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We present fast new algorithms for constructing phylogenetic trees from quartets (re-
solved trees on four leaves). The problem is central to divide and conquer approaches
to phylogenetic analysis and has been receiving considerable attention from the compu-
tational biology community. Most formulations of the problem are NP-hard. Here we
consider a number of constrained versions that have polynomial time solutions.

The main result is an algorithm for determining bounded degree trees with optimal quar-
tet weight, subject to the constraint that the splits in the tree come from a given collection,
for example, the splits in the aligned sequence data. The algorithm can search an expo-
nentially large number of phylogenetic trees in polynomial time. We present applications
of this algorithm to a number of problems in phylogenetics, including sequence analysis,
construction of trees from phylogenetic networks, and consensus methods.
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1. INTRODUCTION

The reconstruction of large evolutionary (phylogenetic) trees from smaller sub-
trees is currently receiving considerable attention in the computational biology
community [6, 7, 23, 29, 31, 37, 38].

There is a clear computational advantage to analysing small subsets of taxa
(species). It allows for far more intensive analysis and the application of more
complex models to reconstruct trees from the sequence data. Tree criteria like,
such as maximum likelihood, which are computationally horrendous on larger
trees, can be solved quickly on four-leaf trees (quartets)—there are just four pos-
sible trees to consider.
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There are also biological and statistical advantages of considering only small
subsets of sequences at a time. In many cases the actual data limit the number
of sequences that can be analysed at one time. The number of sites that can
be aligned across four sequences is generally much more than the number of
sites that can be aligned across the full set glequences, so aligning over the
complete set of sequences can result in lost information. Secondly, a recognized
source of error in standard tree building methods like neighbor joining is that
distantly related sequences can mislead tree reconstruction [29]. If only small
sets of sequences are considered at one time then those sets containing distantly
related sequences can be down-weighted (or even given a zero weighting, as in
(23], [29]).

The main difficulty with quartet based methods is the question of how best to
build large trees out of small ones. The general problem—determining a phyloge-
netic tree that agrees with the largest number of quartets, or maximum weight set
of quartets—is NP-hard, by a simple reduction from QUARTET COMPATIBIL-
ITY [36]. Exhaustive search is generally infeasible: therelage5- - - - - (2n—5)
binary trees om leaves to choose from. When the number of sequences is lim-
ited, and the computational time is not, the exact algorithm of [6] can be used: it
runs in timeO(n*3") onn sequences and(n?) quartets.

The next alternative to exact solutions is the use of heuristic algorithms for
quartet optimization. These have been produced by a number of computer scien-
tists, biologists and mathematicians. The heuristics of Sattath and Tversky [35],
Fitch [26], Colonius and Schulze [14], and Bandelt and Dress [1] combine cluster-
ing procedures with a pairwise similarity or neighbourliness scores derived from
the quartet sets. An alternative agglomerative algorithm for constructing trees
from quartets is provided in [8].

A novel variation on the scoring approach is described by BeneDat.[6].
Instead of constructing a similarity score then clustering, they embedi#dads as
points ink™ using semi-definite programming, and then apply a nearest neighbour
clustering method.

The tree building, or ‘puzzling’, part of the Quartet Puzzling heuristic of Strim-
mer and von Haeseler [37] works by ordering the leaf set arbitrarily, constructing
a tree on the first four leaves, and then adding new leaves one at a time, attach-
ing each leaf to the edge that gives optimum quartet score. The same approach
is used in [38, 15] to optimise according to different, but related, criteria. These
procedures can be seen as analogues of the Wagner tree method [24] because they
start with a small tree and insert one leaf at a time.

Dekker [17] proposes a method for constructing trees from quartets and other
subtrees using quartet inference rules (see also [12]). The Short Quartet Method
[23] constructs trees using inference rules and greedy selection of quartets.

One important problem with these heuristic approaches is that there has been
little systematic analysis of their strengths and weaknesses. Indeed, the quartet
approximation problem seems to be resistant to an approximation theoretic ap-
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proach. A version of the problem was shown to have a PTAS by [30], but the
complexity of the approximation algorithm is so astronomical that the result is of
theoretical interest only.

Polynomial time exact algorithms have been proposed for a number of con-
strained versions. Th@* method of Berry and Gascuel [7] can be applied when
there is at most one quartet in the input set for each four leaves, and the output
tree is constrained to have only quartets from this set. There is always exactly one
maximal tree satisfying these conditions. Themethod is employed by Kearney
[31] to construct trees from quartets selected by an ordinal quartet method.

The @* method can be extended by weakening the constraint that all the quar-
tets in the tree come from the input set. The quartet cleaning method]30e
construction [9], and hypercleaning method [10] all allow varying degrees of ‘er-
rors’ in the input set. All run in polynomial time, and are well suited for the
situation when the quartet set is unweighted and almost tree-like.

In this paper we present a polynomial time algorithm for a constrained version
of the quartet optimization problem. The algorithms are fast enough to be ap-
plied to moderately large data sets. The constraints are not overly restrictive—the
algorithm still searches an exponentially large number of trees—and are general
enough to be applied to a wide range of phylogenetic problems. Finally, we note
that the algorithms can be applied to weighted sets of quartets, with the possibility
of more than one quartet for each set of four leaves.

