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We present fast new algorithms for constructing phylogenetic trees from quartets (re-
solved trees on four leaves). The problem is central to divide and conquer approaches
to phylogenetic analysis and has been receiving considerable attention from the compu-
tational biology community. Most formulations of the problem are NP-hard. Here we
consider a number of constrained versions that have polynomial time solutions.

The main result is an algorithm for determining bounded degree trees with optimal quar-
tet weight, subject to the constraint that the splits in the tree come from a given collection,
for example, the splits in the aligned sequence data. The algorithm can search an expo-
nentially large number of phylogenetic trees in polynomial time. We present applications
of this algorithm to a number of problems in phylogenetics, including sequence analysis,
construction of trees from phylogenetic networks, and consensus methods.

Key Words: quartets, phylogenetic trees, algorithms, consensus, networks

1. INTRODUCTION

The reconstruction of large evolutionary (phylogenetic) trees from smaller sub-
trees is currently receiving considerable attention in the computational biology
community [6, 7, 23, 29, 31, 37, 38].

There is a clear computational advantage to analysing small subsets of taxa
(species). It allows for far more intensive analysis and the application of more
complex models to reconstruct trees from the sequence data. Tree criteria like,
such as maximum likelihood, which are computationally horrendous on larger
trees, can be solved quickly on four-leaf trees (quartets)—there are just four pos-
sible trees to consider.
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There are also biological and statistical advantages of considering only small
subsets of sequences at a time. In many cases the actual data limit the number
of sequences that can be analysed at one time. The number of sites that can
be aligned across four sequences is generally much more than the number of
sites that can be aligned across the full set ofn sequences, so aligning over the
complete set of sequences can result in lost information. Secondly, a recognized
source of error in standard tree building methods like neighbor joining is that
distantly related sequences can mislead tree reconstruction [29]. If only small
sets of sequences are considered at one time then those sets containing distantly
related sequences can be down-weighted (or even given a zero weighting, as in
[23], [29]).

The main difficulty with quartet based methods is the question of how best to
build large trees out of small ones. The general problem—determining a phyloge-
netic tree that agrees with the largest number of quartets, or maximum weight set
of quartets—is NP-hard, by a simple reduction from QUARTET COMPATIBIL-
ITY [36]. Exhaustive search is generally infeasible: there are1�3�5� � � � �(2n�5)
binary trees onn leaves to choose from. When the number of sequences is lim-
ited, and the computational time is not, the exact algorithm of [6] can be used: it
runs in timeO(n43n) onn sequences andO(n4) quartets.

The next alternative to exact solutions is the use of heuristic algorithms for
quartet optimization. These have been produced by a number of computer scien-
tists, biologists and mathematicians. The heuristics of Sattath and Tversky [35],
Fitch [26], Colonius and Schulze [14], and Bandelt and Dress [1] combine cluster-
ing procedures with a pairwise similarity or neighbourliness scores derived from
the quartet sets. An alternative agglomerative algorithm for constructing trees
from quartets is provided in [8].

A novel variation on the scoring approach is described by Ben-Doret al.[6].
Instead of constructing a similarity score then clustering, they embed then leafs as
points in<n using semi-definite programming, and then apply a nearest neighbour
clustering method.

The tree building, or ‘puzzling’, part of the Quartet Puzzling heuristic of Strim-
mer and von Haeseler [37] works by ordering the leaf set arbitrarily, constructing
a tree on the first four leaves, and then adding new leaves one at a time, attach-
ing each leaf to the edge that gives optimum quartet score. The same approach
is used in [38, 15] to optimise according to different, but related, criteria. These
procedures can be seen as analogues of the Wagner tree method [24] because they
start with a small tree and insert one leaf at a time.

Dekker [17] proposes a method for constructing trees from quartets and other
subtrees using quartet inference rules (see also [12]). The Short Quartet Method
[23] constructs trees using inference rules and greedy selection of quartets.

One important problem with these heuristic approaches is that there has been
little systematic analysis of their strengths and weaknesses. Indeed, the quartet
approximation problem seems to be resistant to an approximation theoretic ap-
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proach. A version of the problem was shown to have a PTAS by [30], but the
complexity of the approximation algorithm is so astronomical that the result is of
theoretical interest only.

Polynomial time exact algorithms have been proposed for a number of con-
strained versions. TheQ� method of Berry and Gascuel [7] can be applied when
there is at most one quartet in the input set for each four leaves, and the output
tree is constrained to have only quartets from this set. There is always exactly one
maximal tree satisfying these conditions. TheQ� method is employed by Kearney
[31] to construct trees from quartets selected by an ordinal quartet method.

TheQ� method can be extended by weakening the constraint that all the quar-
tets in the tree come from the input set. The quartet cleaning method [30],C-tree
construction [9], and hypercleaning method [10] all allow varying degrees of ‘er-
rors’ in the input set. All run in polynomial time, and are well suited for the
situation when the quartet set is unweighted and almost tree-like.

In this paper we present a polynomial time algorithm for a constrained version
of the quartet optimization problem. The algorithms are fast enough to be ap-
plied to moderately large data sets. The constraints are not overly restrictive—the
algorithm still searches an exponentially large number of trees—and are general
enough to be applied to a wide range of phylogenetic problems. Finally, we note
that the algorithms can be applied to weighted sets of quartets, with the possibility
of more than one quartet for each set of four leaves.

