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Stochastic models of trees generated by birth and death pro-
cesses are central to modern phylogenetics. Here, ‘birth’ and
‘death’ refer to speciation and extinction. The application of these
models dates back to a classic 1925 paper by George Udny
Yule, who showed how a simple birth model could help explain
the long-tailed distribution of the species richness across gen-
era (Yule, 1925). Birth–death processes were further developed
in the 1940s (Kendall, 1948); by the 1990s, their phylogenetic
relevance came to the fore on a number of fronts: modelling
macroevolution (Harvey et al., 1994; Nee et al., 1994), studying
gene trees (Rannala, 1997), population dynamics, and as priors
for Bayesian phylogenetics.

The growing availability of large phylogenies inferred using
molecular data, from the 1990s onward, led to a further oppor-
tunity to extend Yule’s pioneering work; namely, to use these
trees to estimate speciation and extinction rates, and to test
different model hypotheses. Slowinski and Guyer (1989) had al-
ready noted that the discrete probability distribution on the shape
of the reconstructed tree (i.e. the evolutionary tree once extinct
lineages are ignored) is remarkably robust to model variation.
This discrete probability distribution on tree shapes (often called
‘Yule-Harding’) arises whenever there is a uniform distribution
on ranked trees (URT). Later, Aldous (1996) explained how this
URT property holds under general exchangeability assumptions
on speciation and extinction events, even when the rates of these
events change with time and with the number of species present
(and, in the case in which extinction is allowed, past history).

With this stage set, Amaury Lambert and Tanja Stadler, in
their 2013 paper (Lambert and Stadler, 2013), provided a new
and unified way to view and apply macroevolutionary models
in phylogenetics. First, their paper explored in more detail the
model assumptions under which the URT property describes the
shape of the reconstructed tree, making precise what constraints
need to be imposed on the speciation and extinction rates. This
exploration led to the second main contribution of this paper.
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Rather than viewing birth–death trees as evolving ‘forward in
time’, the authors showed how the reconstructed tree can be de-
scribed much more effectively by a simple ‘horizontal’ procedure
called a ‘Coalescent Point Process’ (CPP).

The basic idea of the CPP is as follows: suppose we wish to
sample a reconstructed tree grown for time t under a birth–death
process, and conditioned on it having n leaves at time t . The direct
(but inefficient) way to do this would be to simulate trees for
time t , form the reconstructed tree, and discard all the samples
that do not have exactly n leaves. By contrast, for the CPP, one
simply draws n − 1 i.i.d. samples x1, x2, . . . , xn−1 from a fixed
density f , from which the tree is reconstructed in a geometrically
simple way (roughly speaking, by linking vertical line segments
of lengths x1, x2, . . . , xn−1 to a vertical line of length t by adding
linking horizontal line segments). The CPP also applies if we do
not condition on having n leaves at time t; one simply stops the
process at the first length xi that is larger than t (which nicely
explains why the number of leaves in a tree grown for time t
follows a geometric distribution).

Although the CPP notion had been explored earlier (Popovic,
2004; Aldous and Popovic, 2005; Lambert, 2010), the Lambert–
Stadler paper provided a general treatment, describing precise
conditions under which it would hold, and showing how it gives
a more effective means of sampling and performing likelihood
calculations. The CPP applies to a wide class of models beyond
the simple constant birth–death model (though not quite as wide
as the processes that lead to the URT property, since birth/death
rates that depend on the number of lineages are problematic
for applying the CPP). The CPP should not be confused with
Kingman’s coalescent process (or its phylogenetic incarnation, the
‘multispecies coalescent process’); indeed, Lambert and Stadler
showed that the Kingman coalescent cannot be exactly described
by a CPP, except for a finite number of values of n (they conjecture
the only possible value of n for which this occurs is n = 2).

One challenge for the future is to explain why real phyloge-
netic trees tend to be a little less ‘balanced’ than the URT property
predicted by the CPP approach. Aldous described a one-parameter
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model (the β-splitting model), for which the URT property cor-
responds to β = 0, whereas real phylogenetic trees tend to be
often cluster around β = −1 (Aldous, 2001). Despite a number
of attempts (e.g. Hagen et al. (2015)), a compelling and simple
explanation for this phenomenon has so far proved elusive.

The CPP representation holds particular promise for phylody-
namics (modelling the shape of evolutionary trees and thereby
using reconstructed trees to test macroevolutionary hypotheses).
It has already been applied to give an exact description of how
‘phylogenetic diversity’ is lost in large trees as species become ex-
tinct (Lambert and Steel, 2013), and to quantify ‘age-dependent’
extinction, in which the extinction rate of a species depends on
the time since it split from another species (Alexander et al.,
2016). An extension of the CPP has provided a new way to
quantify protracted evolution (where a new lineage takes time
to develop into a separate species) based on maximum likelihood
calculations (Lambert et al., 2015), and to predict genetic diversity
in branching populations.
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