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The amalgamation of leaf-labeled trees into a single (super)tree that “displays”
each of the input trees is an important problem in classification. We discuss various
approaches to this problem and show that a simple and well-known polynomial-
time algorithm can be used to solve this problem whenever the input set of trees
contains a minimum size subset that uniquely determines the supertree. Our results
exploit a recently established combinatorial property concerning the structure of
such collections of trees. © 2000 Academic Press
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1. INTRODUCTION

In evolutionary biology and other fields involving tree-like classification,
one is often faced with the following tree-amalgamation problem: How can
one combine—or amalgamate—trees that classify different but overlapping
sets of species into one big supertree [15]? More precisely, given a collec-
tion of trees, each of which has its leaves (vertices of degree one) labeled
bijectively by some species from a given large collection of species, we wish
to amalgamate these input trees into a single supertree (parent tree) in
such a way that each input tree is displayed by that supertree.

Clearly, it may be impossible to amalgamate the input trees in this way,
and just determining whether this is the case is known to be an NP-hard
problem [16]. Furthermore, even when the trees can be amalgamated,
there may be exponentially many supertrees. For example, there may be
a supertree that has internal vertices of high degree, in which case any
refinement of this tree also gives a supertree. Yet, even if every supertree
is binary, an exponentially large number of supertrees can occur; see [6].

In this paper, we consider the question of determining whether the col-
lection of input trees uniquely determines a possible supertree. We begin by
introducing some terminology. We will view (leaf-labeled) trees as graphs,
rather than representing them via systems of splits.

Definitions 1.

• We consider trees whose leaves (degree-one vertices) are labeled5

and whose remaining vertices (of which we assume that there exists at least
one) are unlabeled and of degree at least three. Such a tree is also called
a phylogenetic tree or, even more specifically, a phylogenetic X-tree where
X denotes the set of its labels. If all of the nonleaf vertices have degree
three, the tree is said to be a binary tree. An edge incident with a leaf is
said to be a pendant edge, while every other edge is said to be interior.

5That is, there exists a bijective mapping from the set of labels onto the leaves of T . In the
following, we will usually suppose (without loss of generality) that this mapping is the identity.
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• For a tree T , let ��T � denote the set of leaf labels of T , and for a
collection � of such trees, let ��� � denote the union

⋃
T∈� ��T �. Recall

that the number i�T � of interior edges of T never exceeds ���T �� − 3 and
equality holds if and only if T is binary (see, for instance, [6]).

• The excess of a collection � of trees, denoted exc�� �, is defined by

exc�� � �= ���� �� − 3− ∑

T∈�
i�T ��

We shall see that if � has positive excess then it contains too many leaves to
define a (unique) tree (Lemma 1). In this paper, we will be paying particular
attention to collections of trees � for which exc�� � = 0 holds. We will call
such collections excess-free.

• Given a tree T and a subset L ⊆ ��T �, we denote by T �L the phylo-
genetic tree obtained from the smallest connected subgraph of T containing
(the leaves labeled by) L, by making this subgraph homeomorphically irre-
ducible (i.e., by suppressing all degree two vertices). We refer to T �L as an
induced subtree of T and, more specifically, as the subtree of T induced
by L. Note that T �L is binary whenever T is.

• Given two trees T� T ′ with ��T � = ��T ′�, we write T ≤ T ′ if—up to
a label-preserving isomorphism—T can be obtained from T ′ by contracting
some interior edges of T ′.

• Suppose that � �= �T1� � � � � Tr� is a collection of trees. We say that
a tree T displays � if Ti ≤ T ���Ti� holds for all i = 1� � � � � r. The collection
� is said to be compatible if it is displayed by at least one tree T , in which
case � is said to define T if T is the only tree with leaf set ��� � that
displays � . Note that a tree T that is defined by some collection � of
trees is necessarily binary. We say that � is definitive if � is compatible and
defines a tree T .

• A quartet tree is a binary tree T with ���T �� = 4.