In the remainder of this section we present basic definitions (section 1.1), de-
scribe the main result (section 1.2) and outline a number of applications of the
algorithm. In section 2 we present the constrained quartet optimization algorithm.
In section 3 we show how the algorithm can be applied to the extraction of phylo-
genies from phylogenetic networks, and describe the efficiency gains that can be
made in this application.

1.1. Basic Definitions
Hypotheses about the evolutionary relationships between taxa (species) are

usually described in terms of a phylogenetic tree. When no ancestral node is
given we have anunrooted (phylogenetic) treewhich can be formally defined as
an acyclic connected graph with no vertices of degree two and all leaves (degree
one vertices) labelled uniquely from some leaf setL representing the set of taxa.
A phylogenetic tree isbinary or resolvedif all internal vertices have degree three.

A phylogenetic tree clearly implies relationships between each subset of its
leaf set. This is captured in the notion of induced subtrees. LetT be an unrooted
phylogenetic tree, and letA be a subset of its leaf set. Consider the minimal
subgraphT (A) of T that connects elements ofA. Delete all vertices of degree
two in T (A) and identify their adjacent edges, thereby obtaining an unrooted
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phylogenetic tree with leaf setA. This tree is called thesubtree ofT induced by
A and is denotedTjA.

The information contained in a phylogenetic trees can be coded in a number of
ways. Here we consider two encodings: sets of splits and sets of quartets.

A split AjB is a partition of the leaf set into two non-empty parts,A andB. If
we remove an edgee of a phylogenetic tree we divide the tree into two connected
components, and induce a split of the leaf set of the tree. This split is called the
split associated withe, and the set of all such splits in a tree is denotedsplits(T ).
If e is an external edge then we obtain a splitAjB with jAj = 1 or jBj = 1.
We call these splitstrivial splits. Note thatT can be reconstructed from the set
splits(T ).

A quartet is a resolved phylogenetic tree on four leaves. There are three pos-
sible quartets on a given set of four leavesfa; b; c; dg. We useabjcd to denote the
quartet wherea andb are separated fromc andd by the internal edge. A phylo-
genetic treeT agreeswith a quartetabjcd if a; b; c; d are all leaves ofT and the
path froma to b does not share any vertices with the path fromc to d, that is, if
Tjfa;b;c;dg = abjcd. Let q(T ) denote the set of quartets thatT agrees with. We
can reconstructT from q(T ).

To illustrate, we give a simple example (figure 1). We have selected two internal
edges and give the associated splits. We have also selected two sets of four leaves,
and given the induced quartets.

a
b

c
d e

f

gh

ah | bcdefg abhcd | efg

ab|cd

{a,b,c,d} {a,d,g,h}

ah|dg

FIG. 1. Splits and quartets of an unrooted phylogenetic tree.

We need three further definitions in order to be able to summarise our results.
First, a set of splitsS is compatible if S � splits(T ) for some treeT . Second, a
set of splits isweakly compatible if for every three splitsA1jB1; A2jB2; A3jB3,
at least one of the intersectionsB1 \ B2 \ B3, B1 \ A2 \ A3, A1 \ B2 \ A3,
A1 \ A2 \ B3 is empty [3]. Finally, a set of weakly compatible splitsS onX is
maximum if jSj = n(n� 1)=2 (see [3]).
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1.2. Main results
Let w be a weighting function defined on the set of all quartets with leaves in

L. The weights can be negative and do not have to be integers. We define the
weight of the tree to be

w(T ) =
X

abjcd2q(T )

w(abjcd); (1)

the sum of all quartet weights in the tree. We will be examining the following
problem:

SPLIT CONSTRAINED QUARTET OPTIMIZATION
INSTANCE: Weightingw for the quartets on a leaf setL. SetS of splits ofL.
Rational number�.
PARAMETER: Degree boundd.
QUESTION: Is there a treeT with vertex degree bounded byd andsplits(T ) �
S such thatw(T ) � �?

Let n = jLj andk = jSj. The computational complexity of this problem can
be summarised:

� Polynomial time solvable for boundedd, with time complexityO(n4k +
n2dkd�1) (section 2). Can be improved toO(n5) time whenS is weakly com-
patible andd equals 3 or 4 (section 3.1).
� NP-complete without the degree boundd, even when the set of splitsS is

weakly compatible(see section 3.3).
� Polynomial time solvablewithoutdegree bound when all quartet weights are

non-negative andS is maximum weakly compatible(section 3.2).
� NP-complete when the quartets weights can be negative andd is unbounded,

even whenS = splits(T ) for some treeT (section 3.3).

The results can be viewed as an extension of the compatibility algorithms of
[12]. In [12] the splits, rather than the quartets, are weighted and the criteria of
optimization is the sum of the weights of the splits in a tree. The significance
of these results is highlighted by the fact that determining an optimal tree with
respect to split weights and no degree bound is equivalent to MAX CLIQUE [16]
and so inherits the depressing complexity attributes of MAX CLIQUE like W[1]-
hardness [19] and non-approximability [5].

1.3. Applications
We outline a number of possible applications of the split constrained quartet

optimization algorithms.

1.3.1. Analysis of sequence data
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A natural source of splits to serve as a split constraint for the algorithm is the se-
quence data. We first use an alignment program to determine which positions (or
sites) in one sequence correspond to which positions in the other sequences. For
each position we then obtain a map from the set of sequences to the nucleotide for
that sequence at that position. In DNA and RNA there are four nucleotides pos-
sible, and so there are eight ways of partitioning the nucleotides into two groups.
Each of these partitions can be used to construct a split of the set of sequence set.