In the remainder of this section we present basic definitions (section 1.1), de-
scribe the main result (section 1.2) and outline a number of applications of the
algorithm. In section 2 we present the constrained quartet optimization algorithm.
In section 3 we show how the algorithm can be applied to the extraction of phylo-
genies from phylogenetic networks, and describe the efficiency gains that can be
made in this application.

1.1. Basic Definitions

Hypotheses about the evolutionary relationships between taxa (species) are
usually described in terms of a phylogenetic tree. When no ancestral node is
given we have annrooted (phylogenetic) treewhich can be formally defined as
an acyclic connected graph with no vertices of degree two and all leaves (degree
one vertices) labelled uniquely from some leaf Eatpresenting the set of taxa.

A phylogenetic tree ibinary or resolvedif all internal vertices have degree three.

A phylogenetic tree clearly implies relationships between each subset of its
leaf set. This is captured in the notion of induced subtreesT st an unrooted
phylogenetic tree, and let be a subset of its leaf set. Consider the minimal
subgraphl’(A) of T' that connects elements df. Delete all vertices of degree
two in T'(A) and identify their adjacent edges, thereby obtaining an unrooted
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phylogenetic tree with leaf set. This tree is called theubtree of 7" induced by
A and is denoted] 4.

The information contained in a phylogenetic trees can be coded in a number of
ways. Here we consider two encodings: sets of splits and sets of quartets.

A split A|B is a partition of the leaf set into two non-empty padsand B. If
we remove an edgeof a phylogenetic tree we divide the tree into two connected
components, and induce a split of the leaf set of the tree. This split is called the
split associated withe, and the set of all such splits in a tree is denaigdts(T').

If e is an external edge then we obtain a sgjB with |[A] = 1 or |B| = 1.
We call these splitgrivial splits. Note thaf” can be reconstructed from the set
splits(T).

A quartet is a resolved phylogenetic tree on four leaves. There are three pos-
sible quartets on a given set of four leafesb, ¢, d}. We useub|cd to denote the
quartet where, andb are separated fromandd by the internal edge. A phylo-
genetic treel” agreeswith a quarteublcd if a,b, ¢, d are all leaves of” and the
path froma to b does not share any vertices with the path freto d, that is, if
Ti{a,b,c,ay = abled. Letq(T) denote the set of quartets ti&tagrees with. We
can reconstruct' from ¢(7').

To illustrate, we give a simple example (figure 1). We have selected two internal
edges and give the associated splits. We have also selected two sets of four leaves,
and given the induced quartets.

ah | bedefg c abhed | efg

o {abedh {adgh}
4

ablcd N\
ah|dg

FIG. 1. Splits and quartets of an unrooted phylogenetic tree.

We need three further definitions in order to be able to summarise our results.
First, a set of splitsS is compatibleif S C splits(T) for some tred’. Second, a
set of splits isveakly compatibleif for every three splitsd; | By, A2|Bs, A3|Bs,
at least one of the intersectiofis N B> N B3, By N Ay N A3, Ay N By N As,
A; N As N By is empty [3]. Finally, a set of weakly compatible splison X is
maximum if |S| = n(n — 1)/2 (see [3]).
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1.2. Main results

Let w be a weighting function defined on the set of all quartets with leaves in
L. The weights can be negative and do not have to be integers. We define the
weight of the tree to be

w(T) = Z w(abled), Q)

abledeq(T)

the sum of all quartet weights in the tree. We will be examining the following
problem:

SPLIT CONSTRAINED QUARTET OPTIMIZATION

INSTANCE: Weightingw for the quartets on a leaf sét SetS of splits of L.
Rational numbea.

PARAMETER: Degree bound.

QUESTION: Is there a tre€ with vertex degree bounded byandsplits(T) C
S such thaw(T) > \?

Letn = |L| andk = |S|. The computational complexity of this problem can
be summarised:

e Polynomial time solvable for boundet] with time complexityO(n*k +
n2dk?=1) (section 2). Can be improved t(n°) time whensS is weakly com-
patible andi equals 3 or 4 (section 3.1).

e NP-complete without the degree bousdeven when the set of splitS is
weakly compatiblésee section 3.3).

¢ Polynomial time solvablaithoutdegree bound when all quartet weights are
non-negative and is maximum weakly compatib{section 3.2).

¢ NP-complete when the quartets weights can be negative anghbounded,
even wherS = splits(T) for some tred’ (section 3.3).

The results can be viewed as an extension of the compatibility algorithms of
[12]. In [12] the splits, rather than the quartets, are weighted and the criteria of
optimization is the sum of the weights of the splits in a tree. The significance
of these results is highlighted by the fact that determining an optimal tree with
respect to split weights and no degree bound is equivalent to MAX CLIQUE [16]
and so inherits the depressing complexity attributes of MAX CLIQUE like W[1]-
hardness [19] and non-approximability [5].

1.3. Applications

We outline a number of possible applications of the split constrained quartet
optimization algorithms.

