishing the induction step. It follows that
∅ �= A ⊆ ⋂

i≥1 Ci = C∞ and so C∞ �= ∅ as claimed. �	
Notice that, just as for condition (A4), the condition (A4)′ is equivalent to

requiring that the two sets described be identical. Notice also that, although con-
dition (A4) applies to the CRS Q′

4, condition (A4)′ fails, since in this case C∞ =
{(s, r1), ( f f, r2), ( f f f, r3), . . .} and so clR[C∞](F) = F = { f, f f, f f f, . . .}, while
s ∈ clR[Ci ](F) for all i ≥ 1, and so

⋂
i≥1 clR[Ci ] is not a subset of clR[C∞](F).

In summary, a single application of μ allows us to determine whenQ has an RAF,
provided the additional condition (A4)′ holds. Example 2 showed that some additional
assumption of this type is required, however one could also consider other approaches
for determining the existence RAFs that do not assume a further condition like (A4)′,
but instead iterate the map μ. In other words, consider the following ‘higher level’
sequence of subsets of R:

R, μ(Q), μ2(R), . . . μk(R) · · ·

where μk(R) = μ(μk−1(R)), for each k ≥ 2. Again, this forms a decreasing nested
sequence of subsets of R and so we can consider the set:

ν(Q) =
⋂

i≥1

μi (R).

In the example above for Q4 where μ(Q) �= ∅, notice that μ2(R) = ∅ (and so
ν(Q) = ∅). It follows from Proposition 1 that if μk(Q) = ∅ for any k ≥ 1 then Q
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has no RAF. However, just because ν(Q) �= ∅, this does not imply thatQ contains an
RAF as the next example shows.

Example 3 Consider the infinite CRSQ5 = (X,R,C, F)which is obtained by taking
a countably infinite number of (reaction and molecule disjoint) copies of Q4 (from
Example 2) and letting the molecule type s in the i-th copy ofQ4 play the role of the
molecule t in the (i+1)th copy ofQ4. In addition, let r0 be the reaction f + f + f → ω

(where ω is an additional molecule) catalysed by the s-products of all the copies of
Q4. Now μk(Q) contains all but the first k copies of Q4, plus r0. Consequently,
ν(Q) = {r0} but, as before, this is not an RAF. Notice, however that this example
violates condition (A3). �	

3 Finite RAFs in systems satisfying (A1)–(A3)

We have seen from the last section that applying μ, even infinitely often, does not
seem to provide a way to determine whether a CRS possesses an RAF. However, in
most applications, the main interest will generally be in finite RAFs. From the earlier
theory it is clear that if μk(Q) is finite for some integer k ≥ 1 then any RAFs that may
exist for Q are necessarily finite, and finite in number. Moreover, if

∅ �= μk(Q) = μ(k+1)(Q), for some k ≥ 1,

and this set is finite, thenμk(Q) is the unique (and necessarily finite) maximal RAF for
Q. However, it is also quite possible that a CRS might contain both finite and infinite
RAFs, and in this section we describe a characterisation of when an RAF contains a
finite RAF.

Given a CRS Q define a sequence R′
1,R′

2, . . . of subsets of R as follows:

R′
1 = {r ∈ R: ρ(r) ⊆ F}, and

R′
i = {r ∈ R: ρ(r) ⊆ F ∪

⋃

1≤ j<i

π(R′
j )}, for each i > 1.

In words,R1 is the set of reactions that have all their reactants in F , and for i > 1Ri

is the set of reactions for which each reactant is either an element of F or products of
some reaction inR j for j < i .

Proposition 3 Suppose a CRSQ satisfies (A1)–(A3). LetQ′
i = (X,R′

i ,C, F) for all
i ≥ 1, where R′

i is as defined above. Then:

(i) (R′
i : i ≥ 1) is a nested increasing sequence of finite sets.

(ii) Q has a finite RAF if and only if μ(Q′
i ) �= ∅ for some i ≥ 1.