We have, then, a three step process for inferring phylogenetic trees from aligned
sequence data:

(1) Extract the setS of splits given by the characters at each site in the data.
(2) For each set of four sequences, score the three possible quartet trees using

a standard phylogenetic optimization criterion (e.g. parsimony length, likelihood
score). The quartet scores can be scaled to indicate relative confidence.

(3) Apply the constrained quartet optimization algorithm to the set of splits
constructed in step (1) with the quartet weighting constructed in step (2).

1.3.2. Extracting trees from phylogenetic networks

An approach to phylogenetic analysis that is growing in popularity is the con-
struction of phylogenetic networks, where the evolutionary relationships are rep-
resented by a general graph rather than just a tree.

Phylogenetic networks allow for a more complicated relationship between the
different species, and can incorporate recombination, hybridisation, and horizon-
tal gene transfer. In some cases the data itself dictates that a tree representation
is not suitable, as in the complex evolutionary relations between viruses, or in
intra-specific data with multiple hybridizations.

Phylogenetic networks can also be employed as an intermediary step in phy-
logenetic tree reconstruction. Often a network program like SplitsTree [22] is
used to get a general representation of patterns in the data, and an indication of
how ‘tree-like’ the data actually is. However the problem still remains - given a
phylogenetic network how does one best extract a phylogenetic tree?

We apply the constrained quartet optimization algorithms to this problem by
first converting the network into a collection of splits. In section 3 we discuss this
approach in further detail, and show that time complexity gains can be made by
exploiting the structure of the network.

1.3.3. Consensus trees, bootstrapping, and quartet puzzling

A common problem faced by practitioners in evolutionary biology is the repre-
sentation of a large collection of trees on the same leaf set by a singleconsensus
tree. Tree search criteria such as likelihood can have multiple global optima.
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Heuristic construction methods (like quartet puzzling [37]) that involve random-
ness can construct different trees on different runs, and the user will want to make
multiple runs in order to achieve a degree of confidence in the final hypothesis.
Bootstrapping, and its close cousin jack-knifing, work on the same principle. The
data is randomly sampled and these possibly incomplete samples are used as input
for the tree reconstruction criteria. The collection of trees obtained is then used to
determine confidence levels for a particular evolutionary hypothesis.

By far the most common consensus technique is the majority rule tree, formed
from splits that appear in over half of the input trees. Unfortunately this method
will often give quite uninformative consensus trees, with few internal edges. A
rogue taxa that appears in a large number of different places (perhaps because it
is only distantly related to the other taxa) can force the consensus tree to collapse
completely. A major drawback of the popular Quartet Puzzling method [37] is
that the consensus tree it produces tends to be quite poorly resolved.

The constrained quartet optimization algorithm provides a natural solution to
the consensus tree problem. We first construct the set of all splits that appear in
at least one of the input trees. If the input trees are binary then this set of splits is
guaranteed to contain the set of splits of some binary tree, so we can always use
a small degree bound. The quartet weighting can be taken from the input data, as
in the previous section, or by counting the number of times each quartet appears
in an input tree. In this way the consensus technique can be extended to handle
weighted trees. Finally, the constrained quartet optimization algorithm can be
used to construct, in polynomial time, a consensus tree for the input set of trees.

1.3.4. Optimal trees with excluded quartets

Suppose that we are given, for each set of four leavesfa; b; c; dg a quartet
to exclude. We wish to find a treeT of optimal quartet weight such thatq(T )
contains none of the excluded quartets.

We can solve this problem when we also have a degree bound forT . LetQ be
the set of excluded quartets. We first construct the set of splits

S = fAjB : aa0jbb0 62 Q; all a; a0 2 A; b; b0 2 Bg (2)

This set is weakly compatible [4] and, furthermore,q(T ) \ Q = ; if and only
if splits(T ) � S. Hence the problem of finding an optimal treeT containing
no excluded quartets reduces to the SPLIT CONSTRAINED QUARTET OPTI-
MIZATION problem. In section 3 we give efficient algorithms for constrained
quartet optimization whenS is weakly compatible.
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Note that if we do not forceQ to contain an excluded quartet for every set of
four leaves then it becomes NP-hard to determine if there exists a binary treeT

such thatq(T ) \Q = ; [13].

1.3.5. Optimal trees with a given circular order

A novel approach to phylogenetic tree construction was introduced by Gonet
et al.in [32]. They first construct a tourx1; x2; : : : ; xn; x1 of the setL of leaves
using travelling salesman algorithms. They then look for a phylogenetic treeT

onL such thatx1; x2; : : : ; xn; x1 is acircular order of T , that is, each edge inT
lies on exactly two paths connecting adjacent vertices in the tour. There are2n�2

possible circular orderings for a binary tree onn leaves [33].
Construct the set

S = ffxi; xi+1; : : : ; xjgjL� fxi; xi+1; : : : ; xjg : 1 � i � j � n� 1g (3)

This set is a maximum weakly compatible. Furthermore,x1; : : : ; xn is a circu-
lar ordering for a treeT if and only if splits(T ) � S. In section 3.2 we show that
the SPLIT CONSTRAINED QUARTET OPTIMIZATION problem can be solved
in polynomial timewithout a degree boundwhenS is maximum weakly compat-
ible and all quartet weights are non-negative. Hence, given a tourx1; : : : ; xn; x1
of L and a positive weight for every quartet onL, we can determine an optimal
weight treeT from among the exponentially many trees that havex1; : : : ; xn; x1
as a circular order.