1.3.1. Analysis of sequence data
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A natural source of splits to serve as a split constraint for the algorithm is the se-
gquence data. We first use an alignment program to determine which positions (or
siteg in one sequence correspond to which positions in the other sequences. For
each position we then obtain a map from the set of sequences to the nucleotide for
that sequence at that position. In DNA and RNA there are four nucleotides pos-
sible, and so there are eight ways of partitioning the nucleotides into two groups.
Each of these partitions can be used to construct a split of the set of sequence set.

We have, then, a three step process for inferring phylogenetic trees from aligned
sequence data:

(1) Extract the sef of splits given by the characters at each site in the data.

(2) For each set of four sequences, score the three possible quartet trees using
a standard phylogenetic optimization criterion (e.g. parsimony length, likelihood
score). The quartet scores can be scaled to indicate relative confidence.

(3) Apply the constrained quartet optimization algorithm to the set of splits
constructed in step (1) with the quartet weighting constructed in step (2).

1.3.2. Extracting trees from phylogenetic networks

An approach to phylogenetic analysis that is growing in popularity is the con-
struction of phylogenetic networks, where the evolutionary relationships are rep-
resented by a general graph rather than just a tree.

Phylogenetic networks allow for a more complicated relationship between the
different species, and can incorporate recombination, hybridisation, and horizon-
tal gene transfer. In some cases the data itself dictates that a tree representation
is not suitable, as in the complex evolutionary relations between viruses, or in
intra-specific data with multiple hybridizations.

Phylogenetic networks can also be employed as an intermediary step in phy-
logenetic tree reconstruction. Often a network program like SplitsTree [22] is
used to get a general representation of patterns in the data, and an indication of
how ‘tree-like’ the data actually is. However the problem still remains - given a
phylogenetic network how does one best extract a phylogenetic tree?

We apply the constrained quartet optimization algorithms to this problem by
first converting the network into a collection of splits. In section 3 we discuss this
approach in further detail, and show that time complexity gains can be made by
exploiting the structure of the network.

1.3.3. Consensus trees, bootstrapping, and quartet puzzling

A common problem faced by practitioners in evolutionary biology is the repre-
sentation of a large collection of trees on the same leaf set by a siogéensus
tree. Tree search criteria such as likelihood can have multiple global optima.
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Heuristic construction methods (like quartet puzzling [37]) that involve random-
ness can construct different trees on different runs, and the user will want to make
multiple runs in order to achieve a degree of confidence in the final hypothesis.
Bootstrapping, and its close cousin jack-knifing, work on the same principle. The
data is randomly sampled and these possibly incomplete samples are used as input
for the tree reconstruction criteria. The collection of trees obtained is then used to
determine confidence levels for a particular evolutionary hypothesis.

By far the most common consensus technique is the majority rule tree, formed
from splits that appear in over half of the input trees. Unfortunately this method
will often give quite uninformative consensus trees, with few internal edges. A
rogue taxa that appears in a large number of different places (perhaps because it
is only distantly related to the other taxa) can force the consensus tree to collapse
completely. A major drawback of the popular Quartet Puzzling method [37] is
that the consensus tree it produces tends to be quite poorly resolved.

The constrained quartet optimization algorithm provides a natural solution to
the consensus tree problem. We first construct the set of all splits that appear in
at least one of the input trees. If the input trees are binary then this set of splits is
guaranteed to contain the set of splits of some binary tree, so we can always use
a small degree bound. The quartet weighting can be taken from the input data, as
in the previous section, or by counting the number of times each quartet appears
in an input tree. In this way the consensus technique can be extended to handle
weighted trees. Finally, the constrained quartet optimization algorithm can be
used to construct, in polynomial time, a consensus tree for the input set of trees.

1.3.4. Optimal trees with excluded quartets

Suppose that we are given, for each set of four ledwe$, ¢c,d} a quartet
to exclude We wish to find a tred” of optimal quartet weight such tha{T’)
contains none of the excluded quartets.

We can solve this problem when we also have a degree boufid fozt () be
the set of excluded quartets. We first construct the set of splits

S={A|B:ad bt ¢ Q, alla,a’ € A, b,b' € B} 2

This set is weakly compatible [4] and, furthermogéT’) N Q@ = 0 if and only

if splits(T') C S. Hence the problem of finding an optimal tréecontaining

no excluded quartets reduces to the SPLIT CONSTRAINED QUARTET OPTI-
MIZATION problem. In section 3 we give efficient algorithms for constrained
quartet optimization whes is weakly compatible.
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Note that if we do not forc&) to contain an excluded quartet for every set of
four leaves then it becomes NP-hard to determine if there exists a binary tree
such thay(T) N Q = 0 [13].

1.3.5. Optimal trees with a given circular order

A novel approach to phylogenetic tree construction was introduced by Gonet
et al.in [32]. They first construct a toury, z», . . ., z,, 21 Of the setL of leaves
using travelling salesman algorithms. They then look for a phylogenetidiree
onL suchthatey, zo,...,z,,z; isacircular order of T', thatis, each edge ifi
lies on exactly two paths connecting adjacent vertices in the tour. Thep&ate
possible circular orderings for a binary treeoteaves [33].