In general, it appears to be a difficult problem to determine whether or
not a given collection � of trees is definitive. However, we show that it has
a polynomial time solution whenever the input trees comprise or, at least,
contain a definitive and excess-free subset � ′ of binary trees. Our results
lean heavily upon, and provide a nice application of, a recent combinatorial
result concerning the reconstruction of leaf-labeled trees from tight sets of
subtrees (cf. [7] for a general account and [6] for a rigorous proof). To
explain our results in more detail, note that (i) given a collection � of input
trees, a tree T is said to be implied by � if there exists a compatible subset
� ′ ⊆ � such that T is displayed by every tree T ′ that displays � ′ and that
(ii) there exist arbitrarily large collections � of quartet trees such that every
tree implied by a proper subset � ′ ⊆ � is already contained in � ′ (cf. [9]).
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In contrast, we will show here that dyadic closure operations (using just two
trees at a time) suffice to reconstruct the unique supertree T defined by an
excess-free, definitive collection � of trees in O

(���� ��2) time.
This results suggests a search for an efficient algorithm that would, given

an arbitrary collection � of trees, return an excess-free and definitive subset
� ′ ⊆ � with ��� ′� = ��� � in case such a subset exists and, otherwise, the
information that such a subset does not exist. Such an algorithm, however,
cannot be expected to exist because—as we will show in the last section—
this task belongs in fact to the class of NP-complete problems.

Yet, remarkably, we can still find the unique supertree T for a com-
patible collection � that just contains (but does not necessarily coincide
with) an excess-free, definitive collection � ′ ⊆ � of quartet trees with
��� ′� = ��� � by using another, already existing algorithm (also based
on dyadic closure operations) in O

(���� ��5) time. As pointed out already
in [7], this generalizes in particular results obtained in [12] where dyadic
closure operations were shown to suffice for supertree construction if the
set of input trees contained all the short quartets of the supertree.

So, to summarize clearly what we can and what we cannot do in poly-
nomial time (unless P = NP holds), we distinguish four cases regarding a
given collection � of input trees:

Case �++�: � is compatible and contains an excess-free, definitive
subset � ′ with ��� ′� = ��� �;

Case �−+�: � is incompatible and contains such a subset � ′;

Case �+−�: � is compatible and does not contain an excess-free,
definitive subset � ′ with ��� ′� = ��� �;

Case �−−�: � is incompatible and does not contain such a subset � ′.

In Case �++�, there exists a unique supertree for � , and the algorithm
referred to above will find it in polynomial time. In Case �−+�, the same
algorithm will output in polynomial time that no supertree can exist. In
Case �+−�, the algorithm might provide enough information to find one
or several supertrees and it might also establish that � is definitive—yet, it
might also get stuck without providing this information. And in Case �−−�,
the algorithm might output that no supertree exists, or it might get stuck
without doing so.

So, whenever this algorithm finds several supertrees or gets stuck before
being able to decide whether � is compatible or not, we learn (in poly-
nomial time) that no excess-free, definitive set � ′ with ��� ′� = ��� � is
contained in � ; while if it finds a unique supertree or establishes that � is
incompatible, we have solved the supertree problem for � , yet we do not
learn from this solution whether or not an excess-free, definitive subset � ′

with ��� ′� = ��� � is contained in � . So, this special question remains
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unanswered only in case the problem that we really want to solve (i.e., the
problem of deciding whether � is definitive or incompatible) can be solved
in polynomial time.

Our approach complements some earlier results that also deal with spe-
cial cases where one can easily determine whether or not � is compatible
and, if so, definitive. For example, if

⋂

T∈�
��T � �= ��

then one can determine in polynomial time (in ���� ��) whether or not �
is compatible [1] and if so whether � is definitive [16]. Alternatively, if the
number of trees in � is bounded, then there is also an algorithm that runs in
polynomial time in ���� �� for answering these last two questions; see [16].
Some heuristic and approximation-based approaches to tree amalgamation
have also been proposed, particularly for (possibly incompatible) collections
of quartet trees. Two such heuristic methods include quartet puzzling, intro-
duced by Strimmer and von Haeseler [17], and a novel approach based on
semidefinite programming by Ben-Dor et al. [3]. A polynomial time approx-
imation scheme for the problem of finding the largest compatible subset of
a set � of quartet trees has recently been described by Jiang et al. [14]
(under the strong assumpution that for each subset L of ��� � of size four
there is a quartet tree T in � with ��T � = L).