2. CONSTRAINED QUARTET OPTIMIZATION ALGORITHMS

The key component of the dynamical programming algorithm of [12] is a data
structure called the decomposition table, which we describe in section 2.2. We
will also use a decomposition table, though we optimize a different, and more
complex, criterion. First, however, we introduce rooted trees and clusters.

2.1. Rooted trees and clusters

A rooted phylogenetic treeis defined in the same way as an unrooted phylo-
genetic tree, except that one vertex, which may have degree two, is distinguished
and called theroot. Given any two verticesu; v in a rooted phylogenetic tree, if
the path fromu to the root passes throughv then we say thatu is adescendent
of v. The descendents of a vertexv that are also adjacent tov are called thechil-
dren of v. A rooted phylogenetic tree isbinary or fully resolved if every internal
vertex has exactly two children.
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The rooted analogue of a split is acluster. Given a vertexv in a rooted tree the
set of leaves that are descendents ofv is called the clusterassociated withv. The
set of all clusters associated to vertices in a rooted treeT is denotedclus(T ).

We will often be converting rooted trees into unrooted trees. Suppose thatT is
a rooted tree such thatL(T ) � L andL(T ) 6= L. We letunroot(T; L) be the
unrooted tree given by attaching all leaves inL� L(T ) to the root ofT and then
taking the underlying unrooted topology. For example the trees in figure 2 (i) and
2 (ii) have unrooted equivalents equal to those trees in figure 2 (iii) and 2 (iv).

2.2. The decomposition table

The key data structure in the algorithm is adecomposition tableD = (C; D).
HereC = C1; C2; : : : ; CK is a collection of clusters of some leaf setL, andD is
a table with a rowD[i] for each clusterCi. RowD[i] contains a list of unordered
tuples[p1; p2; : : : ; pq] satisfying

� q � 2.
� Cp1 ; Cp2 ; : : : ; Cpq are pairwise disjoint.
� Ci = Cp1 [ Cp2 [ � � � [ Cpq .

Note that one row can contain tuples of varying lengths and that we are not con-
cerned with the ordering of the indices within the tuple. LetkDk denote the sum
of the lengths of all the tuples in all the rows ofD.

To each rowD[i] of the decomposition table we associate a set of rooted trees
T (D; i), all of which have leaf setCi. The setT (D; i) is defined recursively:

� if Ci = fag for some leafa thenT (D; i) contains the single vertex tree with
leafa;
� if jCij � 2 andD[i] = ; thenT (D; i) = ;.
� Otherwise,T (D; i) is the set of all possible trees that can be formed by

choosing a tuple[p1; : : : ; pr] in D[i], choosing subtreesTj 2 T (D; j) for each
j = 1; : : : ; r, and attaching the roots of these subtrees to a new vertex that be-
comes the root of a rooted tree with leaf setCi.

Since there may be tuples[p1; : : : ; pr] in D[i] with T (D; pj) = ; for somej, we
can haveT (D; i) = ; even thoughD[i] 6= ;.

We use dynamical programming to enumerate or extract the trees inT (D; i).
Construct a tables by puttings[i] = 1 for all i such thatjCij = 1, and putting

s[i] =
X

fp1;p2;:::;pqg2D[i]

s[p1]� s[p2]� � � � � s[pq] (4)

whenjCij > 1. Thens[i] = jT (D; i)j, and the valuess[i] can be calculated in
timeO(kDk). [12]
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Once the trees inT (D; i) have been enumerated we can extract trees from the
collection as follows:

� If s[i] = 0 return;

� else if jCij = 1 return the single vertex tree labelled by the leaf inCi.

� else choose a tuple[p1; : : : ; pq ] such thats[p1] � s[p2] � � � � � s[pq] 6= 0.
Extract treesT1; : : : ; Tq from T (D; 1); T (D; 2); : : : ; T (D; q) respectively. At-
tach the roots ofT1; : : : ; Tq to a new vertex that becomes the root of a treeT in
T (D; i). ReturnT .
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FIG. 2. The trees in (i)T (D; 5); (ii) T (D; 9); (iii) T �(D; 5); and (iv)T �(D; 9).

To illustrate, we give a simple example. The following table represents a de-
composition table for a collection of clusters of the leaf setL = fa; b; c; d; eg.

i Ci D[i] s[i]

1 fag � 1

2 fbg � 1

3 fcg � 1

4 fb; cg [2; 3] 1

5 fa; b; cg [1; 2; 3]; [1; 4] 2

6 fdg � 1

7 feg � 1

8 fd; eg [6; 7] 1

9 fa; b; c; d; eg [5; 8]; [5; 6; 7] 4
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ThenT (D; 5) contains the two trees in figure 2 (i). Each of the trees inT (D; 5)
appears as a subtree of two trees inT (D; 9), giving a total of4 trees inT (D; 9)
(figure 2 (ii)). All other collectionsT (D; i) contain single trees.

Since decomposition tables can be used to store rooted trees, we can also use
them to store unrooted trees. First fix a leafx, acting as an outgroup, and consider
a collectionC of clusters onL� fxg. LetD be a decomposition table forC. For
eachCi 2 C we define the set of unrooted trees

T �(D; i) = funroot(T; L) : T 2 T (D; i)g: (5)

The operationunroot is described above in section 2.1.
Returning to our example, suppose thatL0 = fa; b; c; d; e; xg. ThenT �(D; 5)

contains the two unrooted trees in figure 2 (iii) whileT �(D; 9) contains the four
trees in figure 2 (iv).