Construct the set

S:{{xi,xi+1,...,xj}|L—{xi,xi_,_l,...,xj} 01 SZS]SR—I} (3)

This set is a maximum weakly compatible. Furthermete, . ., z,, is a circu-
lar ordering for a tre€" if and only if splits(T) C S. In section 3.2 we show that
the SPLIT CONSTRAINED QUARTET OPTIMIZATION problem can be solved
in polynomial timewithout a degree boundhensS is maximum weakly compat-
ible and all quartet weights are non-negative. Hence, given artqur . , x,,, x1
of L and a positive weight for every quartet én we can determine an optimal
weight treel” from among the exponentially many trees that have . ., z,,, =1
as a circular order.

2. CONSTRAINED QUARTET OPTIMIZATION ALGORITHMS

The key component of the dynamical programming algorithm of [12] is a data
structure called the decomposition table, which we describe in section 2.2. We
will also use a decomposition table, though we optimize a different, and more
complex, criterion. First, however, we introduce rooted trees and clusters.

2.1. Rooted trees and clusters

A rooted phylogenetic treeis defined in the same way as an unrooted phylo-
genetic tree, except that one vertex, which may have degree two, is distinguished
and called theoot. Given any two vertices, v in a rooted phylogenetic tree, if
the path fromu to the root passes throughthen we say that is adescendent
of v. The descendents of a vertexhat are also adjacent toare called thehil-
dren of v. A rooted phylogenetic tree mnary or fully resolved if every internal
vertex has exactly two children.
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The rooted analogue of a split ichuster. Given a vertex in a rooted tree the
set of leaves that are descendents fcalled the clustesissociated withv. The
set of all clusters associated to vertices in a rootedfresedenotedus(T).

We will often be converting rooted trees into unrooted trees. Supposg ikat
a rooted tree such th#&(7") C L and£(T) # L. We letuNxrooT(T, L) be the
unrooted tree given by attaching all leavedin- £(T') to the root ofT" and then
taking the underlying unrooted topology. For example the trees in figure 2 (i) and
2 (ii) have unrooted equivalents equal to those trees in figure 2 (iii) and 2 (iv).

2.2. The decomposition table
The key data structure in the algorithm isecomposition tableD = (C, D).
HereC = C1,Cs,...,Ck is a collection of clusters of some leaf detandD is
a table with a ronD[i] for each cluste€;. Row D[i] contains a list of unordered
tuples[p1, p, . . ., pq] satisfying

°*q>2.
e (), Cp,y,...,Cp, are pairwise disjoint.
e (;=Cp UC,, U---UC,,.

Note that one row can contain tuples of varying lengths and that we are not con-
cerned with the ordering of the indices within the tuple. ||B4| denote the sum
of the lengths of all the tuples in all the rowsDf

To each rowD[i] of the decomposition table we associate a set of rooted trees
T (D, 1), all of which have leaf sef’;. The set7 (D, i) is defined recursively:

e if C; = {a} for some leaf: thenT7 (D, i) contains the single vertex tree with
leafa;

e if |C;| > 2 andD[i] = § thenT (D,i) = 0.

e Otherwise, 7 (D, i) is the set of all possible trees that can be formed by
choosing a tuplgp:, ..., p,] in D[i], choosing subtre€s; € T (D, j) for each
j = 1,...,r, and attaching the roots of these subtrees to a new vertex that be-
comes the root of a rooted tree with leaf 6&t

Since there may be tuplés , . . ., p,| in D[i] with T (D, p;) = () for somej, we
can haveT (D, i) = 0 even thougtD[i] # 0.

We use dynamical programming to enumerate or extract the treEsIni).
Construct a table by puttings[i] = 1 for all ¢ such thatC;| = 1, and putting

sli] = > s[p1] X s[p2] X -+ x s[pg] 4
{P1,p2,---,pq }EDIi]

when|C;| > 1. Thens[i] = |T(D,1)|, and the values[i] can be calculated in
time O(||D|)). [12]
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Once the trees iff (D, i) have been enumerated we can extract trees from the
collection as follows:

e If s[i] = 0 returnf)

e else if|C;| = 1 return the single vertex tree labelled by the leaf’in

e else choose a tuple;, . .., p,] such thats[p;] x s[p2] x --- x s[p,] # 0.
Extract treesl’, ..., T, from 7(D,1),T(D,2),...,T(D,q) respectively. At-
tach the roots of1, ..., T, to a new vertex that becomes the root of a tfem

T(D,i). ReturnT.
m‘im
/!\ /7\ a b cdeabcd e

ab cdeabcde

. (iii) %AL< (V) >_J_L<
>< el A

FIG.2. Thetreesin ()7 (D,5); (i) T(D,9); (i) 7*(D,5); and (iv)7*(D,9).

To illustrate, we give a simple example. The following table represents a de-
composition table for a collection of clusters of the leafset {a,b,c,d,e}.

i C; D[i] s[4]
1 {a} — 1
2 {b} — 1
3 {c} — 1
4 {b,c} [2,3] 1
5 {a,b,c}  [1,2,3],[1,4] 2
6 {d} - 1
7 {e} — 1
8 {d,e} [6,7] 1
9 {a,b,c,d, e} [5,8],[5,6,7 4
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ThenT (D, 5) contains the two trees in figure 2 (i). Each of the tree§ (@, 5)
appears as a subtree of two tree§i(D, 9), giving a total of4 trees in7 (D, 9)
(figure 2 (ii)). All other collections (D, i) contain single trees.