This paper is organized as follows: We first list some further definitions
that are required for the remainder of the paper. In the next section, we
consider the tree reconstruction problem when � consists of just two trees.
In Section 3, we provide a simple algorithm that solves the tree recon-
struction problem on sets of trees that are excess-free, and in Section 4,
we describe an algorithm that works in a slightly more natural as well as
more general setting and finally show the NP-completeness of the problem
whether or not � contains some definitive and excess-free subset � ′ with
��� ′� = ��� �.

We end this section with some further definitions that will be required
below.

Definitions 2.

• We write xy�wz to denote the quartet tree that has leaves labeled
x� y separated from leaves labeled w� z by its unique interior edge. More
generally, we let x1 � � � xr �y1 � � � ys denote the tree with exactly one interior
edge e = �u� v�, with leaves labeled x1� � � � � xr adjacent to u and leaves
labeled y1� � � � � ys adjacent to v.

• For a tree T , let

��T � �= {
T �L � L ⊆ ��T �� �L� = 4� T �L is a binary tree

}
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denote the collection of quartet trees induced by all 4-subsets L of ��T �,
and for a collection � of trees, put

��� � �= ⋃

T∈�
��T ��

• Given a quartet tree xy�wz that is displayed by a tree T , we say that
xy�wz distinguishes an edge e of T if e is the only edge of T that separates
the leaves labeled x� y from the leaves labeled w� z.

2. AMALGAMATING PAIRS OF TREES

Our discussion on tree amalgamation begins with the simplest case: amal-
gamating pairs of trees.

Theorem 1. Suppose � = �T1� T2� consists of two trees and consider
� �= ��T1� ∩��T2�.

1. � is compatible if and only if �T1�� � T2�� � is compatible.
2. Suppose that T displays � . Then the following three assertions are

equivalent:
(a) � defines T ;
(b) T is binary and no contraction of T (that is, some tree T ′ with

T ′ < T ) displays � ;
(c) T is binary and, for every interior edge e of T , there is an

induced quartet tree of T1 or T2 that distinguishes e.

Proof. The proof of (1) is straightforward.

2a ⇒ 2b follows from the fact that if a nonbinary tree T ′ displays � ,
then any refinement of T ′ also displays � .

2b⇒ 2c follows from the observation that if e is not distinguished by a
quartet tree induced by T1 or T2, then contracting e in T gives a nonbinary
tree that displays � .

2c ⇒ 2a: Counting the interior edges of T , T1, and T2 and noting that
Condition 2c implies i�T � ≤ i�T1� + i�T2�, we get

∣
∣��T1� ∪��T2�

∣
∣ = ���T �� = i�T � + 3

≤ i�T1� + i�T2� + 3

≤ ���T1�� + ���T2�� − 3

= ∣
∣��T1� ∪��T2�

∣
∣+ �� � − 3

and, therefore, �� � ≥ 3. Choose x ∈ � and consider the set Qx of induced
quartet subtrees of T1 or T2 that contain x. For every edge e there is an
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induced quartet subtree of T1 or T2 that distinguishes e, so there must also
be an induced quartet subtree in Qx that distinguishes e. The result then
follows from Theorem 3 of [16].

Remark 1. If T1 and T2 are binary, then � is compatible if and only if
T1�� ∼= T2�� , since two binary trees on the same leaf set are compatible if
and only if they are isomorphic.

Given two trees T1 and T2, we can use the linear time compatibility
algorithm of [18] to see whether the collection �T1� T2� is definitive: First,
we choose a leaf in ��T1� ∩ ��T2� to root these two trees. We can then
determine whether T1�� and T2�� are compatible using the compatibility
algorithm of [18]. If they are compatible but the output tree (denoted T�

here) is not binary then �T1� T2� is clearly not definitive. Suppose in the
following that T� is binary.

Using a depth first traversal on T1 and then T2, we can append the leaves
appearing in only one tree to the tree T� to obtain a binary tree T that
displays both T1 and T2. A third depth first search, this time on T , can then
be used to determine which subtrees of T contain leaves in ��T1� and which
contain leaves in ��T2�. We can then test for which edges Condition 2c of
Theorem 1 holds. In this way, we can determine in O����T1�� + ���T2���
time whether two trees T1 and T2 form a definitive collection.