2.3. Optimal weight trees in decomposition tables

Suppose thatD = (C; D) is a decomposition table for a set of clustersC of
L � fxg. The collectionsT �(D; i) can contain exponentially many trees, even
whenD is only polynomial in size. Here we show how to locate, from among
these exponentially many trees, a tree with maximum summed quartet weight.
The algorithm takesO(n4jCj+ n2kDk) time.

We use dynamic programming. At each step we optimize with respect to a
modification of the quartet weighting criteria of eqn. 1.

As before, letw be a weighting function for the quartets with leaves inL. For
eachCi 2 C put

qi(T ) = fabjcd 2 q(T ) : jfa; b; c; dg \ Cij � 3g (6)

and

wi(T ) =
X

abjcd2qi(T )

w(abjcd): (7)

We optimizewi(T ) over all of the trees in the collectionT �(D; i) defined in
eqn. 5. Put

m[i] = maxfwi(T ) : T 2 T
�(D; i)g (8)

and

M[i] = fT 2 T �(D; i) : wi(T ) = m[i]g: (9)
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Finally, for each tuple[p1; p2; : : : ; pq] 2 D[i] we define

Q(p1; : : : ; pq) = [
q
j=1fabjcd : a; b 2 Cpj ; c 2 Ci � Cpj ; d 2 L� Cpjg(10)

and

W (p1; : : : ; pq) =
X

abjcd2Q(p1;:::;pq)

w(abjcd): (11)

We can now state the basis for the dynamical programming algorithm.

Theorem 2.1. If jCij = 1 thenm[i] = 0, otherwise

m[i] = maxfW (p1; : : : ; pq) +

qX
j=1

m[j] : [p1; p2; : : : ; pq] 2 D[i]g: (12)

Proof. We prove the result by induction on the size ofCi. If jCij = 1 then
T �(D; i) contains only the trivial unrooted tree with no internal edges. This has
an empty quartet set and, consequently, zero weight.

Suppose that the result holds for allCj 2 C such thatjCj j < jCij. Suppose
thatT � 2 M[i]. By the definition ofT �(D; i) andM[i] (eqns. 5 and 9) there is
T 2 T (D; i) such thatT � = unroot(T; L). LetT1; T2; : : : ; Tq be the maximal
subtrees ofT rooted at the children of the root ofT .

By the definition ofT (D; i) there is a tuple[p1; : : : ; pq] such that for each
j 2 f1; : : : ; qg we haveCpj = L(Tj) andTj 2 T (D; pj).

Consider an arbitrary quartetabjcd 2 qi(T �). Thenjfa; b; c; dg \ Cij � 3 and
exactly one of the following must hold:

� There isj 2 f1; 2; : : : ; qg such thatjfa; b; c; dg \ Cpj j � 3, or
� There isj 2 f1; 2; : : : ; qg such thatfa; b; c; dg\Cpj equalsfa; bg or fc; dg.

Hence

wi(T
�) =

qX
j=1

wpj (Tj) +W (p1; : : : ; pq) (13)

� m[i] (14)

by the induction hypothesis applied toCp1 ; : : : ; Cpq .
Conversely, suppose that[p1; : : : ; pq] maximises eqn. 12. There isT1; : : : ; Tq

such thatunroot(Tj ; L) 2 M[pj ] for all j = 1; 2; : : : ; q. Construct a rooted treeT
by attaching the roots ofT1; : : : ; Tq to a new root. Thenunroot(T; L) 2 T �(D; i)

andwi(T ) = m[i].
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Theorem 2.1 leads immediately to a compact representation of the optimal
trees. We construct a new decomposition tableDopt = (C; Dopt) by letting
Dopt[i] equal the set of tuples[p1; : : : ; pq] in D[i] that maximize eqn. 12. It then
follows that

Corollary 2.1. For eachCi 2 C we have

M[i] = T �(Dopt; i): (15)

To improve the time complexity we precompute the value

W [Ci; a; b] =
X

x;y2Ci

w(xyjab) (16)

for all Ci 2 C and alla; b 2 L� Ci. This takesO(n4jCj) time.
It takes a furtherO(n2kDk) time to calculatem[i] for all i and construct the

optimal tree decomposition tableDopt, where we usekDk to denote the sum
of the tuple lengths over all tuples in all rows ofD. The optimal trees can be
enumerated using techniques outlined in section 2.2.

The complete algorithm is summarised inAlgorithm 1.

Algorithm 1 ( OptimalD(D,w)).

1. begin
2. SortC = fC1; : : : ; Ckg so thatCi � Cj impliesi < j.
3. for i from 1 to k do
4. for a; b 2 L� Ci do
5. W [i; a; b] 

P
x;y2Ci

w(xyjab)

6. end (for)
7. end (for)
8. for i from 1 to k do
9. if D[i] = ; then

10. M [i] 0

11. else
12. best �1

13. for all [p1; p2; : : : ; pq] 2 D[i] do
14. calculateW (p1; p2; : : : ; pq]) usingW [�; �; �].
15. score W (p1; : : : ; pq) +

Pq
j=1M [pj ]

16. if score > best thenDopt[i] ;

17. if score � best then
18. Dopt[i] Dopt[i] [ f[p1; : : : ; pq ]g
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19. best score

20. end (if)
21. end (for all)
22. end (if-else)
23. end (for)
24. end.