(iii) If μ(Q′
i ) �= ∅ for some i , then μ(Q′

j ) is a finite RAF for Q for all j ≥ i .
(iv) Every finite RAF for Q is contained in μ(Q j ) for some j ≥ 1.

Proof By (A1) and (A3), it follows that R′
1 is finite, and, by induction, that R′

i is
finite for all i > 1. Moreover, if r ∈ R′

i then ρ(r) ⊆ F ∪ ⋃
1≤ j<i π(R′

j ) and so
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ρ(r) ⊆ F ∪ ⋃
1≤ j<i+1 π(R′

j ) (i.e. r ∈ R′
i+1) and so the sets R′

i , i ≥ 1 form an
increasing nested sequence. This establishes (i). For Parts (ii) and (iii), suppose thatQ
contains a finite RAFR′. Since (A1) and (A2) hold, we can apply Lemma 1 to deduce
that every reaction r ∈ R′ is an element ofR′

i for some i . Thus, sinceR′ is finite, and
the sequenceR′

i is a nested increasing sequence of finite sets, it follows thatR′ ⊆ R′
k

for some fixed k, in which case μ(Q′
k) �= ∅. Conversely, if μ(Q′

i ) �= ∅, then it is clear
from the definitions that μ(Q′

i ) is an finite RAF forQ; moreover, so also is μ(Q′
j ) for

all j > i . Part (iv) also follows easily from the definitions, since ifR′ is a finite RAF
for Q then R′ ⊆ R′

j for some j ≥ 1, and since R′ is finite we have μ(R′) = R′ and
soR′ = μ(R′) ⊆ μ(Q j ). This completes the proof. �	
Theorem 3 provides an algorithm to search for finite RAFs in any infinite CRS that
satisfies (A1)–(A3). GivenQ, constructR′

1 and run the (standard) RAF algorithm [5]
and [6] on R′

1. If it fails to find an RAF, then construct R′
2 and run the algorithm on

this set, and continue in the same manner. IfQ contains a finite RAF, then this process
is guaranteed to find it, however, there is no assurance in advance of how long this
might take (without some upper bound on the size of the smallest RAF).

4 General setting

Finally, we show how Proposition 2 can be reformulated more abstractly in order to
makes clear the underlying mathematical principles; the added generality may also
be useful for settings beyond chemical reaction systems. This uses the notion of “g f -
compatibility” from [3], which we now explain.

Supposewe have an arbitrary setY and an arbitrary partially ordered setW , together
with some functions f : 2Y → W and g: Y → W.Consider the functionψ : 2Y → 2Y ,
where ψ(A) ⊆ A is defined by:

ψ(A) := {y ∈ A: g(y) ≤ f (A)}.

We are interested in the non-empty subsets of Y fixed points of ψ , particularly, when
f is monotonic (i.e., where A ⊆ B ⇒ f (A) ≤ f (B)). A subset A of Y is said to be
g f -compatible if A is non-empty and ψ(A) = A.

The notion of an RAF can be captured in this general setting as follows. Given a
CRS Q = (X,R, F,C) satisfying (A2), take Y = C and W = 2X (partially ordered
by set inclusion), and define f : 2Y → W and g: Y → W as follows:

f (A) = clR[A](F) and g((x, r)) = {x} ∪ ρ(r), (3)

where, as earlier, R[A] is the set of reactions r ∈ R for which there is some x ′ ∈ X
with (x ′, r) ∈ C . Notice that f is monotonic and when Q is finite, the set f (A) can
be computed in polynomial time in the size of Q.

Lemma 3 Suppose we have a CRSQ satisfying (A2), and with f and g defined as in
(3). If A is g f -compatible, then R[A] is an RAF for Q. Conversely, if R′ is an RAF
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for Q, then a g f -compatible set A exists with R[A] = R′. In particular, Q has an
RAF if and only if Y contains a g f -compatible set.