3. AMALGAMATING EXCESS-FREE COLLECTIONS OF TREES

Lemma 1. Suppose � defines T0. Then, the following holds:

1. exc�� � ≤ 0.

2. If � ′ ⊆ � defines a tree T ′, then �∗ �= �T ′� ∪ �� − � ′� defines T0
and exc�� � = exc�� ′� + exc��∗�; in particular, exc�� � = 0 implies exc�� ′� =
exc��∗� = 0.

3. If � ′ ⊆ � and exc�� ′� = exc�� � = 0 then � ′ is definitive.

4. There is a collection �∗ of binary trees that defines T0, with each tree
T ′ ∈ �∗ being an induced subtree of some tree in � .

Proof. Part 1: This follows immediately from

���� �� = ���T0�� = i�T0� + 3

≤ ∑

T∈�
i�T � + 3

(see also [9, Proposition 3]).
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Part 2: Clearly, �∗ defines T0. Furthermore,

exc�� ′� + exc��∗� = ���� ′�� − 3− ∑

T∈� ′
i�T � + ����∗��

− 3− i�T ′� − ∑

T∈�−� ′
i�T �

= ���� �� + (���� ′�� − 3− i�T ′�)− 3− ∑

T∈�
i�T �

= exc�� ��
Part 3: This follows from Lemma 6.10 of [6].
Part 4: Given any two trees T and T ′, we have T ≤ T ′ precisely if T ′

displays ��T � (the set of induced binary quartet subtrees of T ). Thus, we
may set �∗ =

⋃k
i=1 ��Ti� to satisfy part (4).

Remark 2. Lemma 1(4) cannot be strengthened by insisting that
��∗� = �� � or exc��∗� = exc�� � should hold even if � is excess-free and
definitive. An example is provided by the set

� �= �123�47� 45�16� 67�25� 345�12�
which defines the binary tree on the leaf set �1� 2� � � � � 7� shown in Fig. 1,
yet no four induced quartet trees define this tree: This follows immediately
from the fact that none of the three collections

�1 �= � − �345�12� ∪ �34�12��
�2 �= � − �345�12� ∪ �35�12�� and

�3 �= � − �345�12� ∪ �45�12�
is definitive; see Fig. 2 and note that the tree depicted in Fig. 1 still dis-
plays �3 when contracting the interior edge separating leaves labeled 1� 2
from 3� � � � � 7.

FIG. 1. The binary tree that is defined by the four trees 123�47, 45�16, 67�25, 345�12.
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FIG. 2. Two further binary trees that display the collections �1 = �123�47� 45�16� 67�25�
34�12� and �2 = �123�47� 45�16� 67�25� 35�12�, respectively.

The following theorem is a simple consequence of (and essentially equiv-
alent to) the main theorem in [7].

Theorem 2. Any excess-free, definitive collection � of binary trees
contains two trees that together form an excess-free definitive set.

Proof. Write � = �T1� � � � � Tk�. For each tree Ti in � , we can choose an
excess-free collection �i of induced binary quartet trees that define Ti. For
instance (cf. [16], Theorem 3) we may choose some leaf xi in ��Ti�, and
for every interior edge e of Ti, we may choose leaves ae� be� ce in ��Ti�
such that xiae�bece distinguishes e. Then, we put

�i �= �xiae�bece � e is an interior edge of Ti��
It is easily seen that the union of these sets is also excess free and definitive,
so by [7, Theorem 3.11] and [8, Theorem 3] the union of two of them—say
�i, �j—is excess-free and definitive, too. But this implies that �Ti� Tj� is
excess-free and definitive.

Remark 3. Theorem 2 fails if we drop the restriction that the trees in
the collection be binary; see � given in Remark 2. Theorem 2 also requires
the condition that � is excess-free: The set

� �= �12�35� 24�57� 13�47� 34�56� 15�67� (1)

defines the tree depicted in Fig. 3 (because starting with the hypothetical
quartet tree 13�45 and then consecutively adding the quartet trees 12�35,
24�57, and 15�67 leaves us no other choice; while starting with 14�35 or
15�34 leads to a contradiction in both cases). Yet, for any subset � ′ ⊂ � of
size two there are at least two trees that display � ′.