2.4. An algorithm for split constrained quartet optimization

We are now in a position to give the main result. Letw be a weighting on the
quartets of a leaf setL, let S be a set of splits ofL, and letd be a degree bound.
We will assume thatS contains all of the trivial splits (those that separate a single
element from the everything else). Letn = jLj andk = jSj.

Let x be an arbitrary leaf inL. We construct a collection of clusters

C = fA : AjB 2 S; x 2 Bg: (17)

and order theseC1; C2; : : : ; Ck so thatCi; Cj 2 C andCi � Cj implies i < j.
HenceCk = L� fxg, the cluster corresponding to the trivial splitfxgjL� fxg.

We construct a decompostion tableD = (C; D) as follows:

� If jCij = 1 thenD[i] ;.

� If jCij > 1 then

D[i] 

8<
:[p1; p2; : : : ; pq ] :

Cp1 ; : : : ; Cpqare pairwise disjoint
Ci = Cp1 [ � � � [ Cpq

q � d� 1

9=
; : (18)

This table is called thecomplete decomposition tablefor C with degree bound
d. It can be constructed inO(nkd�1) time, wherek = jCj andn = jLj, by
considering all tuples of indices of length less thand, computing intersections
and union, then determining if they should be included in some row ofD.

Furthermore, a simple proof by induction gives

Lemma 2.1. [12] If D is constructed as above, andCk = L � fxg, then
T � 2 T �(D; k) if and only ifT � has splits inS and degree boundd.

The decomposition tableDopt containing the optimal trees inD can be con-
structed inO(n4k+n2dkd�1) time using Algorithm 1. We have now established:

Theorem 2.2. The SPLIT CONSTRAINED QUARTET OPTIMIZATION prob-
lem can be solved inO(n4k + n2dkd�1) time.
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3. OPTIMAL QUARTET TREES IN PHYLOGENETIC NETWORKS

The algorithm for SPLIT CONSTRAINED OPTIMIZATION described in the
previous sections makes no assumptions about the structure of the set of splitsS.
In many cases, prior knowledge of the structure ofS allows us to achieve tighter
complexity bounds, or even drop the degree constraint altogether.

One structure that arises in applications (see sections 1.3.2, 1.3.4, and 1.3.5) is
weakly compatible splits. In section 3.1 we describe gains in efficiency that can
be made when the set of input splitsS is weakly compatible. In the case thatS is a
maximal collection of weakly compatible splits, and the quartet weights are non-
negative, we can solve the SPLIT CONSTRAINED QUARTET OPTIMIZATION
problem without having to apply a degree bound (section 3.2).

We conclude with two complexity results. We show that the results in sec-
tion 3.2 for maximal collections of weakly compatible splits cannot be extended
to arbitrary collections of weakly compatible splits (unlessP = NP ). Then we
prove the rather suprising result that if we allow negative quartet weights then the
SPLIT CONSTRAINED QUARTET OPTIMIZATION problem (with no degree
bound) is NP-hard even when the set of splitsS equalssplits(T ) of some treeT .

3.1. Quartet optimization with weakly compatible splits

Let S be a collection of weakly compatible splits onL and letd be a degree
bound. As in section 2.4 we choose a leafx and construct

C = fA : AjB 2 S; x 2 Bg: (19)

ThenC is aweak hierarchy [3], which means that for allU; V;W 2 C

U \ V \W 2 fU \ V; U \W;V \Wg: (20)

Define a closure operatorh�iC one subsets ofL� fxg by

hAiC =
\

C2C:A�C

C: (21)

Weak hierachies have the property that for every subsetA there isa; a0 2 A such
thathAiC = hfa; a0giC [2]. We writeha; a0iC for hfa; a0giC and construct a table
mapping each pair of leavesa; a0 to the corresponding subsetha; a0iC . The table
can be constructed inO(n5) time using the property thaty 2 ha; a0iC if and only
if there is no clusterC 2 C with a; a0 2 C andy 62 C.

The first efficiency gain we make is to speed up the calculation ofW [Ci; a; b]

(eqn. 16). First a special case. Recall that achain is a collection of clustersA
such thatA;B 2 A impliesA � B orB � A.
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Lemma 3.1. If C is a chain anda and b are any two leaves then we can
computeW [Ci; a; b] for all Ci 2 C in O(n2) time.

Proof. Suppose thatC = fC1; C2; : : : ; Ckg whereCi � Cj or all i � j. We
calculateW [C1; a; b] directly. GivenW [Ci; a; b] we can calculateW [Ci+1; a; b]

using

W [Ci+1; a; b] = W [Ci; a; b] +
X

c; d 2 Ci+1

fc; dg 6� Ci

w(cdjab) (22)

The amortorized complexity is thenO(n2).

WhenC is not a chain, which is usually the case, we can apply Lemma 3.1 by
first partitioningC into chains. We use Dilworth’s theorem to show that whenC is
a weak hierarchy we can partitionC intoO(n) chains. Recall that ananti-chain
is a collection of clustersA such thatA;B 2 A impliesA 6� B andB 6� A.

Lemma 3.2. Suppose thatC = fA : AjB 2 S; x 2 Bg for some collectionS
of weakly compatible splits on a setX of n elements.

1.For each elementa 2 X � fxg there are no three elementsa1; a2; a3 such
that ha; a1iC , ha; a2iC andha; a3iC form an anti-chain inC.