Proof If A is g f -compatible subset of Y , then by taking R′ = R[A], each reaction
r ∈ R has at least one molecule type x ∈ X for which (x, r) ∈ A. g f -compatibility
ensures that g((x, r)) ⊆ f (A), in other words, one has {x} ∪ ρ(r) ⊆ clR′(F) for
some catalyst x of r . This holds for every r ∈ R′, soR′ is an RAF forQ. Conversely,
if R′ is an RAF, then for each reaction r ∈ R′, we can choose an associated catalyst
xr so that {xr } ∪ ρ(r) ⊆ clR′(F). Then A = {(xr , r): r ∈ R′} is a g f -compatible
subset of Y , withR[A] = R′. �	

The problem of finding a g f -compatible set (if one exists) in a general setting
(arbitrary Y , and W , not necessarily related to chemical reaction networks) can be
solved in general polynomial timewhen Y is finite and f is monotonic and computable
in finite time. This provides a natural generalization of the classical RAF algorithm.
In [5], we showed how other problems (including a toy problem in economics) could
by formulated within this more general framework.

However, if we allow the set Y to be infinite, then monotonicity of f needs to
be supplemented with a further condition on f . We will consider a condition (‘ω-
continuity’), which generalizes (A4)′, and that applies automatically when Y is finite.
We say that f : 2Y → W is (weakly) ω-continuous if, for any nested descending chain
Ai , i ≥ 1 of sets, we have:

f

⎛

⎝
⋂

i≥1

Ai

⎞

⎠ is a greatest lower bound for { f (Ai ), i ≥ 1}. (4)

Recall that an element in a partially ordered set need not have a greatest lower bound
(glb); but if it does, it has a unique one. Notice that when Y is finite, this property
holds trivially, since then f (

⋂
i≥1 Ai ) = f (An) for the last set An in the (finite) nested

chain.
For a subset A of Y and k ≥ 1, define ψ(k)(A) to be the result of applying func-

tion ψ iteratively k times starting with A. Thus ψ(1)(A) = ψ(A) and for k ≥ 1,
ψ(k+1)(A) = ψ(ψ(k)(A)). Taking the particular interpretation of f and g in (3), the
sequence ψ(k)(Y ) is nothing more than the sequence Ck from (2).

Notice that the sequence (ψ(k)(A), k ≥ 1) is a nested decreasing sequence of
subsets of Y , and so we may define the set:

ψ(A) := lim
k→∞ ψ(k)(A) =

⋂

k≥1

ψ(k)(A),

which is a (possibly empty) subset of Y (in the setting of Proposition 2,ψ(A) = C∞).
Given (finite or infinite) sets Y,W , where W is partially ordered, together with

functions f : 2Y → W and g: Y → W , it is routine to verify that the following
properties hold:

(i) The g f -compatible subsets of Y are precisely the non-empty subsets of Y that
are fixed points of ψ ;
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(ii) If f is monotonic then ψ(Y ) contains all g f -compatible subsets of Y ; in partic-
ular, if ψ(Y ) = ∅, then there is no g f -compatible subset of Y .

(iii) If f is ω-continuous then ψ(Y ) is g f -compatible, provided it is non-empty; in
particular, if f is monotonic and ω-continuous then [by (ii)] a g f -compatible
subset of Y exists if and only if ψ(Y ) is nonempty.

(iv) Without the assumption that f is weakly ω-continuous in Part (iii), it is possible
for ψ(Y ) to fail to be g f -compatible when Y is infinite, even if f is monotonic.