Since decomposition tables can be used to store rooted trees, we can also use
them to store unrooted trees. First fix a leafcting as an outgroup, and consider
a collectionC of clusters onL — {z}. LetD be a decomposition table f6: For
eachC; € C we define the set of unrooted trees

T*(D,i) = {uNxroOT(T,L) : T € T(D,i)}. (5)

The operatioruNROOT is described above in section 2.1.

Returning to our example, suppose that= {a,b,c,d, e, z}. ThenT*(D,5)
contains the two unrooted trees in figure 2 (iii) whilé (D, 9) contains the four
trees in figure 2 (iv).

2.3. Optimal weight trees in decomposition tables

Suppose thaD = (C, D) is a decomposition table for a set of clustérsf
L — {z}. The collectionsT*(D, i) can contain exponentially many trees, even
whenD is only polynomial in size. Here we show how to locate, from among
these exponentially many trees, a tree with maximum summed quartet weight.
The algorithm take® (n*|C| + n?(|D||) time.

We use dynamic programming. At each step we optimize with respect to a
modification of the quartet weighting criteria of egn. 1.

As before, letw be a weighting function for the quartets with leaved.inFor
eachC; € C put

q:(T) = {abled € ¢(T) : |{a,b,c,d} N C;| > 3} (6)
and
wi(T) = Z w(abled). @)
ablcd€q;(T)

We optimizew;(T) over all of the trees in the collection*(D,:) defined in
eqgn. 5. Put

m[i] = max{w;(T) : T € T*(D,i)} (8)
and

Mi] = {T € T*(D, i) : wi(T) = m[i]}. ©)
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Finally, for each tuplép:, ps, . .., p,] € D[i] we define
Qp1,---,pg) = Uj_ {abled : a,b € Cp;,c € C; — Cp;,d € L — Cp, }(10)
and

W(p1,-.-,pg) = > w(abled). (11)

ablcdeQ(p1,...,Pq)
We can now state the basis for the dynamical programming algorithm.

THEOREM 2.1. If |C;| = 1 thenm[i] = 0, otherwise

q
m[i] = max{W (p1,...,pq) + Zm 2[p1,p2, .-, 0] € D[i]}.  (12)
j=1

Proof. We prove the result by induction on the size@t If |C;| = 1 then
T*(D, 1) contains only the trivial unrooted tree with no internal edges. This has
an empty quartet set and, consequently, zero weight.

Suppose that the result holds for él} € C such thaiC;| < |C;|. Suppose
thatT* € M[i]. By the definition of7*(D,4) andM[i] (eqns. 5 and 9) there is
T € T(D,i) such thafl™ = uNrROOT(T, L). LetT, Ty, ..., T, be the maximal
subtrees of " rooted at the children of the root &F.

By the definition of 7(D, ) there is a tupldp,,...,p,] such that for each
je€{l,...,q} we haveC,, = L(T}) andT}; € T(D,p;).

Consider an arbitrary quarteb|cd € ¢;(T*). Then|{a,b,c,d} N C;| > 3 and
exactly one of the following must hold:

e Thereisj € {1,2,...,q} suchthat{a,b,c,d} N Cp,| > 3, or
e Thereisj € {1,2,...,q} such that{a, b, c,d} N Cy, equals{a,b} or {c,d}.

Hence
wi(T*) = Z“’PJ )+ W (p1,-..,pq) (13)
< m[i] (14)
by the induction hypothesis appliedtq,, ..., Cp, .
Conversely, suppose that, . .., p] maX|m|ses eqgn. 12. There®,..., T,

such thaunroot(T;, L) € M[p;]forall j =1,2,...,q. Constructarooted trég
by attaching the roots &, ..., T}, to anew root. Theanroot(T, L) € T*(D, 1)
andw;(T) = m[i]. |
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Theorem 2.1 leads immediately to a compact representation of the optimal
trees. We construct a new decomposition tablg, = (C, Do) by letting
D,:[i] equal the set of tupldpy, . . ., p,] in D[i] that maximize eqn. 12. It then
follows that

CoROLLARY 2.1. ForeachC; € C we have

M[i] = T*(Dopt, i)- (15)

To improve the time complexity we precompute the value

W(Cia,bl = ) w(xylab) (16)

z,yel;

forall C; € C and alla,b € L — C;. This takeD(n*|C|) time.

It takes a furthelO(n?||D||) time to calculaten[i] for all i and construct the
optimal tree decomposition tab®,,;, where we use|D|| to denote the sum
of the tuple lengths over all tuples in all rows BX. The optimal trees can be
enumerated using techniques outlined in section 2.2.

The complete algorithm is summarisedAm.GORITHM 1.

ArcoriTaM 1 ( OPTIMALD (D,w)).

1. begin

2. SortC = {C4,...,Cy} sothatC; C C; impliesi < j.
3. forifrom1tok do

4, fora,be L—C; do

5. Wlia,b] < 32, e, w(zylad)

6. end (for)

7. end (for)

8. forifrom1tok do

9. if D[i] =0 then

10. M[i] <0

11. else

12. best + —oc0

13. forall [p1,p2,...,ps] € DJi] do

14. calculatéV (py,p2, ..., p,]) usingWi-; -, -].
15. score < W(p1,-..,pq) + D1y M[pj]
16. if score > best then D,p[i] < 0

17. if score > best then

18. Dopi[i] « Dopt[i] U {[p1,---, 0]}
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19. best < score
20. end (if)
21. end (for all)

22. end (if-else)
23. end (for)

24. end.