Theorem 2 leads directly to a polynomial time algorithm for determining
whether an excess-free set � of binary trees defines a tree. A straightfor-
ward approach would be to search for two trees T1� T2 in � such that
�T1� T2� is excess-free and definitive and to replace these two trees by the
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FIG. 3. The binary tree that is defined by the collection �12�35� 24�57� 13�47� 34�56� 15�67�.

tree T they define. Repeating these replacements, we end up with an algo-
rithm that obviously has polynomial run-time. Yet, using an approach estab-
lished in [8], we can construct an even faster algorithm:

To this end, we recall why the above algorithm actually works: Let �
denote an excess-free and definitive set of binary trees. In [7], we estab-
lished that a nonempty subset � ′ of � is definitive if and only if it is
excess-free, and that, given excess-free subsets �1� �2 of � with nonempty
intersection, the sets �1 ∩�2 and �1 ∪�2 are excess-free, too. So, the excess-
free subsets of � form a patchwork as defined in [8], and this is the reason
why the simple algorithm described above cannot run into a dead end. We
can use a (slightly modified) algorithm with square run-time as described
in Fig. 4 of [8] to check whether � defines a tree:

Amalgamating an excess-free collection of trees (AEFT)
Input: An excess-free set � of binary phylogenetic trees
Output:
--Either a binary phylogenetic tree that is defined by �
--or a statement that � is not definitive.

For each �T1� T2� ∈
(�
2

)
do

Ins�T1� T2� ← ��T1� ∩��T2�
If

∣
∣Ins�T1� T2�

∣
∣ ≥ 4 then output non-definitive

end for
�← � ; �←�
While � �= � and ���� > 1 or � �= �� do
Choose T1 ∈ �
If there exists T2 ∈ � with

∣
∣Ins�T1� T2�

∣
∣ = 3 then

Choose such T2 ∈ �
Compute some tree T that displays both T1 and T2
If �T1� T2� does not define T then output non-definitive
For each T3 ∈ � ∪�− �T1� T2� do

Ins�T� T3� ← Ins�T1� T3� ∪ Ins�T2� T3�
If

∣
∣Ins�T� T3�

∣
∣ ≥ 4 then output non-definitive

end for
�← � ∪ �T� − �T1�; �← �− �T2�

else \\ no such T2
�← � − �T1�; �← � ∪ �T1�

end while
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If ��� = 1 and � = � then
Choose T with � = �T� and output T

else \\ � = �
output non-definitive

end.

The algorithm (which we abbreviate as AEFT) can be implemented to
run in O�n2� time for n �= ���� ��. In this algorithm, Ins is an array of sets
that contain at most three elements (and that is indexed by two-element
sets �T1� T2�), so the union of two such sets can be constructed in constant
time. Recalling that we can compute a tree T that displays both T1 and
T2 in linear time (see again [18]), the total run-time is in fact O�n2�. The
following lemma can be deduced from the above observations (see also [6]):

Lemma 2. Given an excess-free collection of binary trees � , Algorithm
AEFT either returns some binary tree T (in case � defines T ) or the statement
nondefinitive (otherwise).

Note that, in case AEFT returns the statement nondefinitive, there might
be either no or several trees displaying � , and deciding which of these two
alternatives holds is an NP-hard problem in general.

4. AN ALGORITHM FOR ARBITRARY COLLECTIONS OF
BINARY TREES

We now have a polynomial time algorithm for the case where an excess-
free collection � of binary trees defines some binary tree T . However, it
would be considerably more useful in real-world applications to provide
a polynomial time algorithm that applies to arbitrary collections of binary
trees. We would like the algorithm to have the property that when � con-
tains an (unknown) excess-free definitive subset � ′ with ��� ′� = ��� �—in
which case � either must be incompatible or must define a tree (namely,
the tree T defined by � ′)—then the algorithm will determine which of these
two alternatives holds, and in the latter case it should actually reconstruct
the tree T .