2.C can be partitioned inton� 1 chains.
3.We can partitionC intoO(n) chains inO(n3) time.

Proof. (1) Suppose there was such an anti-chain. Thenai 62 ha; ajiC for all
i 6= j. PutAi = ha; aiiC for i = 1; 2; 3, andBi = X �Ai. Then eachAijBi is a
split in S. Furthermore we have

x 2 B1 \B2 \ B3 (23)

a3 2 B1 \B2 \ A3 (24)

a2 2 B1 \A2 \ B3 (25)

a1 2 A1 \ B2 \ B3 (26)

which contradicts the weak compatibility ofS (see section 1.1).
(2) LetA = A1; A2; : : : ; Ak be a maximum cardinality antichain inC. Let Y be
the set of elementsy such thathy; yiC 2 A. Let Z be the set of elementsz for
which there existsz0 such thathz; z0iC 2 A. Sincehy; yiC � hy; ziC for all z and
A is an anti-chain we must have thatY andZ are disjoint.

The number of clustersAi 2 A such thatA = hy; yiC for somey 2 Y is
bounded above byjY j. For the remaining clusters inA there are at least two
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elementsa; b 2 Z such thatA = ha; a0iC for somea0 andA = hb; b0iC for some
b0. By (1) for each elementz in Z there are at most two clustersAi; Aj 2 A such
thatAi = hz; ziiC for somezi andAj = hz; zjiC for somezj . Hence the number
of clusters that do not equalhy; yiC for somey 2 Y is bounded above byjZj.

ThereforejAj � jY j+jZj � jX�fxgj = n�1. The maximum size anti-chain
contains at mostn � 1 clusters, so by Dilworth’s theorem [18] the collectionC
can be covered byn� 1 chains.
(3) Since Dilworth’s theorem is non-constructive it does not guarantee an efficient
algorithm for constructing the covering. Instead we use (1) again. For eacha 2

X � fxg put

Ca = fA 2 C : A = ha; a0iC for somea0g: (27)

Then by (1) we have thatCa has a maximal antichain of size two, and can hence
by decomposed into two chains. It takesO(n2) time to decomposeCa into
two chains: first construct an incomparability graph for the clusters (noting that
ha; a1iC � ha; a2iC if and only if a1 2 ha; a2iC) and then 2-colouring. Repeat-
ing the process for alla gives a partition into at most2(n � 1) chains inO(n3)
time.

Note that the bound ofn� 1 of Lemma 3.2(2) is obtained in the case thatS is
maximum weakly compatible.

We now focus our attention on the complete decomposition table forC.

Lemma 3.3.

1.If [p1; p2] is a tuple in a decomposition table forC then there isa1; a2; a3
such thatCp1 = ha1; a2iC andCp2 = ha1; a3iC � ha1; a2iC .

2.If [p1; p2; p3] is a tuple in a decomposition table forC then there isa1; a2; a3; a4
such thatCp1 = ha1; a2iC , Cp2 = ha3; a4iC ,

Cp3 = ha1; a3iC � ha1; a2iC � ha3; a4iC : (28)

Proof.
(1) There isy1; y01 andy2; y02 such thatCp1 = hy1; y01iC andCp2 = hy2; y02iC .

HenceCp1 [ Cp2 = hfy1; y01; y2; y
0
2iC . Thus there isa1 2 fy1; y01g anda3 2

fy2; y02g such thatCp1 [ Cp2 = ha1; a3iC . We can then leta2 equal the element
in fy1; y01g � fa1g.
(2) This time we chooseyi; y0i for i = 1; 2; 3 such thatCpi = hyi; y0iiC . Then
Cp1[Cp2[Cp3 = hy1; y2; y3; y01; y

0
2; y

0
3iC . There isa1; a3 2 fy1; y2; y3; y01; y

0
2; y

0
3g

such thatha1; a3i = Cp1[Cp2[Cp3 . We then choosea2 anda4 fromfy1; y2; y3; y01; y
0
2; y

0
3g�
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fa1; a3g so thatha1; a2iC andha3; a4iC equal two ofCp1 ; Cp2 ; Cp3 . The result
follows.

We now have the tools we need to derive the efficient algorithm.

Theorem 3.1. If S is a set of weakly compatible splits andd equals3 or 4
then SPLIT CONSTRAINED QUARTET OPTIMIZATION can be solved inO(nd+2)

time.

Proof. Fix x, constructC = fA : AjB 2 S; x 2 Bg, and the table containing
ha; a0iC for eacha; a0. This takesO(n5) time. By Lemma 3.2 we can partition
C into O(n) chains inO(n3) time. Applying Lemma 3.1 for each chain and
each pair of leavesa; b we can calculate the valuesW [Ci; a; b] for all a; b and all
Ci 2 C in O(n5) time.

By Lemma 3.3 there are at mostO(nd) tuples in the decomposition table,
so kDk is O(nd) and the complete decomposition table can be constructed in
O(nd+1) time. We can now apply algorithm 2.4 to obtain the result.

We conjecture that Theorem 3.1 can be extended for larger values ofd, though
we suspect that a different proof technique is required. In any case, the complex-
ity of O(n6) whend = 4 is about the limit of a practical algorithm.

3.2. Maximum weakly compatible splits

The maximum cardinality of a collection of weakly compatible splits on a set of
n elements is

�
n
2

�
. Those collectionsS for which jSj =

�
n
2

�
are calledmaximum

weakly compatible.. These collections have a special structure, allowing them to
be to be represented in terms of cuts in a circle [3] or as a planarsplitsgraph[22].
For every treeT there is a maximum weakly compatible set containingsplits(T ).
In many ways, these collections of splits fall between trees and weakly compatible
splits in terms of generality and complexity.