2.4. An algorithm for split constrained quartet optimization
We are now in a position to give the main result. kkebe a weighting on the
quartets of a leaf sdt, let S be a set of splits of., and letd be a degree bound.
We will assume tha$ contains all of the trivial splits (those that separate a single
element from the everything else). Let= |L| andk = |S]|.
Let x be an arbitrary leaf il.. We construct a collection of clusters

C={A:ABecS,zc B} a7

and order thesé€';, C5, ..., Cy so thatC;,C; € C andC; C C; impliesi < j.
HenceC), = L — {z}, the cluster corresponding to the trivial sdlit}| L — {z}.
We construct a decompostion talile= (C, D) as follows:

o If |C;| = 1thenD[i] + 0.
e If |C;] > 1then

Cp,,--.,Cp,are pairwise disjoint
(18)

D[Z](_ [p17p27""pq]:Ci:Cplu"‘UCpq
g<d—1

This table is called theomplete decomposition tabldor C with degree bound

d. It can be constructed i®(nk?~1) time, wherek = |C| andn = |L|, by

considering all tuples of indices of length less thircomputing intersections

and union, then determining if they should be included in some raf.of
Furthermore, a simple proof by induction gives

LemmaA 2.1. [12] If D is constructed as above, ant), = L — {z}, then
T* € T*(D, k) if and only ifT* has splits inS and degree bound.

The decomposition tabl®,,; containing the optimal trees i® can be con-
structed inD(n*k +n2dk?—") time using Algorithm 1. We have now established:

THEOREM 2.2. The SPLIT CONSTRAINED QUARTET OPTIMIZATION prob-
lem can be solved i@ (n*k + n2dk? 1) time.
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3. OPTIMAL QUARTET TREES IN PHYLOGENETIC NETWORKS

The algorithm for SPLIT CONSTRAINED OPTIMIZATION described in the
previous sections makes no assumptions about the structure of the set of splits
In many cases, prior knowledge of the structur&allows us to achieve tighter
complexity bounds, or even drop the degree constraint altogether.

One structure that arises in applications (see sections 1.3.2, 1.3.4, and 1.3.5) is
weakly compatible splits. In section 3.1 we describe gains in efficiency that can
be made when the set of input splitss weakly compatible. In the case tlais a
maximal collection of weakly compatible splits, and the quartet weights are non-
negative, we can solve the SPLIT CONSTRAINED QUARTET OPTIMIZATION
problem without having to apply a degree bound (section 3.2).

We conclude with two complexity results. We show that the results in sec-
tion 3.2 for maximal collections of weakly compatible splits cannot be extended
to arbitrary collections of weakly compatible splits (unléds= N P). Then we
prove the rather suprising result that if we allow negative quartet weights then the
SPLIT CONSTRAINED QUARTET OPTIMIZATION problem (with no degree
bound) is NP-hard even when the set of spfitsqualssplits(T") of some tred.

3.1. Quartet optimization with weakly compatible splits

Let S be a collection of weakly compatible splits dnand letd be a degree
bound. As in section 2.4 we choose a leand construct

C={A:ABeS,z e B} (29)
ThenC is aweak hierarchy [3], which means that for all, V, W € C
Unvnwe{UnvV,Unw,VvnWw}. (20)

Define a closure operatét one subsets af — {z} by

(Ae= [ C (21)

CeC:ACC

Weak hierachies have the property that for every sulsbere isa,a’ € A such
that(A4)e = ({a,a'})c [2]. We write (a,a’)¢ for ({a, a'})¢ and construct a table
mapping each pair of leavesa’ to the corresponding subsgt, a’)¢. The table
can be constructed iR(n®) time using the property thgte (a,a’)¢ if and only
if there is no cluste€' € C with a,a’ € C andy ¢ C.

The first efficiency gain we make is to speed up the calculatidi f';; a, b]
(egn. 16). First a special case. Recall thahain is a collection of clustersi
suchthatd, B € AimpliesA C BorB C A.
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LemMma 3.1. If C is a chain anda and b are any two leaves then we can
computeéW [C;; a, b] for all C; € C in O(n?) time.

Proof. Suppose that = {C1,Cs,...,Cy} whereC; C Cj oralli < j. We
calculateW[C; a, b] directly. GivenWW[C; a, b] we can calculatéV [C;11; a, b]
using

W[Cit1;a,b] = W[Cia,0]+ > w(cdab) (22)

c,d S Ci+1
{c, d} g Cz

The amortorized complexity is then(n?). |

When( is not a chain, which is usually the case, we can apply Lemma 3.1 by
first partitioningC into chains. We use Dilworth’s theorem to show that whies
a weak hierarchy we can partitighinto O(n) chains. Recall that aanti-chain
is a collection of clustergl such thatd, B € A impliesA € B andB € A.

LEmMMA 3.2. Supposethat = {A: A|B € S,z € B} for some collectio
of weakly compatible splits on a s&tof n elements.