In this section we describe such a polynomial time algorithm that applies
to any collection of binary trees. The algorithm returns one of the following:

• the statement that � is incompatible;

• a binary phylogenetic tree T that is defined by � ;

• a nonbinary tree that comprises some of the information given by �
(as described in detail below) in case � does not contain an excess-free,
definitive set � ′ with ��� ′� = ��� �.
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In this general setting it is no longer always possible to blindly search for
two trees that define a third and then amalgamate these (as was possible
in the previous algorithm). For example, consider the collections

� ′ = �12�34� 23�47� 17�45� 25�67� and � = � ′ ∪ �13�46��
Then � is compatible, � ′ is an excess-free subset of � that defines the tree
shown in Fig. 1, and ��� � = ��� ′�. Suppose that we initially decided to
consider the pair of quartet trees 12�34� 13�46 which forms an excess-free
definitive subset of � . If we now replace these two quartet trees in � by
the tree they define, then we find that no two trees in the resulting set of
trees form a definitive set. Consequently, this set does not reduce further
by the rules of that algorithm. Of course, had we chosen our two trees
differently, we could have avoided this problem. But without knowing � ′,
there seems to be no obvious way to determine in advance which pair to
consider while, if we try all possible pairs, the required time might grow at
an exponential rate.

Instead, we base the algorithm on the notion of dyadic closure introduced
by Dekker [10] and further developed in [11, 12].

Definition 3. The dyadic closure of a collection � of quartet trees,
denoted cl2���, is the minimal set of quartet trees that contains � and
satisfies the following two rules:

(dc1) ab�cd� ab�ce ∈ cl2��� �⇒ ab�de ∈ cl2���
(dc2) ab�cd� ac�de ∈ cl2��� �⇒ ab�ce� ab�de� bc�de ∈ cl2���.
We define the semidyadic closure of �, denoted scl2���, in the same way as
cl2���, except that we only require (dc2) to hold.

Dekker [10] observed that � is compatible if and only if cl2��� is
compatible. We can also use the dyadic closure to extend Theorem 1:

Lemma 3. Suppose that � = �T1� T2� and T is a binary tree that displays
both T1 and T2. Then � defines T if and only if

scl2���� �� = ��T ��
Proof. If scl2���� �� = ��T � and T ′ displays � , then T ′ must also display

T , which implies T ′ = T since T is binary. Hence � defines T .
Conversely, suppose that � defines T . We prove the result by induction,

noting that it is trivially true for ���T �� = 4. Suppose that the hypothesis
holds in case ���T �� ≤ n and that ���T �� = n+ 1 ≥ 5. Let y� y ′ denote two
leaves of T which form twins of T , that is, which are adjacent to the same
vertex of T , and let z� z′ denote a second such pair of twins—it is easy to
see that at least two (leaf-disjoint) pairs of twins exist in every tree with at
least four distinct leaves.
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Let T ′ be T with the leaf y ′ removed, and let � ′ be � with the leaf
y ′ removed from trees containing it. If there were some tree T ′′ �∼= T ′

also displaying � ′, then we could construct a tree different from T that
would display � by appending y ′ to the edge adjacent to y in T ′′. Hence
� ′ defines T ′. By the induction hypothesis, scl2���� ′�� = ��T ′� and
��T ′� ⊆ scl2���� ��.

The same holds true replacing y by y ′� z� z′, respectively. This shows that
scl2���� �� contains all of ��T � except the quartet tree yy ′�zz′ which can be
derived by choosing any other leaf x in ��T � and applying the rule

yy ′�xz� yx�zz′ ∈ scl2��� �⇒ yy ′�zz′ ∈ scl2����

The following theorem implies that Algorithm DCT below does in fact
behave as promised above.

Theorem 3. If � is a compatible collection of binary trees containing
an excess-free collection � ′ with ��� ′� = ��� � which defines a binary
tree T , then

scl2���� �� = ��T ��

Proof. Clearly, scl2���� �� ⊆ ��T � must hold. To establish the converse
recall that, by Theorem 2, we can combine pairs of trees from (or derived
from) � ′ consecutively to obtain T . Each time we combine two trees T1 and
T2 to form a third tree T3, we have scl2����T1� T2��� = ��T3� by Lemma 3
and, hence, ��T3� ⊆ scl2���� ��. This, however, implies ��T � ⊆ scl2���� ��,
as claimed.