Here we show that the structural properties of maximum weakly compatible
splits allow us to solve split constrained quartet optimization in polynomial time
withouta degree bound. The key result is

Lemma 3.4. Let S be a maximum weakly compatible set of splits and letT

be a tree such thatsplits(T ) � S. Then there is a binary treeT 0 such that
splits(T ) � splits(T 0) � S.

Proof. By Theorem 5 of [3] we can order the leaf set asx0; x1; : : : ; xn�1 such
that for every splitAjB with x0 2 B we haveAjB 2 S if and only if there isi; j
for which

A = fxi; xi+1; : : : ; xjg: (29)
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That is, if and only ifA is aninterval with respect to the orderingx1; : : : ; xn�1.
We preceed by induction. Letd be the maximum degree of any vertex inT .

The result holds, trivially, ifd = 3. Suppose that the result holds for allT with
maximum degree less thand, and thatT is a tree with maximum degreed.

LetT0 be the rooted tree with leaf setL�fx0g such thatunroot(T0; L) = T .
Let v be a vertex ofT with degreed. The corresponding vertexv0 in T0 hasd� 1

children.
There isa1 < a2 < � � � < ad such that the cluster sets corresponding to the

children ofv0 equal

ffxi : aj � i < aj+1g : j = 1; 2; : : : ; d� 1g (30)

If we insert the clusterfxi : a1 � i < a3g into T0, and the corresponding split
into T , thenv will have degreed � 1 andT will still have splits contained inS.
We repeat the process to obtain a tree that contains all the splits of the original
tree, has splits contained inS, and maximum degreed � 1. The result follows
from the induction hypothesis.

Suppose now that all quartet weights are non-negative. IfS is a maximum
weakly compatible collection of splits andT is a non-binary tree such thatsplits(T ) �
S then by Lemma 3.4 there is binaryT 0 such thatsplits(T ) � splits(T 0). Fur-
thermore,q(T ) � q(T 0) and since all quartets have non-negative weight we have
w(T ) � w(T 0). Hence we can find a tree with optimal weight and splits inS by
searching through the just binary trees with splits inS. By theorem 3.1 we now
have

Theorem 3.2. LetS be a maximum weakly compatible set of splits ofL and
let w be a non-negative weighting for quartets ofL. We can find a treeT with
splits(T ) � S and maximum quartet weight inO(n5) time.

Note that if we drop the non-negativity constraint then the problem becomes
NP-hard (Theorem 3.4).

3.3. Complexity results

We conclude with two complexity results, showing that the polynomial time re-
sults are, in a sense, tight. First we consider the case whenS is weakly compatible
and all quartets have non-negative weight.

Theorem 3.3. SPLIT CONSTRAINED QUARTET OPTIMIZATION is NP-
complete whend is unbounded, even when all quartet weights are non-negative
andS is weakly compatible.

Proof. The problem is clearly in NP.
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We provide a reduction from the problem of determining a maximum compati-
ble subset of a set of weak compatible splits, which was shown to be NP-complete
in [13].

For every splitAijBi 2 S there exists a quartetaia0ijbib
0
i 2 q(AijBi) such that

aia
0
ijbib

0
i 62 q(Aj jBj) for all other splitsAj jBj 2 S [3, 4]. Choose one of these

quartets for each split and give it weight one. Give all other quartets weight zero.
Then for any treeT with leaf setL andq(T ) we have

X
abjcd2q(T )

w(abjcd) = jsplits(T )j: (31)

Hence the weight of the optimal weight tree equals the size of the maximum
compatible subset ofS.

Our second complexity result rules out the possibility of an extension of Theo-
rem 3.2 to include negative quartet weights.

Theorem 3.4. SPLIT CONSTRAINED QUARTET OPTIMIZATION is NP-
complete whend is unbounded and some quartet weights are negative, even when
S = splits(T ) for some treeT .

Proof. The problem is clearly in NP.
We provide a reduction from VERTEX COVER. LetG be a graph with vertex

setV and edge setE. PutM = 2jV j. PutL = fv0; v00 : v 2 V g and letT be the
tree only containing clustersfv0; v00g and one central vertexx of degreejV j.

Label the internal vertex adjacent tov0 andv00 by v. Let QE be the set of
quartets

QE = fu0u00jv0v00 : fu; vg 2 Eg (32)

and letQV be the set of quartets

QV = fv0v00jw0x0 : v; w; x 2 V g: (33)

We give each quartet inQE weightM and each quartet inQV weight �2
(n�2)(n�3) ,

wheren = jV j.
Suppose thatV 0 is a vertex cover forG with sizek. ConstructT 0 with split set
ffv0; v00gj(L� fv0; v00g) : v 2 V 0g. Thenq(T 0) contains all quartets inQ1 and
exactly those quartets inQV of the formv0v00jw0x0 for someu 2 V . It follows
thatT 0 has summed quartet weightkM � k.

Conversely, ifT 0 has summed quartet weightkM � k thenT 0 must contain all
quartets inQE and onlyk (n�2)(n�3)

2 quartets inQV . We can then construct a
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vertex cover

V 0 = fv : fv0; v00gj(L� fv0; v00g) 2 splits(T 0)g (34)

for G of sizek.
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