1.For each element € X — {z} there are no three elemenis, as, a; such
that(a, a1 )¢, {(a,a2)c and{a, as)c form an anti-chain irC.

2C can be partitioned inta — 1 chains.

3.We can partitior€ into O(n) chains inO(n?) time.

Proof. (1) Suppose there was such an anti-chain. The# (a,a;)¢ for all
i #j. Putd; = (a,a;)¢ fori =1,2,3,andB; = X — A;. Then each4;|B; is a
splitin S. Furthermore we have

© € BiNByNB; (23)
a3 € BiNByN Az (24)
as € BiNA;NBs (25)
ap € AiNBxN B3 (26)

which contradicts the weak compatibility 8f(see section 1.1).
(2) LetA = Ay, Ao, ..., A, be a maximum cardinality antichain ¢h LetY be
the set of elementg such that(y,y)c € A. Let Z be the set of elementsfor
which there exists’ such thatz, z')¢ € A. Since(y,y)c C (y, z)¢ for all z and
A is an anti-chain we must have thatandZ are disjoint.

The number of clusterd; € A such thatd = (y,y)c for somey € Y is
bounded above by¥’|. For the remaining clusters id there are at least two
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elements:, b € Z such thatd = (a, a’)¢ for somea’ andA = (b, b')¢ for some

b'. By (1) for each elementin Z there are at most two clustefs, 4; € A such

thatA; = (z,z;)c for somez; andA; = (z, z;)¢ for somez;. Hence the number

of clusters that do not equéJ, y)¢ for somey € Y is bounded above byZ|.
Thereford A| < |Y|+|Z] < |X —{z}| = n—1. The maximum size anti-chain

contains at most — 1 clusters, so by Dilworth’s theorem [18] the collectiGn

can be covered by — 1 chains.

(3) Since Dilworth’s theorem is non-constructive it does not guarantee an efficient

algorithm for constructing the covering. Instead we use (1) again. Foreach

X — {z} put

C.o={A€eC:A=(a,a)c for somea'}. 27)

Then by (1) we have that, has a maximal antichain of size two, and can hence
by decomposed into two chains. It tak€§n?) time to decomposé€, into

two chains: first construct an incomparability graph for the clusters (noting that
(a,a1)c C (a,as)c ifand only ifa; € (a,as)c) and then 2-colouring. Repeat-
ing the process for ali gives a partition into at mog(n — 1) chains inO(n?)

time. |

Note that the bound of — 1 of Lemma 3.2(2) is obtained in the case tlyat
maximum weakly compatible.
We now focus our attention on the complete decomposition table. for

LEMMA 3.3.

1.If [p1,p2] is a tuple in a decomposition table fdrthen there isa, az, a3
such thathl = (al, a2>g andC’pz = (al, a3>g — (al, a2>g.

2.If[p1, p2, p3] is atuple in a decomposition table f6then there isiy , az, as, as
such that®,,, = (a1, az2)¢, Cp, = (as, as)c,

Cpg = <a/17a3>C - <a17a2>C - <03,a4>c- (28)

Proof.

(1) There isy;,y; andys,y4s such thatCy, = (y1,y1)c andCyp, = (¥2,¥5)c.
HenceC),, U Cp, = {y1,¥},¥2,¥5)c. Thus there isy; € {y1,y]} andas €
{y2, y4} such thaiCp, U C)p, = (a1,as)c. We can then let, equal the element
in{y1,y1} — {a1}.

(2) This time we choose;, y; for i = 1,2,3 such thatC},, = (y;,y})c. Then

CP1UCP2UC[)3 = <y17y2,y37yi,yéayé>C- There isal,a3 S {yl,y27y3,y£7yé,yé}
suchthata,, as) = Cp, UC,,UC,,. We then choose, anda4 from {y1,y2, ys, ¥}, y5, Y5} —
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{a1, a3} so that(a1,a2)c and(as, as)c equal two ofC,, , Cp,,Cp,. The result
follows. |

We now have the tools we need to derive the efficient algorithm.

THEOREM 3.1. If Sis a set of weakly compatible splits arddequals3 or 4
then SPLIT CONSTRAINED QUARTET OPTIMIZATION can be solvegid*2)
time.

Proof. Fix z, construcC = {A : A|B € S, z € B}, and the table containing
(a,a')c for eacha,a’. This takesO(n®) time. By Lemma 3.2 we can partition
C into O(n) chains inO(n?) time. Applying Lemma 3.1 for each chain and
each pair of leaves, b we can calculate the valuég[C;; a, b] for all a, b and alll
Ci € Cin O(n) time.

By Lemma 3.3 there are at moék(n?) tuples in the decomposition table,
so || D is O(n?) and the complete decomposition table can be constructed in
O(n4*1) time. We can now apply algorithm 2.4 to obtain the resuft.

We conjecture that Theorem 3.1 can be extended for larger valukshafugh
we suspect that a different proof technique is required. In any case, the complex-
ity of O(n®) whend = 4 is about the limit of a practical algorithm.