Remark 4. The converse of Theorem 3 does not hold for arbitrary
collections of trees (see, for example, the collection � described in
Remark 2). We do not know whether it holds for collections � containing
only quartet trees.

Theorem 3 leads directly to the tree amalgamation algorithm (DCT). In
this algorithm, the Berry–Gascuel tree (see [4]) is a tree that can be con-
structed from any (compatible or incompatible) set � of quartet trees pro-
vided that � contains at most one tree on the same leaf set. We will denote
the resulting Berry–Gascuel tree for � by T� (rather than by �∗ as in [4]).
Then, the Berry–Gascuel construction satisfies the following properties:

• ��T�� = ��Q�;
• T = T� satisfies ��T � ⊆ � and, moreover, T� displays all trees T

that satisfy this condition;

• in particular, if � = ��T � for some tree T , then T�
∼= T .
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Informally, T� is a conservatively resolved tree whose edges induce
exactly those splits (i.e., bipartitions) of ���� (= ��T �) that are unani-
mously supported by the quartet trees in �.

Dyadic tree construction algorithm (DCT)
Input: A set � of binary trees
Output:
--Either a statement that � is incompatible
--or a binary tree that is defined by �
--or a statement that � does not contain an excess-
free, definitive subset � ′ with ��� ′� = ��� �
(and an additional output of a non-binary tree).

Construct cl2���� ��
If cl2���� �� contains two distinct trees with the same
leaf set then output incompatible

else
output the Berry-Gascuel tree for cl2���� ��.
If this tree is not binary then also output the statement

no excess-free definitive subset.
end.

Algorithm DCT can be implemented to run in O�n5� time, using an
approach similar to the one described in [12] for computing cl2���� �� and
the O�n4� time algorithm for the Berry–Gascuel construction of [4]. The
following result justifies the correctness of the algorithm and follows from
Theorem 3 (together with the third listed property of the Berry–Gascuel
construction).

Lemma 4. If a collection of trees � contains a definitive excess-free subset
of binary trees � ′ ⊆ � with ��� ′� = ��� �, then DCT either returns the
binary tree defined by � (in which case � is compatible) or, otherwise, the
statement incompatible.

In fact, the algorithm is stronger than Lemma 4 implies. Consider the
collection

�∗ �= �12�34� 12�45� 26�15� 45�36��

The algorithm DCT will return the tree T defined by �∗ even though
scl2��∗� �= ��T � holds, so (by Theorem 3) �∗ does not contain an excess-
free definitive subset. There are also cases when a collection � defines a tree
T even though cl2��� �= ��T �, one example being the collection described
in Remark 3. Indeed, the computational complexity of determining whether
a given set of quartet trees � defines a (known!) binary tree T is unknown.
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Even when we cannot determine a tree defined by � , we can use the
partially resolved tree T returned by DCT to infer some properties of the
trees that display � .

It would be useful to determine in advance whether an arbitrary collection
� of trees contains an excess-free, definitive subset � ′ with ��� ′� = ��� �.
Unfortunately, we may assume that this is difficult, due to the following
theorem.

Theorem 4. Let � denote a set of quartet trees. Then, the problem of
determining whether or not there exists an excess-free, definitive subset �′ of �
with ���′� = ���� is NP-complete.

Proof. The excess of a given subset �′ can be computed in polynomial
time. Furthermore, given an excess-free subset �′, we have shown how to
verify in polynomial time whether or not �′ defines some binary tree. Con-
sequently, the problem is in NP.

We use a simple reduction from the NP-complete problem, Directed
Hamiltonian Path [13].

By a caterpillar tree we mean a binary tree in which each nonleaf vertex
is adjacent to at least one leaf, that is, a binary tree with exactly two pairs
of twins. Given a digraph G = �V�A�, choose two new vertices x� y /∈ V
and construct the set of quartet trees

� = �xa�by � �a� b� ∈ A��
If � contains a subset of size ������ − 3 = �V � − 1 that defines a binary tree,
then this tree T is necessarily a caterpillar tree with x and y at opposite
ends of the tree (see [16]) and this holds if and only if the remaining leaves
of the caterpillar tree trace a Hamiltonian path for G.
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