The proof of Parts (i)–(iii) proceeds exactly as in [3], with the addition of one extra step
required to justify Part (iii), assumingω-continuity. Namely, Condition (4) ensures that
ψ : 2Y → 2Y is also ω-continuous in the sense that for any nested descending chain
Ai , i ≥ 1 of sets, we have:

ψ(
⋂

i≥1

Ai ) =
⋂

i≥1

ψ(Ai ), (5)

and so ψ(ψ(Y )) = ψ(Y ). The proof of (5) from (4) is straightforward: firstly, the ⊆
containment in (5) holds for any function ψ . For the reverse containment, suppose
y ∈ ⋂

i≥1 ψ(Ai ). Then, by the definition of ψ , y ∈ Ai for all i and g(y) ≤ f (Ai )

for all i ≥ 1 and so y ∈ ⋂
i≥1 Ai , and g(y) ≤ f (Ai ) for all i ≥ 1. The ω-continuity

of f now ensures that w = f (
⋂

i≥1 Ai ) is a glb of { f (Ai ): i ≥ 1}, and so g(y) ≤ w

for all i (i.e. g(y) ≤ f (
⋂

i≥1 Ai )) which gives y ∈ ψ(
⋂

i≥1 Ai ), thereby ensuring the
reverse containment in (5). Part (iv) follows directly from Parts (ii) and (iii).

For Part (vi), consider the infinite CRS Q4 in Example 2. As above, take Y =
C,W = 2X and, for A ∈ 2Y , with f and g defined as in (3). Then ψ(Y ) = A,
where A = {(s, r1), ( f f, r2), ( f f f, r3), . . .} however, A is not g f -compatible, since
(s, r1) ∈ A and g((s, r1)) = {s, f } but this is not a subset of f (A) = clR[A](F) = F
since s /∈ F . In this example, f fails to be weakly ω-continuous, and the argument is
analogous to where we showed earlier thatQ′

4 fails to satisfy (A4)
′. More precisely, for

each i ≥ 1, let Ai = {(cr , r): r ∈ Ri }, whereRi is defined in (1) and where, for each
reaction r ∈ Q4, cr is the unique catalyst of r . Then f (Ai ) = F∪{s}∪{xi+1, xi+2, . . .}
and so

⋂
i≥1 f (Ai ) = F∪{s}. However,⋂i≥1 Ai = A and so f (

⋂
i≥1 Ai ) = f (A) =

F , which differs from the glb of { f (Ai ), i ≥ 1}, namely
⋂

i≥1 f (Ai ) = F ∪ {s}. �	

5 Concluding comments

The examples in this paper are particularly simple—indeed mostly we took the food
set to consist of just a single molecule, and reactions often had only one possible
catalyst. In reality more ‘realistic’ examples can be constructed, based on polymer
models over an alphabet, however the details of those examples tends to obscure the
underlying principles so we have kept with our somewhat ‘toy’ examples so that the
reader can readily verify certain statements.

Section 3 describes a process for determining whether an arbitrary infinite CRS
[satisfying (A1)–(A3)] contains a finite RAF. However, from an algorithmic point of
view, Proposition 3 is somewhat limited, since the process described is not guaranteed
to terminate in any given number of steps. If no further restriction is placed on the
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(infinite) CRS, then it would seem difficult to hope for any sort of meaningful algo-
rithm; however, if the CRS has a ‘finite description’ (as do our main examples above),
then the question of the algorithmic decidability of the existence of an RAF, or, more
particularly, of a finite RAF arises.

To make this more precise, suppose an infinite CRSQ = (X,R,C, F) consists of
(i) a countable set of molecule types X = {x1, x2, . . .}, where we may assume (in line
with (A1)) that F = {xi : i < K }, for some finite value K , and (ii) a countable set
R = {r1, r2, . . .} of reactions, where ri has a finite set α(i) of reactants, a finite set
β(i) of products, and a finite or countable set γ (i) of catalysts, where α, β and γ are
computable (i.e. partial recursive) set-valued functions defined on the positive integers.
Given this setting, a possible question for further investigation is whether (and under
what conditions) there exists an algorithm to determine whether or notQ contains an
RAF, or more specifically a finite RAF (i.e. when is this question decidable?).
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