3.2. Maximum weakly compatible splits

The maximum cardinality of a collection of weakly compatible splits on a set of
n elements ig’}). Those collections for which |S| = (3) are callednaximum
weakly compatible. These collections have a special structure, allowing them to
be to be represented in terms of cuts in a circle [3] or as a pkplgsgraph[22].
For every tred there is a maximum weakly compatible set containiplgts(T').
In many ways, these collections of splits fall between trees and weakly compatible
splits in terms of generality and complexity.

Here we show that the structural properties of maximum weakly compatible
splits allow us to solve split constrained quartet optimization in polynomial time
withouta degree bound. The key result is

LemMA 3.4. LetS be a maximum weakly compatible set of splits and’let
be a tree such thatplits(T) C S. Then there is a binary treg” such that
splits(T) C splits(T") C S.

Proof. By Theorem 5 of [3] we can order the leaf setigsz, ..., z,—1 such
that for every splitd| B with zo € B we haveA|B € S if and only if there isi, j
for which

A= {l'i,l’i+1,...,mj}- (29)
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That is, if and only ifA is aninterval with respect to the ordering, . .., z,_1.

We preceed by induction. Letbe the maximum degree of any vertexZin
The result holds, trivially, il = 3. Suppose that the result holds for @Allwith
maximum degree less thanand thafl" is a tree with maximum degrek

Let T}, be the rooted tree with leaf sbt- {z(} such thaunroOT(Ty, L) = T.
Letv be a vertex of” with degreei. The corresponding vertex in T, hasd — 1
children.

There isa; < ay < -+ < ag such that the cluster sets corresponding to the
children ofv, equal

{{;ri:aj§i<aj+1}:j:1,2,...,d—1} (30)

If we insert the clustefz; : a; < i < a3} into Ty, and the corresponding split
into 7', thenv will have degreel — 1 andT" will still have splits contained its.

We repeat the process to obtain a tree that contains all the splits of the original
tree, has splits contained & and maximum degreé — 1. The result follows

from the induction hypothesis |

Suppose now that all quartet weights are non-negatives if a maximum
weakly compatible collection of splits afftis a non-binary tree such thgilits(T") C
S then by Lemma 3.4 there is binaly such thatsplits(T") C splits(T'). Fur-
thermoreg(T') C ¢(T") and since all quartets have non-negative weight we have
w(T) < w(T"). Hence we can find a tree with optimal weight and splits§ iny
searching through the just binary trees with splitsSinBy theorem 3.1 we now
have

TuEOREM 3.2. LetS be a maximum weakly compatible set of splité afnd
let w be a non-negative weighting for quartetsfof We can find a tre@” with
splits(T) C S and maximum quartet weight @ (n°) time.

Note that if we drop the non-negativity constraint then the problem becomes
NP-hard (Theorem 3.4).

3.3.  Complexity results

We conclude with two complexity results, showing that the polynomial time re-
sults are, in a sense, tight. First we consider the case Wieweakly compatible
and all quartets have non-negative weight.

THEOREM 3.3. SPLIT CONSTRAINED QUARTET OPTIMIZATION is NP-
complete whew is unbounded, even when all quartet weights are non-negative
andsS is weakly compatible.

Proof. The problem is clearly in NP.
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We provide a reduction from the problem of determining a maximum compati-
ble subset of a set of weak compatible splits, which was shown to be NP-complete
in [13].

For every split4;|B; € S there exists a quarteta|b;b; € ¢g(A;|B;) such that
a;al|b;b; & q(A;|By) for all other splits4;|B; € S [3, 4]. Choose one of these
quartets for each split and give it weight one. Give all other quartets weight zero.
Then for any tred” with leaf setL andq(7") we have

> w(abled) = |splits(T)|. (31)
abledeq(T)

Hence the weight of the optimal weight tree equals the size of the maximum
compatible subset&. |

Our second complexity result rules out the possibility of an extension of Theo-
rem 3.2 to include negative quartet weights.

THEOREM 3.4. SPLIT CONSTRAINED QUARTET OPTIMIZATION is NP-
complete whed is unbounded and some quartet weights are negative, even when
S = splits(T') for some tred".

Proof. The problem is clearly in NP.

We provide a reduction from VERTEX COVER. L&t be a graph with vertex
setV and edge seb. PutM = 2|V|. PutL = {+',v" : v € V'} and letT be the
tree only containing clustefa’, v"} and one central vertex of degregV|.

Label the internal vertex adjacent t6 andv” by v. Let Qg be the set of
quartets

Qr = {u'u"|]vv" : {u,v} € E} (32)
and letQ be the set of quartets
Qv = {vV'w's" :v,w,z € V}. (33)

We give each quartet i g weight M and each quartet i@y weightﬁfn_g),
wheren = |V|.

Suppose that”’ is a vertex cover fo€F with sizek. Constructl” with split set
{{v',v"}(L — {v',v"}) : v € V'}. Theng(T") contains all quartets ify; and
exactly those quartets iy of the formv'v"’|w’z’ for someu € V. It follows
thatT’ has summed quartet weighd/ — k.

Conversely, ifl" has summed quartet weighd/ — k thenT' must contain all

quartets inQ iz and onlykw quartets inQ)y. We can then construct a

2
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vertex cover
Vi={v: {o" "L = {v',0"}) € splits(T")} (34)

for G of sizek. |
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